Model Reactions for the Synthesis of Azacorannulenes and Related Heteroaromatic Compounds^[‡]

Ina Dix,^[a] Christian Doll,^[a] Henning Hopf,*^[a] and Peter G. Jones^[b]

Dedicated to Professor Manfred Christl on the occasion of his 60th birthday

Keywords: Benzopentalene / Condensed heteroaromatics / High-temperature chemistry / Nitrogen heterocycles / Pyrolysis / Benzopentalen

4-(2-Ethynylphenyl)pyridine (**10**), 3-(2-ethynylphenyl)pyridine (**11**), 2-(2-trimethylsilylethynylphenyl)pyridine (**26**), and 3-ethynyl-2-phenylpyridine (**13**) were prepared from readily available pyridine precursors by standard coupling reactions. Pyrolysis of **10** at 810 °C/0.5 Torr provided benzo[*f*]isoquino-line (**45**) and the benzopentalene dimer **47**. Pyrolysis of **11** (820 °C/0.5 Torr) afforded benzo[*f*]quinoline (**50**), benzo[*h*]i-soquinoline (**52**), and a mixture of isomers of **47**. Pyrolysis of

13 (820 °C/0.3 Torr) provided benzo[*h*]quinoline (**56**) and the novel azulene derivative azuleno[1,2-*b*]pyridine (**58**). When **26** was desilylated by treatment with TBAF in THF/water, the unusual "dimerization" product **37** was produced; its structure was confirmed by X-ray structural analysis. The mechanisms of these transformations are discussed. (© Wiley-VCH Verlag GmbH, 69451 Weinheim, Germany,

(© Wiley-VCH Verlag GmbH, 69451 Weinneim, Germany, 2002)

Introduction

In the early 1970s, Brown and co-workers, investigating the high-temperature behavior of arylalkynes under flash vacuum conditions, discovered that one of the simplest of their derivatives, 2-ethynylbiphenyl (1), isomerized to phenanthrene (2) and 1,2-benzazulene (3, total yield: 99%, product ratio 2.6:1) when heated to 700 °C at 0.2 Torr (Scheme 1).^[2]

This process developed into one of the key reactions for the synthesis of bowl-shaped aromatics and other novel polycondensed aromatic hydrocarbons,^[3–8] but only after the enormous growth in fullerene chemistry that set in after C_{60} became available in multigram quantities by the Krätschmer–Huffman route,^[9] and when it was realized that long-known hydrocarbons such as corannulene (5) could be regarded as partial structures of C_{60} and its higher benzologues. In fact, the best current method for preparing 5, developed by Scott and co-workers,^[10] exploits a Browntype isomerization involving the diethynyl derivative **4**

^[‡] Thermal Isomerizations, XXXII. Part XXXI: Ref.^[1]

[a] Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany Fax: (internat.) + 49-(0)531/391-5388 E-mail: h.hopf@tu-bs.de
[b] Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Fax: (internat.) + 49-(0)531/391-5387 E-mail: jones@xray36.anchem.nat.tu-bs.de

Scheme 1. Condensed aromatics and heteroaromatics by pyrolysis of alkynes

(7,10-diethynylfluoranthene), which cycloisomerizes to corannulene at 1000 °C under flash vacuum conditions. Although the ethynyl function is already present in the substrate to be pyrolyzed in many of these thermal isomerizations, derivatives with "latent triple bonds" such as halovinyl substituents or with protected acetylenes (trimethylsilylethynyl) have also been thermocyclized suc-

cessfully.^[5,8] As far as the mechanisms of these ring closures are concerned, at least three alternatives are currently under discussion. Since the above arylacetylenes all formally contain a 1,3-hexadien-5-yne subunit, they could in principle rearrange by an electrocyclic process, initially yielding an isobenzene intermediate.^[11-14] This in turn could subsequently stabilize itself by hydrogen-shift processes to yield the novel benzene nucleus. Alternatively, the terminal alkynes could undergo an acetylene/vinylidene isomerization to provide a carbene intermediate that would furnish the new six-membered ring by C-H insertion. Examples illustrating both types of mechanisms are discussed in detail below. Whereas these two possibilities would be most likely to take place at lower temperatures (ca. 200 °C in a static system, ca. 600 °C in a flow system), it has been postulated that at temperatures above 900 °C (flow system) the ring closure should be initiated by the addition of hydrogen atoms to the unsaturated (sub)systems involving the triple bond.[14]

In this paper we describe the high-temperature isomerization of various acetylenic pyridine derivatives, heteroaromatics that, we hope, will pave the way to aza variants of corannulene, such as **6** and related bowl-shaped heteroaromatics. Provided that these compounds also possess curved structures, questions such as their resolution into enantiomers, the heights of the racemization barriers, and their possible uses as concave reagents^[15] would become important. It has been demonstrated by Otsubo and co-workers^[16] that heteroorganic variants of the Brown cyclization can indeed be accomplished. These workers, inter alia, thermocyclized the ethynylthiophene **7** to **8**; analogously, 3,4-diethynyl-2,5-diphenylthiophene underwent double cyclization to **9**.

Selection and Syntheses of Ethynylpyridines for Pyrolysis

If the analogy to Brown's biphenyl derivatives is to be kept to as closely as possible, the three ethynylpyridines 10-12 immediately come to mind (Scheme 2).

Scheme 2. A selection of (ethynylphenyl)pyridine derivatives

Formally, these three isomers are derived from 2-ethynylbiphenyl by replacement of the *para-* (10), the *meta-* (11), and the *ortho*-CH group (12), respectively, of the unfunctionalized benzene ring of 1 by an isovalent nitrogen atom. Obviously, the ethynylated ring of 1 offers four possibilities for such an exchange. For an exploratory study, however, we considered it sufficient to investigate one representative example of this series of isomers, and selected 3-ethynyl-2-phenylpyridine (13).

a) 4-(2-Ethynylphenyl)pyridine (10)

For the preparation of 10, the commercially available ortho-anisidine (14, 2-methoxyaniline) was chosen as the starting material. In the first step it was converted into 4-(2-methoxyphenyl)pyridine by means of а Gomberg-Bachmann reaction involving diazotization of 14 and coupling of the resulting diazonium salt with pyridine (15). Although this reaction provided all three (o-methoxyphenyl)pyridine isomers, and 16a was produced in only 7% yield, we still decided to use this route because of the low price of 14 and the ease of separation of 16a, which could readily be obtained from the product mixture in gram amounts. Fortunately, the next three steps - ether cleavage of 16a with HI, treatment of the resulting phenol with triflic anhydride in pyridine, and Sonogashira coupling of the obtained triflate with (triisopropylsilyl)acetylene in the presence of Pd(PPh₃)₂Cl₂ in DMF/triethylamine solution, yielding the protected acetylene 17 - took place in higher yields (58% overall, Scheme 3).

Scheme 3. The preparation of 4-(2-ethynylphenyl)pyridine (10)

For deprotection, **17** was stirred with tetra-*n*-butylammonium fluoride (TBAF) in moist tetrahydrofuran. Isomer **10**, obtained as a beige solid in 84% yield, was characterized by the usual spectroscopic and analytical methods (see Exp. Sect.).

b) 3-(2-Ethynylphenyl)pyridine (11)

To arrive at isomer 11, the commercial 3-bromopyridine (18) was first subjected to halogen/metal exchange with *n*-butyllithium in diethyl ether, and the resulting organolithium intermediate was quenched with tri-*n*-butyltin chlor-

ide. The thus formed stannane **19** was subjected to Stille coupling [Pd(OAc)₂, triphenylphosphane, DMF] with 1chloro-2-iodobenzene (**20**) to furnish **21** (yield for the **18** \rightarrow **21** conversion 43%), which, after Kumada coupling [Ni(PPh₃)₂Cl₂, THF] with 2-(trimethylsilyl)ethynylmagnesium bromide (**22**) and subsequent TBAF deprotection, gave the desired **11** in 48% yield. At 21%, the overall yield of this sequence (Scheme 4) was acceptable; the spectroscopic data for **11** can once again be found in the Exp. Sect.

