Green Chemistry

PAPER

View Article Online

Cite this: DOI: 10.1039/c3gc40495a

Highly efficient synthesis of cyclic ureas from CO₂ and diamines by a pure CeO₂ catalyst using a 2-propanol solvent[†]

Masazumi Tamura, Kensuke Noro, Masayoshi Honda, Yoshinao Nakagawa and Keiichi Tomishige*

Pure cerium oxide (CeO₂) acts as an effective and reusable heterogeneous catalyst for direct synthesis of cyclic ureas from CO₂ and diamines even at a low CO₂ pressure of 0.3 MPa. 2-Propanol is the most preferable solvent to provide good selectivity. The system composed of a CeO₂ catalyst and a 2-propanol solvent is applied to various diamines to provide the corresponding cyclic ureas in high yields (78–98%), including six-membered-ring ureas that are difficult to be synthesized from CO₂. Based on the kinetic studies on the effect of CO₂ pressure and amine concentration and FTIR studies on adsorption of ethylene-diamine and CO₂ onto CeO₂, the following mechanism for the synthesis of cyclic urea is proposed: (1) formation of carbamic acid and carbamate species on CeO₂, (2) decomposition of carbamic acid to a free amino group and CO₂, (3) nucleophilic attack of the amino group on the carbamate on CeO₂ to produce the cyclic urea and (4) desorption of the product and regeneration of CeO₂.

H

Received 15th March 2013, Accepted 11th April 2013 DOI: 10.1039/c3gc40495a

www.rsc.org/greenchem

Introduction

Carbon dioxide is one of the greenhouse gases and its conversion to useful compounds will be an essential technology for the future sustainable society without the anxiety of global warming issues.¹ The reductive CO₂ conversion is one of the transformation methods of CO₂, but in general, the energy level of CO₂ is so low that the reductive conversion needs a larger energy input using highly reactive reducing agents such as H₂.²⁻⁴ As an alternative method, non-reductive conversion is promising because the reaction can proceed with a low energy input. The compounds given by non-reductive conversion include carbonates, carbamates, ureas and so on.1c,5 Among these compounds, ureas are an important class of carbonyl compounds and useful chemical intermediates in the synthesis of pharmaceuticals, agricultural chemicals and dyes as well as antioxidants in gasoline and additives in plastics. Cyclic ureas are heterocyclic motifs frequently observed in biologically active molecules, and in particular six-membered ring ureas are important⁶⁻⁹ because of their antineoplastic,⁷ antiviral⁸ and anti-arrhythmic⁹ activity. Therefore, an effective

synthetic method of cyclic ureas from CO_2 and diamines is required (eqn(1)).

$$H_2N$$
 $(n = 1, 2)$ NH_2 CO_2 O HN NH (1)

Conventionally cyclic ureas are synthesized by the reaction of diamines with several reagents such as phosgene, urea, carbonyldiimidazole,¹⁰ trichloromethyl chloroformate,¹¹ organic carbonates,6,12 dithiocarbonate,13 carbonyl selenide14 and CO.15 However, these reagents are intrinsically very toxic or prepared from hazardous chemicals such as phosgene, CO and CS_2 . From the environmental viewpoint, reaction of CO_2 with diamines will provide an attractive alternative method for the direct synthesis of cyclic ureas. Direct reaction of CO2 with diamines to cyclic ureas has been conducted using various catalyst systems.16-24 Effective homogeneous systems for this reaction such as Ph₃SbO/P₄S₁₀,¹⁶ PhTMG/DPPA¹⁷ and Hünig's base¹⁸ were reported, and recently Mizuno¹⁹ reported that $TBA_2[WO_4]$ is an efficient homogeneous catalyst for the synthesis of cyclic ureas from diamines and CO₂ of atmospheric pressure. From the viewpoints of catalyst separation and recycling, heterogeneous catalysts or non-catalytic systems are preferable to homogeneous catalysts.²⁰⁻²³ Arai²⁰ and Zhao²¹ developed non-catalytic systems for the direct CO₂ conversion to cyclic ureas. However, these systems suffer from harsh reaction conditions such as high pressure (≥ 6.0 MPa) and high

Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, 980-8579 Japan. E-mail: tomi@erec.che.tohoku.ac.jp; Fax: +81-22-795-7214; Tel: +81-22-795-7214

[†]Electronic supplementary information (ESI) available. See DOI: 10.1039/ c3gc40495a

View Article Online

temperature (\geq 473 K), and cannot achieve a satisfactory yield of six-membered-ring urea in spite of such harsh conditions and the yields are below 86%. As for heterogeneous catalysts, only two effective catalysts were reported. Polyethylene-glycolsupported potassium hydroxide (KOH/PEG1000)²³ was an efficient catalyst at 8 MPa CO₂ pressure and 423 K, which suffered from high pressure, narrow scope of substrates and low yields of cyclic ureas ($\leq 82\%$). Nanoparticulate CeO₂²² prepared by a biopolymer-template process using mesoporous alginate aerogel was an efficient catalyst at 0.7 MPa CO₂ pressure and 433 K, however, this catalyst has drawbacks of narrow scope of substrates and low yields of cyclic ureas $(\leq 37\%)$. As above, there is no green system that can achieve satisfactory yields of cyclic ureas, particularly six-memberedring ureas, at low pressure (<1.0 MPa) and moderate temperature (<453 K). Therefore, effective reaction systems are desired to be developed from the industrial and academic viewpoints.

Our research group has reported that pure CeO_2 activates CO_2 effectively and acts as an efficient heterogeneous catalyst for the direct synthesis of organic carbonates and carbamates from CO_2 .²⁴ It has been also found that the solvent is clarified to be one of the most important factors to obtain high yield and selectivity.²⁵ In this paper, we demonstrate that the catalyst system composed of pure CeO_2 and 2-propanol solvent is effective for the direct synthesis of cyclic ureas from CO_2 and diamines under mild reaction conditions. This system can be applied to various diamines to afford the corresponding cyclic ureas in excellent yields, including six-membered-ring ureas. The reaction mechanism over CeO_2 is also discussed on the basis of the kinetics and FTIR studies.

Experimental

General

Preparation of a pure CeO₂ catalyst was carried out by calcination of cerium oxide HS (Daiichi Kigenso, Japan) for 3 hours under air at 873 K, which is an optimized calcination temperature of CeO₂ according to the result of carbonate synthesis.^{24*a*} The specific surface area (BET method) of pure CeO₂ was 80 m² g⁻¹. The purity of pure CeO₂ is 99.97%. All the chemicals for organic reactions were commercially available and were used without further purification.

Catalytic reaction

All the reactions were carried out in an autoclave reactor with an inner volume of 190 mL. The standard procedure for the cyclic urea synthesis from CO₂ and diamine (CO₂ + diamine) was as follows: CeO₂ catalyst (0.34 g, 2 mmol), diamine (10 mmol) and solvent (200 mmol) were put into the autoclave together with a spinner, and then the reactor was purged with CO₂ (Shimakyu Co. Ltd., >99.5%). After that, it was pressurized with CO₂ to the desired pressure (typically 0.5 MPa). The gas line was closed and then the reactor was heated to the reaction temperature. The mixture was constantly stirred during the reaction. After the reaction time, the reactor was cooled to room temperature and the gas was collected. Methanol and 1-hexanol were added to the liquid phase as a solvent and an internal standard substance for a quantitative analysis, respectively. The reactor was washed with methanol and water, and the liquids used in washing were added to the reaction mixture. The products in the liquid and the gas phases were analyzed by a gas chromatograph equipped with an FID or quadrupole mass spectrometer (GC-MS) using an InertCap for amines 5 MS/Sil capillary column (GL science Inc., length = 30 m, I.D. = 0.25 mm).

Conversion and selectivity to each product in the reaction of CO_2 + diamine were calculated on the basis of diamines as below.

$$Conversion /\% = \left(1 - \frac{Amount of diamine after the reaction}{Amount of diamine before the reaction}\right) \times 100$$

Selectivity/
$$\% = \frac{\text{Amount of each product}}{\text{Amount of reacted diamine}} \times 100$$

The products which are not identified by GC-MS and NMR are denoted as "Others". The amount of "Others" was calculated as below.

 $\frac{\text{Amount of reacted diamine} - \text{Amount of identified products}}{\text{Amount of reacted diamine}} \\ \times 100$

The reaction rate (V/mmol h⁻¹ g⁻¹) was calculated as below.

 $V \text{ (mmol } h^{-1} \text{ g}^{-1}\text{)} =$ Amount of diamine before the reaction × Conversion/100×
Selectivity of product/100
Time × Amount of catalyst

The test of reusability of CeO_2 is conducted as follows: the used catalysts were collected by the decantation. The collected catalysts were washed with methanol and dried at 383 K for 2 h, followed by calcination in air at 873 K for 3 h. After this treatment, the recovered catalyst is applied to the successive reaction. Multiple runs were conducted at the same time under the same conditions to collect enough amount of the used catalyst, and the loss of the catalyst was compensated by reducing the number of runs.

Catalyst characterization. Diffuse reflectance infrared Fourier transform (DRIFT) spectra were recorded with a NICOLET 6700 spectrometer (Thermo Scientific) equipped with a liquid nitrogen-cooled MCT(HgCdTe) detector (resolution 4 cm⁻¹), using an *in situ* cell with ZnSe windows. An *in situ* cell was used for high-temperature and high-pressure gas flow systems. The measurement of the adspecies of ethylenediamine and CO₂ is carried out in the following method; ethylenediamine (ethylenediamine/metal oxides = 2 wt%) is added to the metal oxide (SiO₂ or pure CeO₂) and the admixture was stirred vigorously. About 30 mg of the mixture was transferred to the ceramic pan in an *in situ* FTIR cell connected to the flow system. The loaded sample was heated up to the desired temperature (303 K or 433 K) under N₂ flow (50 mL min⁻¹), and the spectrum of adsorbed ethylenediamine was measured. Next, CO₂ was introduced into ethylenediaminetreated CeO₂ in the flow, and then pressurized up to 5 MPa while the sample temperature was kept at the desired temperature. All the spectra were obtained 5 min after the introduction of CO₂. The spectra were obtained by subtraction of the spectrum derived from air and the apparatus.

The surface area of CeO_2 was measured with the BET method (N₂ adsorption) using Gemini (Micromeritics). X-ray diffraction (XRD) patterns were recorded using a Rigaku Ultima IV with Cu K α (40 kV, 40 mA) radiation.

Results and discussion

Catalytic performance in the reaction of CO₂ + ethylenediamine

First, various metal oxides were tested as catalysts for the formation of 2-imidazolidinone (1) from 0.5 MPa CO_2 and ethylenediamine at 433 K (Table 1). Formation of 1 hardly proceeded without a catalyst (Table 1, entry 12) under these conditions (yield 0.8% in 1 h). In the reported non-catalytic systems,^{20,21} high CO_2 pressure (above 5 MPa) and high temperature (above 423 K) are required. For example, 96.9% yield of 1 was obtained in 24 h at 10 MPa CO_2 pressure and 453 K.²¹ The effect of CO_2 pressure is very large, which means the necessity

Table 1 The results of the reaction of ethylenediamine and CO_2 in methanol over various metal oxides^a

H_2N $H_2 + CO_2$	$\frac{\text{Metal oxide}}{\text{CH}_3\text{OH}} \leftarrow \begin{pmatrix} H \\ N \\ C = 0 + H_2 0 \\ H \end{pmatrix}$
	2-Imidazolidinone (1)

		$\begin{array}{c} SA \\ \left(m^2 \ g^{-1}\right) \end{array}$	- ·	Selectivity (%)		morth
Entry	Catalyst		(%)	1	Others	(h^{-1})
1	Pure CeO ₂	78	22	93	7	4.0
2^{c}	-		98	96	4	_
3	ZnO	5.8	40	68	32	5.4
4^d			42	7	93	_
5	CaO	12	3.1	32	68	0.20
6	La_2O_3	7.0	5.0	16	84	0.16
7	TiO ₂	48	2.0	95	5	0.38
8	MgO	37	2.6	23	77	0.12
9	ZrO_2	91	2.1	90	10	0.38
10	Pr_6O_{11}	33	5.5	13	87	0.14
11	Al_2O_3	182	0.8	88	12	0.14
12	None	_	0.8	87	13	_