Scheme 4. The preparation of 3-(2-ethynylphenyl)pyridine (11)

c) 2-(2-Ethynylphenyl)pyridine (12)

After these two successful syntheses, the preparation of the last isomer, 12, was considered to be mere routine. And, indeed, the assembly steps all the way to the (trimethylsilyl)protected target molecule 26 could be carried out in full analogy to the $18 \rightarrow 11$ conversion: Stannylation of 23 to 24 was performed as above in 89% yield, and the subsequent Stille (25: 64%) and Kumada steps (26: 80%) also went well (Scheme 5), although the resulting 26 was always contaminated with 2-phenylpyridine (27), as could be shown by GC/MS analysis. Such reductive dehalogenations had previously been noted by Kumada during coupling reactions involving bromo- and iodobenzene.[17] Since the separation of 27 from 26 by chromatography failed, the pure (ethynylphenyl)pyridine was prepared by an alternate route also shown in Scheme 5: Ether cleavage of the ortho isomer of 16, 16b (see Scheme 3) provided the phenol 28 (63%), which was converted into the triflate **29** by treatment with triflic anhydride in pyridine (88%). Sonogashira coupling with (trimethylsilyl)ethyne under the above conditions then provided 26 (41%).

To our surprise, however, none of the expected 12 was obtained when 26 was deprotected with TBAF/THF/H₂O. Rather, a curious "dimer" of it, 6,6'-methanediylbis(pyr-ido[2,1-*a*]isoindole) (37) was isolated in the remarkable yield of 41%. The structure of this product followed from the spectroscopic data (Exp. Sect.), and in particular from an X-ray structural study of the nicely crystalline compound (needles from diethyl ether; Figure 1).

As can be seen in Figure 1, the molecule displays imposed twofold symmetry, the corresponding crystallographic axis passing through C13. Each "monomeric" half

Scheme 5. The preparation of 2-{2-[2-(trimethylsilyl)ethynyl]-phenyl}pyridine (26)

Figure 1. The structure of 37 in the crystal

of the molecule is planar (mean deviation 0.014 Å) and the torsion angle N1-C5-C5'-N1' is 102° .

A comparison of starting material **26** and product **37** shows that not only has desilylation taken place but that the unusual "dimerization" has been accompanied by loss of a single carbon atom! To account for this feature we propose the interpretation summarized in Scheme 6.

As the primary step it is indeed very likely that desilylation would proceed as intended, yielding the originally desired **12**. However, because of the proximity of the basic nitrogen atom of the pyridine ring and the triple bond, intramolecular attack of the former on the latter could take place, resulting in the 1,3-dipolar intermediate **30**. This could cycloadd to unchanged **12**, and the zwitterion **31** thus produced could be protonated to afford **32**. If the pyridyl substituent of this intermediate were to enter into neighboring-group participation, zwitterion **33** could be formed, and this could relieve itself of some of its charge separation by formation of the spiro intermediate **34**. Ring opening of **34**

Scheme 6. The "dimerization" of 2-(2-ethynylphenyl)pyridine (12)

by hydroxide to give the primary alcohol **35** could take place next, with release of strain and compensation of charge providing the driving force. The carbon elimination could now occur through a six-membered transition state involving the loss of formaldehyde, and the resulting dipolar species **36** could finally stabilize itself by a 1,3-proton shift process. Fragmentations of primary alcohols with expulsion of formaldehyde are not without precedent. For example, heating of 2,2,2-triphenylethanol to its melting point (107 °C) causes decomposition to triphenylmethane and formaldehyde.^[18]

d) 3-Ethynyl-2-phenylpyridine (13)

This doubly substituted pyridine derivative was prepared by initial conversion of 2-chloropyridine (**38**) into the iodide **39** (31%) by a reported procedure,^[19] and coupling of the latter with (trimethylsilyl)ethyne under Sonogashira conditions to provide **40** (99%). Kumada coupling with phenylmagnesium bromide and deprotection with TBAF concluded the synthesis (24%), Scheme 7.

Note that in 13 the pyridine nitrogen atom and the triple bond are at a "safe distance" again, preventing intramolecular interaction between them.

Scheme 7. The preparation of 3-ethynyl-2-phenylpyridine (13)

Pyrolyses

Flash vacuum pyrolyses were performed in our standard apparatus,^[1] involving a tubular furnace containing an empty quartz tube (l = 60 cm, o.d. = 4 cm), which was connected at one end to a vaporization flask (heated externally by a kugelrohr oven) and at the other, via a cold-trap (liquid nitrogen), to a high vacuum line.

a) Pyrolysis of 4-(2-Ethynylphenyl)pyridine (10)

In the pyrolysis of **10** (810 °C, 0.5 Torr), ca. 70% of the evaporated material (120 °C) was recovered as the pyrolysate. From this a 33% yield of benzo[/]isoquinoline (**45**) was isolated by flash chromatography, with the remainder consisting of five side products, as shown by HPLC/UV analysis. One of these products was the dimer of benzopentalene (**48**), the $C_{24}H_{18}$ hydrocarbon **47** (Scheme 8), confirmed by spectral comparison of its UV spectrum with that of an authentic sample (see below).

To account for these findings we propose two possibilities. Firstly, the ethynyl function of 10 could undergo the already mentioned 1,2-hydrogen shift (see Introduction) and the resulting vinylidenecarbene intermediate 42 could subsequently insert into the C-3-H bond of 10 to furnish the main product 45. Alternatively, 10 could cyclize by an electrocyclic process to the isobenzene intermediate 44, which could then rearrange to 45 by a hydrogen shift. The former explanation also explains the production of 47 without invoking too many intermediates. Thus, the intermediate 43 could be generated by carbene addition to a carbon-carbon double bond of the pyridine ring. Clearly, this would have many options for further transformation. On the assumption that it would prefer a vinylcyclopropane rearrangement, it could isomerize to the tetracyclic intermediate 46, which could fragment into hydrogen cyanide and benzopentalene (48) by a retro-[2+2] process.^[20] The [2+2]dimerization of this reactive hydrocarbon has been described,^[21,22] and we assume that the dimer **47** is actually produced as a mixture of isomers (see below).

Scheme 8. The pyrolysis of 4-(2-ethynylphenyl)pyridine (10)

b) Pyrolysis of 3-(2-Ethynylphenyl)pyridine (11)

Because of its substitution pattern, isomer 10 could only give rise to one condensed aromatic product, 45. This is different for 11. Depending on whether it assumed a "syn conformation", in which its ethynyl group and its pyridine nitrogen atom pointed in the same direction (syn-11, Scheme 9), or one in which they were opposing each other (anti-11), two conformers of the vinylidene carbene intermediate – 49 and 51, respectively – could be generated. These would react further to afford benzo[/]quinoline (50) and benzo[h]isoquinoline (52). Indeed, when 11 was pyrolyzed at 820 °C/0.1 Torr, these two isomers were produced in 12 and 10% yields, respectively.

Material loss was smaller in this case (recovery ca. 80%) and, again, the benzopentalene dimer **47** was also isolated. This time, however, it was obtained in a yield of 34%, allowing its purification and determination of its complete spectroscopic data. These (see Exp. Sect.) and comparison with literature data^[21,22] proved the structure assignment to be correct and showed, furthermore, that the dimer produced was a mixture of isomers. Since the UV spectrum of the dimer obtained in the pyrolysis of **10** (see above) was superimposable on that formed during cyclization/dimerization of **11**, we were able to confirm our previous structure assignment. To understand the formation of **48/47** in this isomerization, we postulate the intermediate generation of **53** and **54**.

Scheme 9. The pyrolysis of 3-(2-ethynylphenyl)pyridine (11)

c) Pyrolysis of 3-Ethynyl-2-phenylpyridine (13)

The separation of the phenyl group and the ethynyl substituent in 13 resulted in the cleanest pyrolysis reaction and the best yield: When 13 was heated to 820 °C/0.3 Torr, benzo[h]quinoline (56) was formed in 58% yield, accompanied by azuleno[1,2-b]pyridine (58) in 9% yield (Scheme 10). At 86%, the material recovery was excellent, and azuleno derivatives such as 58 have apparently not been described in the literature.

Scheme 10. The pyrolysis of 3-ethynyl-2-phenylpyridine (13)

In analogy with Brown's original proposal for the isomerization of 1, we interpret these findings by postulating the initial generation of the carbene 55, which can subsequently either undergo C-H insertion to give 56 or C-C addition to provide the norcaradiene derivative 57, which ring-opens to afford 58.

Experimental Section

General Remarks: Melting points: Mel-Temp II apparatus, uncorrected values. Analytical TLC: Macherey–Nagel Polygram Sil G/UV₂₅₄ and Polygram Alox N/UV₂₅₄. Column chromatography: Merck 60 Kieselgel (70–230 mesh). Analytical GC: Dani 86.10, OV-1 capillary column. NMR: Bruker AC 200 F (¹H NMR: 200.1 MHz; ¹³C NMR: 50.3 MHz) and Bruker AM 400 (¹H NMR: 400.1 MHz; ¹³C NMR: 100.6 MHz). MS: Finnigan MAT 8430 (EI, 70 eV). HRMS: by peak matching, resolution 10000. GC/MS: Carlo Erba HRGC 5160 coupled to a Finnigan MAT 4515 (EI, 40 eV). IR: Nicolet 320 FT-IR spectrometer. UV/Vis: Hewlett Packard 8452 diode array. Elemental analyses: Institute of Pharmaceutical Chemistry of the Technical University of Braunschweig.

4-(2-Ethynylphenyl)pyridine (10)

a) 4-(2-Methoxyphenyl)pyridine (16a) and 2-(2-Methoxyphenyl)pyridine (16b): A solution of sodium nitrite (7.8 g, 0.113 mol) in water (50 mL) was added dropwise at 0 °C to a solution of o-anisidine (14, 12.64 g, 0.103 mol) in hydrochloric acid (6 N, 100 mL). After stirring for 1 h at 0 °C, this solution was added at 80 °C to pyridine (15, 250 mL). After stirring for 1 h, the reaction mixture was allowed to cool to room temp., the solvents were removed in vacuo, and the residue was treated with concd. aqueous ammonia solution (100 mL). The liquid phase was again removed under vacuum, and the residue was distilled under high vacuum. Flash chromatography (silica gel; petroleum ether/diethyl ether, 1:1) provided the pure isomers, both of which have been described in the literature.^[23] 16a (1.26 g, 7%): ¹H NMR (200.1 MHz, CDCl₃): $\delta = 3.83$ (s, OCH₃, 3) H), 6.98-7.09 (m, 9-H, 11-H, 2 H), 7.31-7.49 (m, 4 H), 8.62 (d, $J_{2-H/3-H} = 5.8$ Hz, 2-H, 6-H, 2 H) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 55.5 (q, OCH₃), 111.4 (d, C-9), 121.0 (d), 124.3 (d), 127.6 (s, C-7), 130.1 (d), 130.4 (d), 146.4 (s, C-4), 149.3 (d, C-2, C-6), 156.5 (s, C-8) ppm. MS (70 eV): m/z (%) = 185 (100) [M⁺], 184 (62), 170 (100), 157 (30). 16b (5.27 g, 28%): ¹H NMR (200.1 MHz, $CDCl_3$): $\delta = 3.84$ (s, OCH_3 , 3 H), 6.97-7.11 (m, 2 H), 7.16-7.22(m, 1 H), 7.32-7.41 (m, 1 H), 7.64-7.83 (m, 3 H), 8.70 (d, J_{6-H/5-} _H = 4.8 Hz, 6-H, 1 H) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 55.6 (q, OCH₃), 111.4 (d, C-9), 121.0 (d), 121.6 (d), 125.1 (d), 129.0 (s, C-7), 129.9 (d), 131.1 (d), 135.6 (d, C-4), 149.3 (d, C-6), 156.1 (s, C-2 or C-8), 156.9 (s, C-2 or C-8) ppm. MS (70 eV): m/z (%) = 185 (100) [M⁺], 184 (82), 154 (82).

b) 4-{2-[2-(Triisopropylsilyl)ethynyl]phenyl}pyridine (17): A mixture of 16a (0.43 g, 2.3 mmol) and HI (57%, 20 mL) was heated under reflux for 3 h. The HI was removed by distillation, the residue was diluted with water, and the product mixture was treated successively with sodium carbonate solution, sodium bicarbonate solution, and acetic acid. The phenol intermediate was extracted with diethyl ether, and the organic phase was separated and dried with sodium sulfate. The residue obtained after solvent removal in vacuo was dissolved in anhydrous pyridine (10 mL), and the solution was treated at 0 °C with triflic anhydride (0.6 mL, slow addition). After 1 h, the reaction mixture was allowed to warm to room temp. and stirred overnight. The mixture was poured into ice-cold water, and the triflate intermediate was isolated by ether extraction. The organic phase was dried (sodium sulfate), and the solvent was removed. The residue was dissolved in anhydrous DMF (10 mL) and triethylamine (2 mL), and Pd(PPh₃)₂Cl₂ (0.058 g) and (triisopropylsilvl)ethyne (0.7 mL) were added. The mixture was heated to 120 °C and subsequently stirred at 80 °C for 4 d. After it had cooled to room temp., dichloromethane and water were added, the organic phase was separated and dried (sodium sulfate), and the solvent

was removed in vacuo. Flash chromatography (silica gel; diethyl ether) provided 0.45 g (58%) of **17** as a yellow oil. ¹H NMR (400.1 MHz, CDCl₃): δ = 1.016 and 1.022 (2 s, 15-H, 16-H, 21 H), 7.35–7.44 (m, 3 H), 7.58–7.59 (m, 2 H), 7.63–7.66 (m, 1 H), 8.63–8.65 (m, 2-H, 6-H, 2 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 11.2 (d, C-15), 18.5 (q, C-16), 95.6 (s, C-14), 105.2 (s, C-13), 121.9 (s), 124.4 (d), 128.4 (d), 128.8 (d), 128.9 (d), 134.1 (d), 140.8 (s), 148.6 (d, C-2, C-6), 149.0 (s) ppm. IR (film): \tilde{v} = 3060 cm⁻¹ (w), 3027 (w), 2958 (s), 2943 (s), 2891 (s), 2865 (s), 2155 (m), 1600 (m), 1593 (m), 1473 (s), 1464 (s), 1442 (m), 1410 (m), 993 (m), 883 (s), 842 (m), 822 (s), 760 (s), 736 (m), 678 (s), 663 (s), 639 (s), 626 (m), 618 (s). UV/Vis (CHCl₃): λ_{max} (lg ε) = 242 nm (4.45), 266 (4.19), 296 (3.37) ppm. MS (70 eV): *mlz* (%) = 335 (14) [M⁺], 292 (100). HRMS: C₂₂H₂₉NSi, calcd: 335.2069; found 335.2061 \pm 2 ppm.