^{*a*} Reaction conditions: ethylenediamine (10 mmol), methanol (6.4 g), metal oxide (metal: 0.2 mmol), $P_{CO_2} = 0.5$ MPa, T = 433 K, t = 1 h. ^{*b*} Molar ratio of the converted substrate to the total amount of the metal atom per hour. ^{*c*} 12 h. ^{*d*} 4 h.

of high CO₂ pressure. Therefore, addition of an effective catalyst is indispensable to make the reaction conditions much milder. For various metal oxides, turnover frequency (TOF) was measured under the conditions in which the conversions were below 40%. TOF is calculated from the following equation: TOF = (amount of produced 1 (mol)/total amount of the metal)atom (mol)). ZnO and CeO₂ gave higher conversion and TOF than the other metal oxides (Table 1, entries 1 and 3). As for selectivity, CeO₂ shows a higher value of 93% (Table 1, entry 1), however, the value shown by ZnO is very low (Table 1, entry 3, 68%). The results of the reaction at longer time were also compared between CeO2 and ZnO catalysts (Table 1, entries 2 and 4). The reaction over pure CeO₂ smoothly proceeded to afford 94% yield in 12 h. On the other hand, the conversion over ZnO was saturated and the yield was decreased. In the case of ZnO, insoluble material was observed in the reaction mixture, particularly on ZnO, which implies that the polymerization reaction occurred. The produced polymer may cover the surface of ZnO, leading to deactivation of ZnO. From the above results, pure CeO₂ is the most effective catalyst for the direct synthesis of 1 from CO₂ and ethylenediamine among the various metal oxides tested and the yield of 1 was highest for the reported heterogeneous catalysts (KOH/ PEG1000:²³ 82%, nanoparticulate CeO₂:²² 37%). Low yield of nanoparticulate CeO₂ might be due to impurities such as Na because the nanoparticulate CeO₂ in the literature was prepared using sodium alginate.

In order to verify whether the observed catalysis is derived from solid CeO₂ or leached Ce species in the solution, the direct synthesis of 1 from CO_2 and ethylenediamine was carried out under the above conditions for 1 h to reach 21% yield of the product, and then CeO₂ was removed from the reaction mixture by filtration (Fig. S1[†]). Then, the reaction was tested with the filtrate under the same conditions again. After 12 h, the conversion slightly increased and the increasing amount of 1 was 5.2% in 11 h (~0.5%/h), which is derived from a non-catalyzed reaction considering that 1 is produced at 0.8% yield in 1 h in the absence of the catalyst (Table 1, entry 12). This means that the catalytically active species are not due to the leached species from CeO2. Therefore the observed catalysis is essentially heterogeneous. A further advantage of this catalytic system is its reusability. We studied the reuse of CeO_2 for the reaction of CO_2 + ethylenediamine (Fig. 1). The catalyst can be easily retrieved from the reaction mixture by decantation. CeO₂ was reused at least three times without marked loss of its catalytic activity and selectivity. Moreover, the specific surface area of CeO₂ hardly changed after the first and second uses (fresh: 80 m² g⁻¹, first use: 83 m² g⁻¹, second use: 83 m² g⁻¹), and XRD (Fig. S2^{\dagger}) and TG profiles (Fig. S3[†]) did not change after the first use, either. These results indicate that the structure of CeO₂ maintained through the recycle tests.

The reaction conditions for the synthesis of 1 from CO_2 and ethylenediamine on CeO_2 as a model reaction were optimized. The effect of reaction temperature was examined in a temperature range of 413–453 K (Fig. 2). Increase in the temperature

Fig. 1 Recycle test of CeO₂ for the synthesis of **1** from CO₂ and ethylenediamine. Reaction conditions: ethylenediamine (10 mmol), methanol (6.4 g), CeO₂ (0.085 g), $P_{CO_2} = 0.5$ MPa, T = 433 K, 1 h.

Fig. 2 Effect of temperature on formation of **1** (white bar; **1**, black bar; others). Reaction conditions: ethylenediamine (10 mmol), methanol (6.4 g), CeO₂ (0.085 g), $P_{CO_2} = 0.5$ MPa, T = 413-433 K, 1 h.

from 413 to 453 K raised the conversion from 5 to 39%. On the other hand, the selectivity was maintained to be very high up to 443 K, but was decreased at 453 K, accompanying that the N-alkylated product, a main byproduct, was formed. The effect of the concentration of ethylenediamine was examined by changing the amount of the diamine in a range 2.5-25 mmol (Table 2). The selectivity was high between 5 and 15 mmol (Table 2, entries 2-4), however, the selectivity became low when the diamine concentration is out of the range (Table 2, entries 5and 6). Ultimately, 10 mmol of the diamine to 6.4 g methanol was adopted. The effect of CO₂ pressure was examined by changing CO_2 pressure from 0.2 to 3.0 MPa (Fig. 3). At 1 h reaction time (Fig. 3a), the conversion was almost constant in the range of 1.0-3.0 MPa, but increased slightly as CO₂ pressure decreased from 1.0 to 0.2 MPa. On the other hand, the selectivity was almost constant except for 0.2 and 3.0 MPa

		C	Selec	tivity (%)	D i h
Entry	(mmol)	(%)	1	Others	$(\text{mmol } h^{-1} \text{ g}^{-1})$
1	2.5	88	86	14	_
2	5	44	95	5	3.19
3	10	22	93	7	3.17
4	15	19	93	8	3.41
5	20	15	83	16	3.37
6	25	12	83	16	3.37

^{*a*} Reaction conditions: ethylenediamine (2.5–25 mmol), methanol (6.4 g), CeO₂ (0.086 g), $P_{CO_2} = 0.5$ MPa, T = 433 K, t = 1 h. ^{*b*} Reaction rate was calculated under the reaction conditions where the conversion is below 50%.

of CO₂ pressure, where the selectivity is decreased owing to increase of byproducts including *N*-alkylated products. At 12 h reaction time (Fig. 3b), ethylenediamine is converted almost completely to **1** at more than 0.3 MPa CO₂ pressure with very high selectivity (>92%). However, at 0.2 MPa CO₂ pressure the conversion is 54% and the selectivity is also low. Note that CeO₂ achieved the high conversion and selectivity even at a very low CO₂ pressure of 0.3 MPa, where neither non-catalytic systems nor reported heterogeneous catalysts worked effectively: reported non-catalytic systems and reported heterogeneous catalysts required \geq 8 MPa and \geq 0.7 MPa CO₂ pressure, respectively. Ultimately, we selected 0.5 MPa CO₂ pressure in the following experiments.