c) 4-(2-Ethynylphenyl)pyridine (10): A solution of TBAF in THF (1.1 M, 2 mL) was added to a solution of 17 (0.4 g, 1.2 mmol) in THF (20 mL), followed by water (2 mL). The mixture was stirred for 1 d, the solvents were removed in vacuo, and dichloromethane and water were added. The organic phase was separated and dried with sodium sulfate, and the solvent was removed under vacuum. Flash chromatography (silica gel; diethyl ether) provided 0.18 g (84%) of 10, beige solid, m.p. 78 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 3.10$ (s, 14-H, 1 H), 7.33-7.67 (m, 6 H), 8.67 (d, J_2 - $_{H/3-H}$ = 6.0 Hz, 2-H, 6-H, 2 H) ppm. ¹³C NMR (50.3 MHz, $CDCl_3$): $\delta = 81.2$ (d, C-14), 82.1 (ps-s, C-13), 120.4 (s, C-8), 124.0 (d), 128.3 (d), 129.1 (d), 129.2 (d), 134.1 (d), 141.4 (s), 147.8 (s), 149.4 (d, C-2, C-6) ppm. IR (KBr): $\tilde{v} = 3211 \text{ cm}^{-1}$ (s), 3052 (w), 3022 (w), 2096 (w), 1601 (m), 1594 (m), 1542 (m), 1475 (m), 1411 (m), 991 (m), 826 (s), 765 (m), 751 (s), 740 (s), 732 (s), 712 (s), 677 (s). UV/Vis (CHCl₃): λ_{max} (lg ϵ) = 242 nm (4.12), 254 (4.1), 290 (3.15), 294 (2.95) ppm. MS (70 eV): m/z (%) = 179 (100) [M⁺], 178 (50), 152 (37), 151 (36). C13H9N (179.22): calcd. C 87.12, H 5.06, N 7.82; found C 87.22, H 5.03, N 7.74.

3-(2-Ethynylphenyl)pyridine (11)

a) 3-(2-Chlorophenyl)pyridine (21): This intermediate has been described without experimental details in a short communication.^[24] A solution of *n*-butyllithium in hexane (1.8 M, 35.2 mL) was added at - 90 °C to a solution of 3-bromopyridine (18, 4.99 g, 31.6 mmol) in anhydrous diethyl ether (50 mL). The mixture was stirred for 30 min, and tri-n-butyltin chloride (technical grade, ca. 90%, 9.5 mL) was added. After stirring at -70 °C for 4 h, the mixture was allowed to come to room temp. overnight. For workup, water (50 mL) was added, the organic phase was separated and dried (sodium sulfate), and the solvent was removed in vacuo. The remaining 3-(tri-n-butylstannyl)pyridine (19) was vacuum-distilled and although it (10.4 g) was not completely pure, it could be used without further purification. A mixture containing 19 (2.02 g, 5.6 mmol), 1-chloro-2-iodobenzene (20, 1.56 g, 6.5 mmol), palladium(II) acetate (0.128 g, 0.6 mmol), and triphenylphosphane (0.61 g, 2.3 mol) in DMF was heated at 120 °C under nitrogen for 6 d. After the solvent had been removed in vacuo, the residue was dissolved in diethyl ether, and the solution was filtered and washed three times with hydrochloric acid. The aqueous acidic phase was carefully washed with ether, and the ether fractions were combined and dried with sodium sulfate. After solvent removal, the remaining oil was purified by flash chromatography (silica gel, diethyl ether) to afford 21 (0.5 g, 43% with respect to 18) as a vellow oil. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 7.29 - 7.37$ (m, 4 H), 7.47 - 7.50 (m, 1 H), 7.77–7.80 (m, 1 H), 8.62 (dd, $J_{6-H/4-H} = 1.5$, $J_{6-H/5-H} =$ 4.8 Hz, 6-H, 1 H), 8.69 (d, $J_{2-H/4-H} = 2.3$ Hz, 2-H, 1 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 122.8$ (d), 127.1 (d), 129.4 (d), 130.1 (d), 131.2 (d), 132.7 (s), 135.0 (s), 136.81 (s), 136.85 (d, C-4), 148.7 (d) 149.9 (d) ppm.

b) 3-(2-Ethynylphenyl)pyridine (11): A solution of ethylmagnesium bromide in anhydrous THF (50 mL) was prepared from ethyl bromide (2.8 mL, 4.03 g, 37.0 mmol) and magnesium turnings (0.9 g, 37.0 mmol). With cooling (ice bath), trimethylsilylethyne (7 mL, 4.9 g, 49.5 mmol) was added, and the mixture was stirred for 45 min at room temp. Ni(PPh₃)₂Cl₂ (0.39 g, 0.6 mmol) and 21 (2.15 g, 11.3 mmol) in anhydrous THF (38 mL) were added, and the reaction mixture was heated under reflux for 13 d. For workup, a saturated aqueous ammonium chloride solution was added, followed by diethyl ether. The organic phase was dried (sodium sulfate), and the solvents were removed in vacuo. Flash chromatography (silica gel; petroleum ether/diethyl ether, 1:1) yielded 3-{2-[2-(trimethylsilyl)ethynyl]phenyl}pyridine (1.47 g), which was dissolved in THF (30 mL). Under nitrogen, a solution of TBAF in THF (1.1 M, 5 mL) and water (5 mL) was added. After the mixture had been stirred for 3 d, diethyl ether and water were added, and the organic phase was separated and dried with sodium sulfate. The oil obtained after solvent removal was purified by flash chromatography (silica gel; diethyl ether) to afford 11 (0.98 g, 48%) as a reddish oil. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 3.07$ (s, 14-H, 1 H), 7.33–7.38 (m, 3 H), 7.42–7.46 (m, 1 H), 7.64 (dd, $J_1 = 1.2$, $J_2 = 7.9$ Hz, 1 H), 7.90–7.93 (m, 4-H, 1 H), 8.61 (dd, $J_{6-H/4-H} =$ 1.6, $J_{6-H/5-H} = 4.7$ Hz, 6-H, 1 H), 8.81–8.82 (m, 2-H, 1 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ = 80.8 (d, C-14), 82.4 (ps-s, C-13), 120.7 (s), 122.8 (d), 127.8 (d), 129.2 (d), 129.4 (d), 133.9 (d), 135.8 (s), 136.5 (d), 140.7 (s), 148.6 (d), 149.8 (d) ppm. IR (film): $\tilde{v} = 3288 \text{ cm}^{-1}$ (m), 3205 (w), 3197 (w), 2101 (w), 1468 (m), 1408 (m), 760 (s), 713 (s). UV/Vis (CHCl₃): λ_{max} (lg ε) = 236 nm (3.7), 242 (4.07), 252 (4.06), 272 (3.84), 302 (2.61), 310 (2.13) ppm. MS (70 eV): m/z (%) = 179 (100) [M⁺], 178 (44), 152 (24), 151 (22). C13H9N (179.22): calcd. C 87.12, H 5.06, N 7.82; found C 87.17, H 5.07, N 7.69.

2-{2-[2-(Trimethylsilyl)ethynyl]phenyl}pyridine (26) from 2-Bromopyridine (23)

a) 2-(2-Chlorophenyl)pyridine (25): 2-Tris(n-butylstannyl)pyridine (24) was prepared from 23 by a published procedure.^[25] A mixture of 24 (10.29 g, 28.0 mmol), 1-chloro-2-iodobenzene (20, 8.2 mL, 16.0 g, 67.1 mmol), and Pd(PPh₃)₂Cl₂ (0.41 g, 0.6 mmol) was heated at 100 °C under nitrogen for 5 d. After the mixture had cooled to room temp., dichloromethane was added, and the mixture was treated with 3 N hydrochloric acid. The aqueous phase was washed carefully with dichloromethane, sodium carbonate solution, and again with dichloromethane, and the organic phases were combined and dried with sodium sulfate. After solvent removal in vacuo, the residue was purified by flash chromatography (silica gel; petroleum ether/diethyl ether, 1:1) to provide the known^[26] **25** (3.42 g, 64%). ¹H NMR (200.1 MHz, CDCl₃): δ = 7.26-7.82 (m, 7 H), 8.72-8.74 (m, 6-H, 1 H) ppm. ¹³C NMR $(50.3 \text{ MHz}, \text{CDCl}_3)$: $\delta = 122.4 \text{ (d)}, 124.9 \text{ (d)}, 127.0 \text{ (d)}, 129.6 \text{ (d)},$ 130.1 (d), 131.5 (d), 132.0 (s), 135.9 (d), 139.1 (s), 149.4 (d, C-6), 156.8 (s, C-2) ppm. MS (70 eV): m/z (%) = 191/189 (15/45) [M⁺], 154 (100), 127 (25).