Solvent effect and substrate scope of CeO₂ catalysts

The solvent effect for the synthesis of **1** from CO_2 and ethylenediamine was investigated and the results are listed in Table 3. Under the low conversion conditions, the catalytic performance is not influenced so significantly by the solvents (Table 3, entries 1, 3, 4, 6, 8 and 9), which indicates that the interaction of solvents with CeO_2 is weak. On comparing the details of the solvent effect, 1-propanol and 2-propanol provided slightly higher conversion and selectivity (Table 3, entries 4 and 6). Even under the high conversion conditions, 1-propanol and 2-propanol provide higher selectivity than methanol (Table 3, entries 2, 5 and 7), and these selectivities are almost 100%. To ascertain that these alcohols are truly efficient for improvement of selectivity, 2-propanol which is a cheap and fairly nontoxic solvent was applied to various cyclic urea syntheses.

Cyclic urea syntheses from CO_2 and various diamines were examined (Table 4). The effect of the solvent on selectivity was also examined using both methanol and 2-propanol. In the case of methanol as a solvent, ethylenediamine, 1,2-propanediamine and 2-methyl-1,2-propanediamine (Table 4, entries 1, 3 and 5) reacted to afford the corresponding cyclic ureas in high yields (86–94%). *N*-Alkyl ethylenediamines (Table 4, entries 7, 9 and 11) were also converted selectively. 1,3-Propanediamine and *N*-methyl-1,3-propanediamine were applied to provide the six-membered-ring ureas (Table 4, entries 15 and 17). However, *N*,*N'*-dimethylethylenediamine (Table 4, entry

Paper

Fig. 3 Effect of CO₂ pressure on formation of 1 after (a) 1 h and (b) 12 h (white bar; 1, black bar; others). Reaction conditions: ethylenediamine (10 mmol), methanol (6.4 g), CeO₂ (0.085 g), $P_{CO_2} = 0.2-3.0$ MPa, T = 433 K, 1 h or 12 h.

 Table 3
 Solvent effect for the reaction of ethylenediamine and CO2 over CeO2^a

				Select	ectivity (%)	
Entry	Solvent	Conve (%)	rsion	1	Others	
1	Methanol	22		93	7	
2^{b}		98		96	4	
3	Ethanol	21		95	5	
4	1-Propanol	26		96	4	
5^{b}	1	97		98	2	
6	2-Propanol	26		96	4	
7^b	1	97		99	1	
8	Acetonitrile	20		70	30	
9	1-Methyl-2-pyrroli	done 17		88	12	
^a Reaction	conditions: e	thvlenediamine	(10	mmol).	solvent	

"Reaction conditions: ethylenediamine (10 mmol), solvent (200 mmol), CeO₂ (0.086 g), $P_{CO_2} = 0.5$ MPa, T = 433 K, t = 1 h. ^{*b*} CeO₂ (0.34 g), t = 12 h.

13) was converted in low yield (43%). Using 2-propanol as a solvent instead of methanol provided high yield (78%) with high selectivity (94%) (Table 4, entry 14). Other diamines (Table 4, entries 2, 4, 6, 8, 10, 12, 16 and 18) were also transformed using 2-propanol to afford the corresponding products in high yields (88-96%). These results indicate that 2-propanol is a more preferable solvent for the synthesis of various cyclic ureas. Note that 1,3-propanediamines (Table 4, entries 15–18), which are known to be more difficult substrates to give the cyclic urea, can be converted to the corresponding sixmembered-ring ureas, which are core structures of important medicines for antineoplastic, HIV-1 and anti-arrhythmic.⁶⁻⁹ These yields are higher than the previously reported noncatalyst systems (max yield: 86%) and there are no reports on heterogeneous catalysts. Therefore, this catalytic system composed of CeO₂ and 2-propanol solvent can be promising in the aspect of practical use.

To reveal the effect of the solvent, we focused on the byproduct in the synthesis of cyclic ureas. In this reaction system, the main side reaction is *N*-alkylation of amines with alcohols (Table 4), and CeO₂ will catalyze this reaction. *N*-Alkylation of

amines with alcohols will be considered in the following two possible pathways (Scheme 1); (1) dehydrogenation of alcohol, nucleophilic addition of amine to a carbonyl group producing imine and hydrogenation of imine^{26,27} and (2) N-alkylation with dialkylcarbonate.²⁸ The pathway (1) has been widely reported by transition-metal complexes such as Ir, Ru, Pd, etc.,²⁶ and strong bases²⁷ such as alkaline hydroxide or alkaline alkoxide are also known to catalyze the reaction pathway. However, these strong base catalysts require harsh reaction conditions such as high temperature (>473 K). Considering that the basicity of CeO₂ is lower than such strong bases and the temperature of the present reaction system is comparatively low (433 K), the contribution of the pathway (1) must be small. On the other hand, as described in the introduction, CeO₂ is an effective catalyst for the dialkylcarbonate synthesis from CO₂ and alcohols.^{24a-d} It is reported that N-alkylation of amines by dialkylcarbonates proceeds at a low temperature of 363 K using base catalysts such as alkaline alkoxide.^{28c} The reported results suggest that the pathway (2) will be valid as a side reaction in our catalyst system; dialkylcarbonate will be in situ produced on CeO2 and the produced carbonate will play the role in the alkylation agent. The yields of N-alkylated products in methanol and in 2-propanol were compared (Table 4). The yields of N-alkylation products by methanol in entries 7, 11, 13 and 17 are 0.3%, 3%, 9% and 11%, respectively, and the yields of N-alkylation products by 2-propanol in entries 8, 12, 14 and 18 are almost 0%. N-Alkylation of amines was remarkably suppressed using 2-propanol as a solvent. Taking into consideration that N-alkylation of amines proceeds via the pathway (2) in Scheme 1, the bulky alkyl group of 2-propanol will inhibit the insertion of alcohol into CO₂ owing to the steric hindrances of the alkyl chain in the alcohol, which coincides with the previous result that secondary alcohol is less reactive for the synthesis of dialkylcarbonate than methanol on CeO₂.^{24d} Therefore, the structure of an alcohol solvent is the most important factor to suppress the side reaction and achieve high yields of cyclic ureas.