b) 2-{2-[2-(Trimethylsilyl)ethynyl]phenyl}pyridine (26): A solution of ethylmagnesium bromide in diethyl ether (70 mL) was prepared from magnesium turnings (0.92 g, 38.0 mmol) and ethyl bromide (4.1 g, 37.6 mmol). (Trimethylsilyl)ethyne (6 mL, 4.2 g, 42.5 mmol) was added to this Grignard reagent at 0 °C, and the mixture was allowed to warm slowly to room temp. The formed 22 was treated with 25 (3.41 g, 18.0 mmol) in diethyl ether (60 mL) and with

Ni(PPh₃)₂Cl₂ (0.28 g, 0.4 mmol). After the mixture had been heated for 6 d under reflux, water was added for hydrolysis, and the separated organic phase was dried with sodium sulfate. The solvent was removed in vacuo, and the residue was subjected to flash chromatography (silica gel; dichloromethane). The resulting product (3.43 g, largely **26**) always contained 2-phenylpyridine (**27**) as an impurity, as shown by GC analysis (comparison with authentic **27**). Pure **26** was prepared by the procedure described below.

2-{2-|2-(Trimethylsilyl)ethynyl]phenyl}pyridine (26) from 2-(2-methoxyphenyl)pyridine (16b)

a) 2-(2-Hydroxyphenyl)pyridine (28): This compound was prepared from 16b by ether cleavage by a known method,^[23] in 63% yield. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 6.86-6.94$ (m, 11-H, 1 H), 7.03 (d, $J_{9-H/10-H} = 8.2$ Hz, 9-H, 1 H), 7.19-7.35 (m, 2 H), 7.76-7.92 (m, 3 H), 8.49 (d, $J_{6-H/5-H} = 5.0$ Hz, 6-H, 1 H) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 118.6$ (d), 118.8 (d), 119.1 (d), 121.5 (d), 126.1 (d), 131.5 (d), 137.8 (d), 145.7 (d, C-6), 157.8 (s), 159.9 (s) ppm; one quaternary carbon atom was not visible in the spectrum. MS (70 eV): m/z (%) = 171 (100) [M⁺], 170 (70), 143 (16).

b) 2-[2-(Trifluoromethylsulfonyl)phenyl]pyridine (29): Triflic anhydride (1.8 mL, 3.0 g, 10.7 mmol) was slowly added at 0 °C to a solution of 28 (1.4 g, 8.2 mmol) in pyridine (20 mL). The mixture was stirred for 1 h at 0 °C and for 24 h at room temp., and then poured into ice-cold water. After extraction with dichloromethane and drying (sodium sulfate), the solvent was removed in vacuo. Flash chromatography (silica gel; petroleum ether/diethyl ether, 1:1) yielded **29** (2.19 g, 88%) as a yellow oil. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 7.30 - 7.33$ (m, 1 H), 7.38 - 7.42 (m, 1 H), 7.46 - 7.52 (m, 2 H), 7.60-7.62 (m, 1 H), 7.75-7.81 (m, 2 H), 8.75-8.76 (m, 6-H, 1 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 118.4$ (q, ¹ $J_{C-F} =$ 320.5 Hz, CF₃), 122.2 (d), 122.9 (d), 124.3 (d), 128.6 (d), 130.2 (d), 131.9 (d), 133.9 (s), 136.6 (d), 146.9 (s, C-8), 149.7 (d, C-6), 153.7 (s, C-2) ppm. IR (film): $\tilde{v} = 3086 \text{ cm}^{-1}$ (w), 3064 (w), 1612 (m), 1588 (m), 1567 (m), 1493 (m), 1471 (m), 1450 (m), 1424 (s), 1248 (s), 1210 (s), 1140 (s), 1114 (m), 1107 (m), 1094 (m), 1057 (m), 1045 (m), 1026 (m), 890 (s), 787 (s), 768 (s), 757 (m), 720 (m). UV/Vis (CHCl₃): λ_{max} (lg ε) = 242 nm (4.02), 270 (3.89), 300 (2.53). MS (70 eV): m/z (%) = 303 (56) [M⁺], 170 (100). C₁₂H₈F₃NO₃S (303.26): calcd. C 47.53, H 2.66, N 4.62, S 10.57; found C 47.31, H 2.43, N 4.39, S 10.70.

c) 2-{2-[2-(Trimethylsilyl)ethynyl]phenyl}pyridine (26): Triethylamine (4 mL), (trimethylsilyl)ethyne (2.2 mL, 3.17 g, 32.2 mmol), and Pd(PPh₃)₂Cl₂ (0.29 g, 0.4 mmol) were added to a solution of 29 (2.81 g, 9.3 mmol) in DMF (20 mL), and the mixture was heated at 80 °C for 4 h. The solvents were removed in vacuo, and the residue was taken up in diethyl ether. After filtration through a short silica gel column, analytically pure material was obtained by flash chromatography (silica gel; dichloromethane), affording 26 (0.96 g, 41%) as a reddish oil. ¹H NMR (400.1 MHz, CDCl₃): $\delta =$ 0.15 (s, 9 H, SiMe₃), 7.22-7.26 (m, 1 H), 7.30-7.34 (m, 1 H), 7.39-7.44 (m, 1 H), 7.56-7.59 (m, 1 H), 7.67-7.72 (m, 1 H), 7.74-7.76 (m, 1 H), 7.97-7.99 (m, 1 H), 8.69-8.71 (m, 6-H, 1 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 0.0$ (q, SiMe₃), 98.4 (s, C-14), 104.8 (s, C-13), 121.4 (s), 122.5 (d), 124.9 (d), 128.4 (d), 129.2 (d), 129.9 (d), 133.7 (d), 135.7 (d), 142.7 (s), 149.6 (d), 157.7 (s, C-2) ppm. IR (film): $\tilde{v} = 3064 \text{ cm}^{-1}$ (w), 3008 (w), 2960 (m), 2899 (w), 2156 (m), 1585 (m), 1570 (m), 1460 (s), 1424 (m), 1250 (s), 865 (s), 843 (s), 796 (m), 758 (s), 747 (m), 736 (m). UV/Vis (CHCl₃): λ_{max} (lg ϵ) = 242 nm (4.27), 246 (4.14), 262 (4.15), 272 (4.08), 274 (4.07), 276 (4.06), 280 (4.04), 308 (3.08), 312 (2.80). MS (70 eV): m/z (%) = 251 (40) [M⁺], 250 (100), 236 (16). C₁₆H₁₇NSi

(251.40): calcd. C 76.46, H 6.82, N 5.58; found C 76.46, H 6.76, N 5.49.

6.6'-Methanedivlbis(pyrido[2,1-alisoindole) (37): A solution of 26 (2.63 g, 10.5 mmol) in THF (100 mL) was treated under nitrogen with a solution of TBAF·3H₂O (1.18 g, 3.7 mmol) in water (10 mL). After the mixture had been stirred for 1 d at room temp., the solvents were removed in vacuo and the remaining oil was dissolved in dichloromethane. The solution was washed carefully with water, the organic phase was dried with sodium sulfate, and the solvent was distilled off. The remaining solid (0.57 g) was extracted with refluxing chloroform/petroleum ether, and the insoluble yellow solid was removed by filtration. An additional 0.17 g of the yellow product crystallized from the mother liquor (total yield of 37: 0.74 g, 41%). Analytically pure material was obtained by recrystallization from diethyl ether, yellow needles, m.p. 200 °C (decomp.). ¹H NMR (400.1 MHz, CDCl₃): $\delta = 5.04$ (s, 11-H, 2 H), 6.70-6.74 (m, 4 H), 7.15 (ddd, $J_1 = 0.8$, $J_2 = 6.6$, $J_3 = 8.2$ Hz, 2 H), 7.32 (ddd, $J_1 = 0.9$, $J_2 = 6.6$, $J_3 = 8.5$ Hz, 2 H), 7.51 (ps-d, J = 8.6 Hz, 2 H), 7.80-7.83 (m, 2 H), 8.03-8.06 (m, 2 H), 8.15 (ps-dt, $J_1 = 0.9$, $J_2 = 8.3$ Hz, 2 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 21.2$ (t, C-11), 106.9 (s), 112.6 (d), 115.5 (d), 116.0 (d), 116.4 (s), 118.2 (d), 118.6 (d), 119.8 (d), 120.3 (d), 124.7 (d), 125.7 (s), 126.2 (s) ppm. IR (KBr): $\tilde{v} = 3047 \text{ cm}^{-1}$ (w), 1602 (s), 1446 (m), 1350 (m), 1308 (s), 1256 (m), 1211 (m), 1127 (m), 996 (m), 740 (s), 726 (s), 715 (s), 700 (s). UV/Vis (CHCl₃): λ_{max} (lg ϵ) = 252 nm (4.84), 274 (4.44), 362 (4.32), 374 (4.36), 416 (3.60), 442 (3.52), 472 (3.35), 602 (3.45), 644 (4.04). MS (70 eV): m/z (%) =346 (100) [M⁺], 345 (58), 180 (78). C₂₅H₁₈N₂ (346.43): calcd. C 86.68, H 5.24, N 8.09; found C 86.70, H 5.24, N 7.97.

3-Ethynyl-2-phenylpyridine (13)

a) 2-Chloro-3-[2-(trimethylsilyl)ethynyl]pyridine (40): Pd(PPh₃)₂-Cl₂ (0.065 g, 0.09 mmol), trimethylsilylethyne (0.5 mL), and a small amount of CuI were added to a solution of 2-chloro-3-iodopyridine [39, 0.44 g, 1.8 mmol, prepared from 2-chloropyridine (38) according to ref.^[27]] in triethylamine (20 mL), and the mixture was stirred for 5 h at room temp. Petroleum ether was added, the solid material was removed by filtration, and the solvent was removed in vacuo. Flash chromatography (silica gel; pentane/diethyl ether, 10:1) provided the known^[28] acetylene **40** (0.38 g, 99%). ¹H NMR (200.1 MHz, CDCl₃): $\delta = 0.09$ (s, SiMe₃, 9 H), 7.00 (dd, J_{5-H/6-H} = 4.8, J_{5-H/4-H} = 7.7 Hz, 5-H, 1 H), 7.60 (dd, J_{4-H/6-H} = 1.9, J_{4-H/5-H} = 7.7 Hz, 4-H, 1 H), 8.13 (dd, J_{6-H/4-H} = 1.9, J_{6-H/5-H} = 4.8 Hz, 6-H, 1 H) ppm.

b) 3-Ethynyl-2-phenylpyridine (13): A solution of phenylmagnesium bromide in THF (22 mL) was prepared from bromobenzene (3.6 g, 22.9 mmol) and magnesium turnings (0.55 g, 22.6 mmol). Compound 40 (2.37 g, 11.3 mmol) and Ni(dppp)Cl₂ (0.233 g, 0.43 mmol) were added to this solution. The mixture was heated under reflux for 5 h and stirred for 3 d at room temp. For workup, saturated ammonium chloride solution was added, followed by extraction with diethyl ether. The organic phase was dried (sodium sulfate) and the solvent was removed in vacuo. The obtained 41 was purified by flash chromatography (silica gel; dichloromethane). It was dissolved in THF (17 mL), and a solution of TBAF in THF (1.1 M, 3 mL) and water (2 mL) were added. The mixture was stirred at room temp. overnight and extracted carefully with dichloromethane. After drying (sodium sulfate) and solvent evaporation, flash chromatography (silica gel; dichloromethane) yielded 13 (0.49 g, 24%) as a colorless solid, m.p. 72 °C. ¹H NMR (400.1 MHz, CDCl₃): δ = 3.15 (s, 14-H, 1 H), 7.13 (dd, $J_{5-H/6-H}$ = 4.8, $J_{5-H/4-H} = 7.8$ Hz, 5-H, 1 H), 7.34-7.40 (m, phenyl, 3 H), 7.82 (dd, $J_{4-H/5-H} = 7.8$, $J_{4-H/6-H} = 1.8$ Hz, 4-H, 1 H), 7.85–7.87 (m, phenyl, 2 H), 8.57 (dd, $J_{6-H/5-H} = 4.8$, $J_{6-H/4-H} = 1.8$ Hz, 6-H, 1 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 81.3$ (ps-s, C-13), 82.9 (d, C-14), 116.8 (s, C-3), 121.3 (d), 127.9 (d), 128.9 (d), 129.2 (d), 138.9 (s), 141.9 (d), 148.9 (d), 160.2 (s, C-2) ppm. IR (KBr): $\tilde{v} = 3195 \text{ cm}^{-1}$ (s), 3041 (w), 2100 (w), 1556 (w), 1426 (s), 802 (m), 744 (s), 696 (s). UV/Vis (CHCl₃): λ_{max} (lg ε) = 236 nm (3.67), 242 (3.99), 262 (4.04), 282 (3.89), 310 (2.94), 314 (2.58), 320 (2.09). MS (70 eV): m/z (%) = 179 (100) [M⁺], 178 (52). C₁₃H₉N (179.22): calcd. C: 87.12, H 5.06, N 7.82; found C 86.79, H 5.15, N 7.63.

Pyrolysis of 4-(2-Ethynylphenyl)pyridine (10): A sample of 10 (0.072 g, 0.4 mmol) was pyrolyzed at 810 °C and 0.5 mbar (evaporation temperature 120 °C). HPLC/UV analysis of the pyrolysate (0.050 g, mass recovery 69%) showed that benzo[f]isoquinoline (45) was formed as the main product, together with five side products, of which one was identified by spectral comparison as the benzopentalene dimer 47 (see spectroscopic data below). By flash chromatography (silica gel; diethyl ether) compound 45 (0.024 g, 33%), a known compound,^[29] was isolated. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 7.71 - 7.75$ (m, 2 H), 7.84 (AB-q, J = 8.9 Hz, 8-H, 9-H, 2 H), 7.94-7.96 (m, 1 H), 8.44 (d, J = 5.8 Hz, 1 H), 8.66-8.69 (m, 1 H), 8.76 (d, J = 6.0 Hz, 1 H), 9.26 (s, 10-H, 1 H) ppm. ¹³C NMR $(100.6 \text{ MHz}, \text{CDCl}_3): \delta = 116.2 \text{ (d)}, 123.2 \text{ (d)}, 124.6 \text{ (d)}, 127.2 \text{ (d)},$ 128.3 (s), 128.6 (d), 128.8 (d), 128.9 (d), 133.6 (s), 135.1 (s), 144.4 (d, C-2), 151.2 (d, C-10) ppm; the signal of one quaternary carbon atom was not visible in the spectrum. IR (KBr): $\tilde{v} = 3389 \text{ cm}^{-1}$ (w), 3289 (w), 3050 (w), 1620 (m), 1583 (m), 1519 (m), 1427 (m), 1394 (m), 1286 (m), 1251 (m), 1192 (m), 1106 (m), 1036 (m), 873 (m), 834 (s), 814 (s), 749 (s), 730 (s), 717 (s). UV/Vis (CHCl₃): λ_{max} $(\lg \varepsilon) = 234 \text{ nm} (3.95), 238 (4.16), 248 (4.66), 252 (4.70), 272 (4.10),$ 280 (3.99), 294 (4.00), 320 (3.00), 334 (3.28), 350 (3.37). MS $(70 \text{ eV}): m/z \ (\%) = 179 \ (100) \ [\text{M}^+], 178 \ (24), 152 \ (14), 151 \ (16).$