Downloaded by New York University on 09/05/2013 04:32:42.

							Yield	
Entry	Diamine	Cyclic urea	Solvent	Time	Conv. (%)	Selectivity to cyclic urea (%)	Cyclic urea (%)	<i>N</i> -Alkylated amine (%)
1 2	H_2N NH ₂		Methanol 2-Propanol	12 12	98 97	96 99	94 96	Trace Trace
3 4	H_2N H_2 H_2	H N C=O	Methanol 2-Propanol	12 12	97 98	97 98	94 96	n.a. ^b n.a. ^b
5 6	H ₂ N H ₂	HN N N H	Methanol 2-Propanol	12 12	90 92	96 98	86 90	n.a. ^b n.a. ^b
7 8	N H NH ₂		Methanol 2-Propanol	24 24	86 99	94 99	81 98	0.3 Trace
9 10	N H NH ₂		Methanol 2-Propanol	24 24	83 98	94 98	78 96	n.a. ^b n.a. ^b
11 12	N H NH ₂		Methanol 2-Propanol	24 24	81 97	93 99	75 96	3 Trace
13 14	N H HN		Methanol 2-Propanol	24 24	55 83	78 94	43 78	9 Trace
15 16	H ₂ N NH ₂	C=0	Methanol 2-Propanol	24 24	86 93	81 97	70 90	n.a. ^b n.a. ^b
17 18	H ₂ N N H	⟨−N N N	Methanol 2-Propanol	24 36	81 90	85 98	69 88	11 Trace

Table 4	Scope	of diamines	for the cyclic	: urea synthesis ^a
---------	-------	-------------	----------------	-------------------------------

^{*a*} Reaction conditions: substrate (10 mmol), solvent (200 mmol), CeO₂ (0.34 g), $P_{CO_2} = 0.5$ MPa, T = 433 K. ^{*b*} Not analyzed.

FTIR study and kinetic study

To elucidate the reaction mechanism of cyclic urea synthesis from CO_2 and diamines over CeO_2 , kinetic and FTIR studies were carried out. The adsorption order of the substrates in FTIR experiment obeyed the actual synthesis of cyclic ureas in an autoclave. At first, adspecies formed from the treatment of ethylenediamine with CeO_2 and SiO_2 at a low temperature of 303 K were observed by FTIR. Fig. 4 shows the spectra of ethylenediamine adspecies on SiO_2 and CeO_2 . The main bands at 1574 cm⁻¹ for CeO_2 and 1601 cm⁻¹ for SiO_2 were observed and were assigned to N-H bending vibrations of adsorbed

Green Chemistry

Fig. 4 FTIR spectra of adspecies of ethylenediamine on CeO_2 and SiO_2 at 303 K in the N–H bending vibration region.

ethylenediamine species. According to the previous report,²⁹ the NH₂ group produced by coordinatively bonded *n*-butylamine on Lewis acid sites shows bands around 1600–1565 cm⁻¹. In addition, the band for CeO₂ was at a lower wavenumber than that for SiO₂. These results indicate that ethylenediamine is coordinatively adsorbed on the Lewis acid sites on CeO₂. The observed large broad bands on SiO₂ below 1550 cm⁻¹ are derived from the absorption of SiO₂ itself due to the stretching vibrations of Si-O-Si bridges.³⁰ Next, introduction of CO₂ into the ethylenediamine-treated CeO₂ was conducted at 303 K. Fig. 5 shows IR spectra change after introductions of atmospheric pressure (Fig. 5b) and 5 MPa CO_2 (Fig. 5c). New bands at 1603 and 1633 cm⁻¹ were observed after CO₂ introduction and these bands increased with increasing CO₂ pressure. The band at 1603 cm⁻¹ will be due to ν (CO₃) of hydrogen carbonate, which is derived from CO₂ adsorption on CeO₂ (Fig. S4[†]).³¹ According to the literature,³² the band around 1630 cm⁻¹ can be assigned to carbamic acid or carbamate adspecies. Taking the basicity of CeO₂ into account, the carbamate species on CeO₂ will be formed by the reaction of diamine adsorbed on CeO2 with CO2. As shown in Scheme 2 route 1, diamine is adsorbed on CeO₂ and the diamine adspecies on CeO₂ reacts with CO₂ to give the carbamate adspecies

Fig. 5 FTIR spectra of adspecies on CeO_2 . (a) CeO_2 treated with ethylenediamine at 303 K and after introduction of CO_2 of (b) atmospheric pressure and (c) 5 MPa at 303 K to (a).

on CeO₂ and a free carbamic acid. On the other hand, it is reported that CO₂ reacts with diamine at room temperature to readily produce dicarbamic acid without a catalyst.33 Therefore, under the reaction conditions diamine may be firstly converted to dicarbamic acid before contacting CeO₂, and then the dicarbamic acid may be adsorbed on CeO₂ to provide the carbamate adspecies on CeO₂ (Scheme 2, route 2). Next, ethylenediamine-treated CeO2 was measured at the reaction temperature of 433 K, followed by the introduction of atmospheric pressure and 5 MPa CO₂ on FTIR. As shown in Fig. 6a, ethylenediamine was not desorbed even at 433 K, which indicates that ethylenediamine is strongly adsorbed onto the CeO₂ surface at the reaction temperature. After CO₂ introduction, the main two bands at 1668 and 1572 cm⁻¹ were increased with increase of CO₂ pressure (Fig. 6b and c). These bands were located at almost the same positions as those of 1 adsorbed on CeO_2 (Fig. S5[†]) and were assignable to the stretching vibrations of C=O and CO-N-H, respectively.³⁴ Therefore, the carbamate species on CeO2 is easily converted to 1 at 433 K. A small band observed by treatment of ethylenediamine

Scheme 2 Formation route of carbamate species on CeO₂

Fig. 6 FTIR spectra of adspecies on CeO_2 . (a) CeO_2 treated with ethylenediamine at 433 K and after introduction of CO_2 of (b) atmospheric pressure and (c) 5 MPa at 433 K to (a).

in Fig. 6a will be produced by the reaction of ethylenediamine with CO₂ adspecies on the CeO₂ surface. Moreover, C=O stretching vibration (1668 cm⁻¹) of **1** adsorbed on CeO₂ had a lower wavenumber than that of liquid phase **1** (around 1686–1670 cm⁻¹), which indicates that **1** was adsorbed on CeO₂ at the carbonyl group (C=O) of **1**. The carbamate species on CeO₂ can be transformed into **1** not at 303 K but at 433 K, which suggests that cyclic urea formation from carbamate species on CeO₂ is a slower step in the reaction cycle, in that the step will be the rate-determining step.

Next, kinetics for the synthesis of 1 from CO₂ and ethylenediamine as a model reaction were studied. The dependence of the reaction rate on the ethylenediamine concentration or CO₂ pressure was examined using the results of Table 2 and Fig. 3. The reaction rate (V/mmol $h^{-1} g^{-1}$) for the effect of diamine concentration and CO₂ pressure was calculated under the reaction conditions where the conversion was below 50%. The reaction rate was plotted as a function of ethylenediamine concentration as shown in Fig. 7. The reaction order of ethylenediamine concentration is estimated to be +0.16, which indicates that free ethylenediamine is not involved in the ratedetermining step or strongly adsorbed onto the CeO₂ surface. Fig. 8 shows the effect of CO_2 pressure on the reaction rate. The reaction order of -0.16 was obtained, which indicates that CO₂ does not affect the rate-determining step or slightly suppresses the reaction proceeding. The reactivity of N-alkyl diamines was also compared under the conditions where the conversion is below 30% (Table 5). The order of reactivity is as follows: ethylenediamine > N-methyl ethylenediamine \approx N-isopropyl ethylenediamine. The amines having some alkyl groups at the N atom decrease the reactivity, which will be attributed to the steric hindrance of N-alkyl chains and/or basicity of amines. The alkyl chain of amines will inhibit the nucleophilic attack of amines, leading to the decrease of the reactivity. Basicity of amines is increased by the electron inductive effect

Fig. 7 Effect of amine concentration on the formation rate of 1 from CO₂ and ethylenediamine. Reaction conditions: ethylenediamine (5.0–25 mmol), methanol (6.4 g), CeO₂ (0.085 g), $P_{CO_2} = 0.5$ MPa, T = 433 K, 1 h.

Fig. 8 Effect of CO₂ pressure on the formation rate of **1** from CO₂ and ethylenediamine. Reaction conditions: ethylenediamine (10 mmol), methanol (6.4 g), CeO₂ (0.085 g), $P_{CO_2} = 0.2-3.0$ MPa, T = 433 K, 1 h.

 Table 5
 Comparison of the initial reaction rate of N-alkyl diamines in 2-propanol solvent^a

Entry	Diamine	Conv. (%)	Selectivity to cyclic urea (%)
1	H ₂ N NH ₂	26	96
2	N H NH ₂	15	93
3	, ⊢ H	17	94
	NH ₂		

 a Reaction conditions: substrate (10 mmol), 2-propanol (12 g), CeO_2 (0.086 g), $P_{\rm CO_2}$ = 0.5 MPa, T = 433 K, 1 h.

Paper

of an *N*-alkyl group, which will stabilize the carbamic acid. Stabilization of carbamic acid reduces the nucleophilicity of the N atom because nucleophilicity of carbamic acid is weaker than the free amine, leading to the decrease of the reactivity. This result shows that nucleophilic addition of amines is an important step in the reaction, which suggests that the nucleophilic attack of an amino group on the carbamate species on CeO_2 is the rate-determining step.

Reaction mechanism

On the basis of the above experimental results, we discuss the reaction mechanism on CeO₂ for the direct cyclic urea synthesis from CO2 and diamine. From FTIR studies on adsorption of ethylenediamine at 303 and 433 K (Fig. 4 and 6a), ethylenediamine is adsorbed on Lewis acid sites of CeO2 and did not desorb from CeO₂ even at 433 K, which indicates that ethylenediamine is strongly adsorbed on the Lewis acid sites of CeO₂ under the reaction conditions. Introduction of CO₂ into ethylenediamine-treated CeO2 at a low temperature of 303 K demonstrates that ethylenediamine reacted with CO₂ on CeO₂ to afford carbamates species on CeO₂ at 303 K (Fig. 5) and the other amino group forms the carbamic acid. On the other hand, in general, ethylenediamine easily reacts with CO₂ at room temperature to provide dicarbamic acid. An adsorption of the carbamic acid on CeO₂ probably forms the carbamate species on CeO₂, too (Scheme 2). As shown in Table 3, the effect of solvents was hardly observed, which indicates that the interaction of alcohol with the CeO₂ surface is weaker than diamines and carbamates. In addition, dependence of the reaction rate on the ethylenediamine concentration was small (Fig. 7), which also supports that diamine is strongly adsorbed on CeO₂. Taking into account that diamine and CO₂ easily formed carbamate species on CeO₂ at 303 K, the carbamate species will cover the CeO2 surface and prevent the adsorption of alcohol. Production of 1 was observed at the reaction temperature of 433 K by introduction of CO2 into ethylenediaminetreated CeO₂ on FTIR (Fig. 6b and 6c). Considering that at 303 K the carbamate species was formed but 1 was not formed on CeO₂, 1 should be produced by the reaction of the carbamate species on CeO2. In general, carbamic acid is decomposed to CO₂ and amine at above 383 K, which is much lower than the reaction temperature (433 K). Since the nucleophilicity of the N atom of carbamic acid is lower than that of the amine, the reaction proceeds through nucleophilic addition of a free amino group that is produced by the decomposition of carbamic acid, which is the rate-determining step. The comparison of reactivity for N-alkylated diamines presents that reactivity of N-alkylated substrates is lower than ethylenediamine (Table 5), which will be derived from steric hindrance and/or basicity of the N-alkylated amino group. This result shows that reactivity of an amino group is important for the reaction, which supports that nucleophilic addition of a free amino group to a carbamate moiety on CeO2 is the ratedetermining step. In addition, the reaction rate shows a little negative dependence on CO2 pressure (Fig. 8). At high CO2 pressure, carbamic acid will be more stable than at low CO₂ pressure because decomposition of carbamic acid is a reversible reaction, leading to the suppression of decomposition of carbamic acid. This result also supports that nucleophilic addition of a free amino group to a carbamate moiety on CeO_2 is the rate-determining step.