Pyrolysis of 3-(2-Ethynylphenyl)pyridine (11): A sample of 11 (0.484 g, 2.70 mmol) was pyrolyzed at 820 °C and 0.1 mbar (evaporation temperature 120 °C). The pyrolysate (0.380 g, mass recovery 79%) was separated by flash chromatography (silica gel, diethyl ether) to afford benzo[h]isoquinoline (52, 0.050 g, 10%)^[30] and benzo[f]quinoline (50, 0.060 g, 12%),^[31] together with a yellow solid (0.140 g), shown by ¹H NMR analysis to be a mixture of isomers. Although this last product could be purified by recrystallization (petroleum ether, dichloromethane) and high-vacuum sublimation, NMR analysis showed that it still consisted of two isomers. Its spectroscopic data^[21,22] showed it to be benzopentalene dimer (47). Spectroscopic data: 52: ¹H NMR (400.1 MHz, CDCl₃): δ = $7.63 - 7.75 \text{ (m, 4 H)}, 7.90 - 7.93 \text{ (m, 2 H)}, 8.70 \text{ (d, } J_{2-H/3-H} = 5.2 \text{ Hz},$ 2-H, 1 H), 8.77 (d, $J_{9-H/8-H} = 8.3$ Hz, 9-H, 1 H), 10.03 (s, 10-H, 1 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 121.2$ (d), 121.9 (d), 124.8 (d), 125.3 (d), 127.4 (d), 128.9 (d), 129.3 (s), 131.7 (d), 132.1 (s), 135.9 (s), 144.9 (d), 146.6 (d) ppm; the signal of one quaternary carbon atom was not visible in the spectrum. IR (film): $\tilde{v} = 3060$ cm⁻¹ (m), 3037 (m), 2957 (w), 2934 (w), 1610 (s), 1596 (m), 1565 (w), 1501 (w), 1449 (m), 1440 (m), 1422 (m), 1406 (m), 1240 (s), 996 (m), 869 (m), 844 (s), 809 (w), 748 (s), 714 (m). MS (70 eV): m/z (%) = 179 (100) [M⁺], 178 (18), 152 (10), 151 (12). 50: ¹H NMR (400.1 MHz, CDCl₃): δ = 7.51 (dd, $J_{3-H/2-H}$ = 4.4, $J_{3-H/2-H}$ = 8.4 Hz, 3-H, 1 H), 7.60-7.68 (m, 2 H), 7.89-7.91 (m, 1 H), 7.95 (d, ${}^{3}J = 9.2$ Hz, 9-H or 10-H, 1 H), 7.99 (d, ${}^{3}J = 9.3$ Hz, 9-H or 10-H, 1 H), 8.56 (ps-d, ${}^{3}J = 8.0$ Hz, 5-H, 1 H), 8.89 (dd, $J_{4-H/2-H} = 1.7, J_{4-H/3-H} = 8.4$ Hz, 4-H, 1 H), 8.94 (dd, $J_{2-H/4-H} = 1.6$, $J_{2-H/3-H} = 4.4$ Hz, 2-H, 1 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 121.2$ (d), 122.5 (d), 125.4 (s), 127.1 (d), 127.3 (d), 128.1 (d), 128.7 (d), 129.6 (s), 130.7 (d), 130.9 (d), 131.6 (s), 148.1 (s, C-10a),

149.6 (d, C-2) ppm. IR (KBr): $\tilde{v} = 3060 \text{ cm}^{-1}$ (w), 3049 (w), 1635 (w), 1629 (w), 1591 (w), 1585 (w), 1572 (m), 1494 (m), 1452 (m), 1386 (m), 1299 (m), 838 (s), 816 (s), 748 (s). MS (70 eV): m/z (%) = 179 (100) [M⁺], 178 (22), 152 (8), 151 (12). **47**: ¹H NMR (400.1 MHz, CDCl₃): $\delta = 3.22$ (d, J = 4.1 Hz), 3.32-3.35 (m), 3.64-3.68 (m), 3.78-3.80 (m), 6.43 (s), 6.49 (s), 6.89 (t, J = 2.0 Hz), 7.14 (dt, $J_I = 1.5$, $J_2 = 7.2$ Hz), 7.27-7.32 (m), 7.65-7.68 (m) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 40.9$ (d), 41.1 (d), 57.6 (d), 58.0 (d), 116.5 (d), 116.7 (d), 120.8 (d), 122.5 (d), 123.7 (d), 128.4 (d), 129.9 (s), 134.1 (d), 134.9 (d), 151.0 (s), 151.9 (s), 155.7 (s) ppm. IR (KBr): $\tilde{v} = 3062$ cm⁻¹ (w), 3038 (w), 2853 (w), 1708 (w), 1702 (w), 1653 (w), 1637 (w), 1600 (s), 1588 (w), 1435 (w), 1187 (w), 1169 (w), 935 (w), 879 (w), 869 (w), 838 (m), 762 (s), 750 (s), 705 (s). MS (70 eV): m/z (%) = 304 (6) [M⁺], 152 (100). MS (CI, NH₃, pos.): m/z (%) = 305 (100).

Pyrolysis of 3-Ethynyl-2-phenylpyridine (13): A sample of 13 (0.467 g, 2.60 mmol) was pyrolyzed at 820 °C and 0.3 mbar (evaporation temperature 120 °C). The pyrolysate (0.400 g, mass recovery 86%) was separated by flash chromatography (silica gel; dichloromethane) to afford benzo[h]quinoline (56, 0.400 g, 58%), as shown by spectral and analytical comparison with an authentic sample, and azuleno[1,2-b]pyridine (58, 0.043 g, 9%) as a deep blue solid, m.p. 80 °C. ¹H NMR (400.1 MHz, CDCl₃): $\delta = 6.82$ (dd, $J_1 = 8.4, J_2 = 10.8$ Hz, 7-H, 1 H), 7.05 (dd, $J_1 = 8.3, J_2 = 11.1$ Hz, 9-H, 1 H), 7.11 (s, 5-H, 1 H), 7.17-7.24 (m, 8-H, 1 H), 7.44 (dd, $J_{3-H/2-H} = 4.7, J_{3-H/4-H} = 8.0$ Hz, 3-H, 1 H), 7.87 (d, $J_{6-H/7-H} =$ 11.4 Hz, 6-H, 1 H), 8.06 (dd, $J_{4-H/2-H} = 1.5$, $J_{4-H/3-H} = 7.9$ Hz, 4-H, 1 H), 8.70 (dd, $J_{2-H/4-H} = 1.4$, $J_{2-H/3-H} = 4.5$ Hz, 2-H, 1 H), 8.78-8.81 (m, 10-H, 1 H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): $\delta = 112.1$ (d), 122.6 (d), 124.9 (d), 126.3 (d), 127.7 (d), 131.1 (d), 135.7 (s), 137.0 (d), 137.2 (d), 138.8 (s), 138.9 (s), 143.8 (d, C-2), 147.9 (s, C-10b) ppm. IR (KBr): $\tilde{v} = 3038 \text{ cm}^{-1}$ (w), 3013 (w), 2990 (w), 1623 (w), 1593 (s), 1481 (m), 1446 (m), 1389 (s), 1365 (m), 1285 (m), 1262 (m), 1238 (m), 1209 (m), 1102 (m), 1045 (m), 1033 (m), 1021 (m), 811 (s), 780 (m), 770 (m). UV/Vis (CHCl₃): λ_{max} (lg ε) = 238 nm (3.95), 242 (4.10), 308 (4.63), 340 (3.64), 346 (3.57), 360 (3.63), 380 (3.70), 386 (3.50), 390 (3.37), 400 (3.55). MS (70 eV): m/z (%) = 179 (100) [M⁺], 178 (28), 152 (18), 151 (16), CN-H]. HRMS: C13H9N: calcd. 179.0735; found 179.0732.

X-ray Structure Determination of Compound 37: Crystal data: Orthorhombic, space group *Fdd*2, a = 21.825(3), b = 34.559(3), c =4.5823(10) Å, V = 3456.2 Å³, Z = 8, μ (Mo- K_{α}) = 0.08 mm⁻¹, T =-130 °C. Data collection: A crystal (ca. $0.75 \times 0.45 \times 0.4$ mm) was used to record 1193 intensities with a Stoe STADI-4 diffractometer (Mo- K_{α} radiation, $2\theta_{max} = 50^{\circ}$). Friedel opposite reflections were merged to give 867 independent reflections. Structure refinement: The structure was refined anisotropically on F^2 (G. M. Sheldrick, SHELXL-97, Univ. of Göttingen) to wR2 = 0.122, R1 = 0.046 for 123 parameters and 136 restraints (to displacement parameters); S = 1.05, max. $\Delta \rho = 0.2$ e Å⁻³. The hydrogen atoms were included by use of a riding model. CCDC-175519 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

We thank Profs. R. F. C. Brown (Monash University) and L. W. Jenneskens (University of Utrecht) for helpful discussions and the Fonds der Chemischen Industrie for the ongoing support of our studies.

- ^[1] H. Hopf, J. Wolff, Eur. J. Org. Chem. 2001, 4009-4030.
- ^[2] R. F. C. Brown, F. W. Eastwood, K. J. Harrington, G. L. McMullen, Aust. J. Chem. 1974, 27, 2393-2402.
- [3] R. F. C. Brown, Pyrolytic Methods in Organic Chemistry, Academic Press, New York, 1980.
- [4] M. Zander, Polycyclische Aromaten, Teubner Verlag, Stuttgart, 1995.
- ^[5] Y. Vallée (Ed.), Gas Phase Reactions in Organic Synthesis, Gordon and Breach, Amsterdam, 1997.
- ^[6] L. T. Scott, Pure Appl. Chem. 1996, 56, 291-300.
- P. W. Rabideau, A. Sygula, Acc. Chem. Res. 1996, 29, 235–243;
 cf.: G. Mehta, H. S. P. Rao, Tetrahedron 1998, 54, 13325–13370.
- ^[8] H. Hopf, *Classics in Hydrocarbon Chemistry*, Wiley-VCH, Weinheim, **2000**, chapter 12.2, pp 330–336; cf.: H. Hopf, St. Hagen, *Top. Curr. Chem.* **1998**, *196*, 45–89.
- [9] W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffmann, *Nature* 1990, 347, 354.
- ^[10] L. T. Scott, M. M. Hashemi, D. T. Meyer, H. B. Warren, J. Am. Chem. Soc. **1991**, 113, 7082–7084. In this initial study, **5** was prepared in ca. 10% yield from **4**. Replacement of the ethynyl groups by 1-chlorovinyl functions produced an increase in the yield to ca. 40%: L. T. Scott, P.-C. Cheng, M. M. Hashemi, M. S. Bratcher, D. T. Meyer, H. B. Warren, J. Am. Chem. Soc. **1997**, 119, 10963–10968.
- [^{11]} H. Hopf, H. Berger, G. Zimmermann, U. Nüchter, P. G. Jones, I. Dix, Angew. Chem. **1997**, 109, 1236–1238; Angew. Chem. Int. Ed. Engl. **1997**, 36, 1187–1190 and refs. cited therein.
- [^{12]} H. Hopf, A. Krüger, *Chem. Eur. J.* **2001**, *7*, 4378–4385; cf.: M. Prall, A. Krüger, P. R. Schreiner, H. Hopf, *Chem. Eur. J.* **2001**, *7*, 4386–4394.
- [13] M. Christl, M. Braun, G. Müller, Angew. Chem. 1992, 104, 471–473, Angew. Chem. Int. Ed. Engl. 1992, 31, 473–476; cf.: M. Christl, S. Drinkuth, Eur. J. Org. Chem. 1998, 63, 237–241.
- ^[14] Review: G. Zimermann, Eur. J. Org. Chem. 2001, 457-471.
- ^[15] U. Lüning, J. Mater. Chem. 1997, 7, 175-182.
- ^[16] K. Imamura, D. Hirayama, H. Yoshimura, K. Takimiya, Y. Aso, T. Otsubo, *Tetrahedron Lett.* **1999**, *40*, 2789–2792.
- ^[17] K. Tamao, K. Sumitani, Y. Kiso, M. Zembayashi, A. Fujioka, S. Kodama, I. Nakajima, A. Minato, M. Kumada, *Bull. Chem. Soc. Jpn.* **1976**, *49*, 1958–1969.
- ^[18] W. Schlenk, R. Ochs, Ber. Dtsch. Chem. Ges. **1916**, 49, 608–614.
- ^[19] F. Trécourt, F. Marsais, T. Güngör, G. Quéguiner, J. Chem. Soc., Perkin Trans. 1 1990, 2409–2415.
- [^{20]} As an alternative, a referee has suggested that 43 and 53 could undergo electrocyclic ring-opening reactions (similar to the 57 → 58 interconversion) and that the resulting azaazulene intermediates could subsequently recyclize to 46 and 54, respectively, subsequently losing hydrogen cyanide to provide 48. Although there is precedent for such a step (see for example: A. J. Blake, H. McNab, M. E.-A. Muray, J. Chem. Soc., Perkin Trans. 1 1989, 589-595 and refs. cited therein) we in the absence of solid mechanistic experiments prefer the routes shown in Schemes 8 and 9, since they require a smaller number of steps.
- ^[21] R. F. C. Brown, N. Choi, K. J. Coulston, F. W. Eastwood, U. E. Wiersum, L. W. Jenneskens, *Tetrahedron Lett.* 1994, 35, 4405-4408. The dimerization of pentalene derivatives to dimers of type 47 has been known for a long time: K. Hafner, R. Dönges, E. Goedecke, R. Kaiser, *Angew. Chem.* 1973, 85, 362-364; *Angew. Chem. Int. Ed. Engl.* 1973, 12, 337-339; for a review see: H. J. Lindner Methoden Org. Chem. (Houben-Weyl), 1985, vol. V/2c, pp.103-122.

- ^[22] We thank Prof. Brown (Monash University) for making the spectra of authentic **47** available to us.
- ^[23] G. Riggio, W. H. Hopff, A. A. Hofmann, P. G. Waser, *Helv. Chim. Acta* 1983, 1039–1045.
- ^[24] K. Ohkura, K.-I. Seki, M. Terashima, Y. Kanaoka, *Tetra-hedron Lett.* **1989**, *30*, 3433–3436.
- ^[25] C. Bolm, M. Ewald, M. Felder, G. Schlingloff, *Chem. Ber.* 1992, 125, 1169–1190.
- ^[26] M. Terashima, K.-I. Seki, C. Yoshida, K. Ohkura, Y. Kanaoka, *Chem. Pharm. Bull.* **1985**, *33*, 1009–1015.
- [27] T. Sakamoto, Y. Kondo, H. Yamanaka, Chem. Pharm. Bull. 1985, 33, 4764-4768.
- ^[28] T. Sakamoto, Y. Kondo, R. Watanabe, H. Yamanaka, *Chem. Pharm. Bull.* **1986**, *34*, 2719–2724.
- ^[29] W. R. Schleigh, J. Heterocycl. Chem. 1970, 7, 1157–1158.
- ^[30] C. F. Koelsch, R. M. Lindquist, J. Org. Chem. **1956**, 21, 657-659.
- ^[31] P. L. Kumler, R. A. Dybas, J. Org. Chem. 1970, 35, 125–131. Received December 14, 2001 [O01585]