In summary, the proposed reaction mechanism for the synthesis of **1** from CO_2 and ethylenediamine as a model reaction is shown in Scheme 3: (1) adsorption of amine and CO_2 to afford carbamic acid and carbamate species on CeO_2 , (2) decomposition of the carbamic acid to amine and CO_2 , (3) nucleophilic addition of the amino group to the carbamate moiety on CeO_2 , providing the cyclic urea, (4) desorption of product **1** and regeneration of CeO_2 . The third step is the rate-determining step.

Scheme 3 Proposed reaction mechanism of cyclic urea from CO₂ and ethylenediamine by CeO₂.

Conclusion

We developed an effective and reusable catalyst system composed of pure CeO₂ and 2-propanol solvent for the direct synthesis of cyclic ureas from CO₂ and diamines. 2-Propanol is the best solvent to achieve high yields of cyclic ureas and the bulky alkyl group of 2-propanol will play an important role in the suppression of *N*-alkylation of amine, a main side reaction. The catalyst system can be applied to various diamines to afford the corresponding cyclic ureas, particularly sixmembered ring ureas. On the basis of the kinetic studies such as the effect of CO₂ pressure and amine concentration and FTIR studies about the adsorption state of diamine and CO_{2} , the proposed reaction mechanism is as follows: (1) adsorption of amine and CO₂ to afford carbamic acid and carbamate species on CeO_2 , (2) decomposition of the carbamate to a free amino group and CO_2 , (3) nucleophilic attack of the amino group on the carbamate moiety, providing the cyclic urea, (4) desorption of product 1 and regeneration of CeO₂.

References

- (a) S. J. Davis, K. Caldeira and H. D. Matthews, *Science*, 2010, **329**, 1330; (b) S. R. Loarie, P. B. Duffy, H. Hamilton, G. P. Asner, C. B. Field and D. D. Ackerly, *Nature*, 2009, **462**, 1052; (c) T. Sakakura, J.-C. Choi and H. Yasuda, *Chem. Rev.*, 2007, **107**, 2365.
- 2 (a) C. D. N. Gomes, O. Jacquet, C. Villiers, P. Thuéry,
 M. Ephritikhine and T. Cantat, Angew. Chem., Int. Ed.,
 2012, 51, 187; (b) M. Aresta, Carbon dioxide as chemical feedstock, WILEY-VCH, 2010; (c) C. Song, Catal. Today, 2006,
 115, 2.
- 3 (a) R. Tanaka, M. Yamashita and K. Nozaki, J. Am. Chem. Soc., 2009, 131, 14168; (b) P. G. Jessop, T. Ikariya and R. Noyori, Chem. Rev., 1999, 99, 475; (c) P. G. Jessop, Y. Hsiao, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1996, 118, 344.
- 4 (a) F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro and F. Frusteri, *J. Catal.*, 2007, 249, 185; (b) J. Toyir, P. R. de la Piscina, J. L. G. Fierro and N. Homs, *Appl. Catal., B*, 2001, 34, 255; (c) O. S. Joo, K. D. Jung, I. Moon, A. Y. Rozovskii, G. I. Lin, S. H. Han and S. J. Uhm, *Ind. Eng. Chem. Res.*, 1999, 38, 1808.
- 5 S.-i. Fujita and M. Arai, J. Jpn. Pet. Inst., 2005, 48, 67.
- 6 D. Frain, F. Kirby, P. McArdle and P. O'Leary, *Org. Chem. Int.*, 2012, Article ID 293945.
- 7 J. L. Adams, T. D. Meek, S. M. Mong, R. K. Johnson and B. W. Metcalf, *J. Med. Chem.*, 1988, **31**, 1355.
- 8 (a) P. Gayathri, V. Pande, R. Sivakumar and S. P. Gupta, Bioorg. Med. Chem. Lett., 2001, 9, 3059; (b) A. R. Katritzky,
 A. Oliferenko, A. Lomaka and M. Karelson, Bioorg. Med. Chem. Lett., 2002, 12, 3453.
- 9 S. Pelosi and Salvatore Jr., WO93/04060, 1993.
- 10 (*a*) W. J. Flosi, D. A. DeGoey, D. J. Grampovnik, H.-j. Chen, L. L. Klein, T. Dekhtyar, S. Masse, K. C. Marsh, H. M. Mo

and D. Kempf, *Bioorg. Med. Chem.*, 2006, **14**, 6695; (*b*) H. L. Sham, D. A. Betebenner, W. Rosenbrook, T. Herrin, A. Saldivar, S. Vasavanonda, J. J. Plattner and D. W. Norbeck, *Bioorg. Med. Chem. Lett.*, 2004, **14**, 2643.

- 11 N. Alouane, A. Boutier, C. Baron, E. Vrancken and P. Mangeney, *Synthesis*, 2006, 885.
- 12 (a) S.-i. Fujita, H. Kanamaru, H. Senboku and M. Arai, *Int. J. Mol. Sci.*, 2006, 7, 438; (b) S. R. Jagtap, Y. P. Pati, S.-i. Fujita, M. Arai and B. M. Bhanage, *Appl. Catal., A*, 2008, **341**, 133.
- 13 M.-k. Leung, J.-L. Lai, K.-H. Lau, H.-h. Yu and H.-J. Hsiao, J. Org. Chem., 1996, 61, 4175.
- 14 (a) K. Kondo, S. Yokohama, N. Miyoshi, S. Murai and N. Sonoda, *Angew. Chem., Int. Ed. Engl.*, 1979, 18, 691;
 (b) K. Kondo, S. Yokoyama, N. Miyoshi, S. Murai and N. Sonoda, *Angew. Chem., Int. Ed. Engl.*, 1979, 18, 692.
- 15 (a) A. K. Darko, F. C. Curran, C. Copin and L. McElwee-White, *Tetrahedron*, 2011, 67, 3976; (b) X. Wang, G. Ling, Y. Xue and S. Lu, *Eur. J. Org. Chem.*, 2005, 1675.
- 16 R. Nomura, Y. Hasegawa, M. Ishimoto, T. Toyosaki and H. Matsuda, *J. Org. Chem.*, 1992, 57, 7339.
- 17 J. Paz, C. Pérez-Balado, B. Iglesias and L. Muñoz, *J. Org. Chem.*, 2010, 75, 3037.
- 18 R. G. Murray, D. M. Whitehead, F. L. Strat and S. J. Conway, Org. Biomol. Chem., 2008, 6, 988.
- 19 T. Kimura, K. Kamata and N. Mizuno, *Angew. Chem., Int. Ed.*, 2012, **51**, 6700.
- 20 B. M. Bhanage, S.-i. Fujita, Y. Ikushima and M. Arai, *Green Chem.*, 2003, **5**, 340.
- 21 C. Wu, H. Cheng, R. Liu, Q. Wang, Y. Hao, Y. Yu and F. Zhao, *Green Chem.*, 2010, **12**, 1811.
- 22 A. Prmo, E. Aguado and H. Garcia, *ChemCatChem*, 2012, 4, 1.
- 23 D.-L. kong, L.-N. He and J.-Q. Wang, Synlett, 2010, 1276.
- 24 (a) Y. Yoshida, Y. Arai, S. Kado, K. Kunimori and K. Tomishige, *Catal. Today*, 2006, 115, 95; (b) M. Honda, A. Suzuki, B. Noorjahan, K. Fujimoto, K. Suzuki and K. Tomishige, *Chem. Commun.*, 2009, 4596; (c) M. Honda, S. Kuno, B. Noorjahan, K. Fujimoto, K. Suzuki, Y. Nakagawa and K. Tomishige, *Appl. Catal., A*, 2010, 384, 165; (d) M. Honda, S. Kuno, S. Sonehara, K. Fujimoto, K. Suzuki, Y. Nakagawa and K. Tomishige, *ChemCatChem*, 2011, 3, 365; (e) M. Honda, S. Sonehara, H. Yasuda, Y. Nakagawa and K. Tomishige, *Green Chem.*, 2011, 13, 3406.
- 25 K. Tomishige, H. Yasuda, Y. Yoshida, M. Nurunnabi, B. Li and K. Kunimori, *Green Chem.*, 2004, **6**, 206.
- 26 (a) K.-i. Fujimoto, Z. Li, N. Ozeki and R. Yamaguchi, *Tetrahedron Lett.*, 2003, 44, 2687; (b) Y. Watanabe, Y. Tsuji, H. Ige, Y. Ohsugi and T. Ohta, *J. Org. Chem.*, 1984, 49, 3359; (c) S. Nasker and M. Bhattacharjee, *Tetrahedron Lett.*, 2007, 48, 3367; (d) G. Guillena, D. J. Ramon and M. Yus, *Chem. Rev.*, 2010, 110, 1611.
- 27 (a) S. Miyano, *Chem. Pharm. Bull.*, 1965, 13, 1135;
 (b) S. Miyano, A. Uno and N. Abe, *Chem. Pharm. Bull.*, 1967, 15, 515;
 (c) Y. Sprinzak, *Org. Synth.*, 1963, 4, 91.

- 28 (a) R. Juarez, A. Padilla, A. Corma and H. Garcia, *Ind. Eng. Chem. Res.*, 2008, 47, 8043; (b) P. Tundo and M. Selva, *Acc. Chem. Res.*, 2002, 35, 706; (c) P. Tundo, L. Rossi and A. Loris, *J. Org. Chem.*, 2005, 70, 2219.
- (a) G. Ramis and G. Busca, J. Mol. Struct., 1989, 193, 93;
 (b) T. Morimoto, J. Imai and M. Nagao, J. Phys. Chem., 1974, 78, 704;
 (c) M. Tamura, T. Tonomura, K.-i. Shimizu and A. Satsuma, Green Chem., 2012, 14, 717.
- 30 A. Agarwal, K. M. Davis and M. Tomozawa, J. Non-Cryst. Solids, 1995, 185, 191.
- 31 C. Binet, M. Daturi and J. C. Lavalley, *Catal. Today*, 1999, **50**, 207.
- 32 (a) R. A. Khatri, S. S. C. Chuang, Y. Soong and M. Gray, *Ind. Eng. Chem. Res.*, 2005, 44, 3702; (b) C. Hisatsune, *Can. J. Chem.*, 1984, 62, 945; (c) R. K. Khanna and M. H. Moore, *Spectrochim. Acta, Part A*, 1999, 55, 961.
- 33 A. Dibenedetto, M. Aresta and M. Narracci, *Fuel Chemistry Division Preprints*, 2002, **47**, 53.
- 34 J. Shang, S. Liu, X. Ma, L. Lu and Y. Deng, *Green Chem.*, 2012, 14, 2899.