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Transition-metal-free Oxidative Intermolecular Cyclization 
Reaction: Synthesis of 2-aryl-4-quinolones 

Haojie Ma,a Cui Guo,b Zhenzhen Zhan,a Guoqiang Lu,a YiXin Zhang, a Xinliang Luo,a XinFeng Cuia and 
Guosheng Huang*a

A novel and efficient intermolecular cyclization of 2-

Aminoacetophenones with aldehydes has been developed for the 

synthesis of 2-aryl-4-quinolones through C–C and C–N bond 

formation. Mild conditions, good functional group tolerance and 

substrates without prefunctionalization make this protocol practical, 

and this strategy will arouse keen interest to chemistry and biology. 

  Nitrogen-containing heterocycles are present in a variety of 

biologically active molecules which can be used in a wide range 

of therapeutic areas.1 Amongst the numerous scaffolds，4-

Quinolones are ubiquitous scaffolds in many natural products2 

and are regarded as a “privileged building block” for biologically 

active compounds3. They are also featured in many commonly 

used antibiotics such as nalidixic acid,4 oxolinic acid,5  

 
Figure 1. Structures of some commercial quinolones. 

ciprofloxacin6, ofloxacin6 and tosufloxacin,6 et al. And their 

derivatives are also versatile synthetic intermediates due to 

their facile derivatization of the 4-hydroxyl group7. In particular, 

2-aryl-4-quinolones, aza analogs of flavones, have played a 

central role in medicinal chemistry because they possess potent 

antimitotic antitumor effects through inhibition of tubulin 

polymerization at the colchicine site.8 More recently, certain 2-

aryl-4-quinolones and their derivatives have been studied as 

potential treatments for a range of diseases because they 

exhibit antimalarial,9 antiviral activities,10 antiplatelet,11 

antidiabetic,12 cathepsins inhibitory activities,13 xanthine 

oxidase,14 and have positive cardiac effects.15 

 
Scheme 1. Synthetic approaches toward 2-Aryl-4-quinolones. 

  The “privileged” status of 2-aryl-4-quinolones and their 

derivatives in biological applications demands more efficient 

strategies for their preparation. Although various synthetic 

routes for the preparing of 4-quinolones have been developed 

such as the Conrad–Limpach16 and Niementowski.17 They 

generally focus on the condensation of amines and carboxyl 

derivatives followed by cyclization to produce the desired 

quinolones. However, most of these methods suffer from harsh 

reaction conditions (high temperature and/or strong bases or 

acids) which dramatically limit the scope of these reactions. Less 

traditional methods are using transition metals catalyst to 

synthesis these compounds, including palladium-catalyzed 

carbonylation,18 titanium-mediated reductive coupling,19 and 

ruthenium-catalyzed reduction reactions.20 Base-promoted 

cyclization of N-(o-ketoaryl) amides, known as the Camps 

cyclization,21 is more attractive and has seen widespread 

utilization for the synthesis of quinolones. However, this 
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reaction is restricted by the limited access to N-(o-

ketoaryl)amides. In 2014, Helaja’s group developed a gold-

catalyzed route for the synthesis of 2-substituted 4-quinolones 

from aryl- or alkyl-substituted aniline-2-propynones.22 In 2008, 

Huang’s group presented a Pd-catalyzed synthetic methodology 

for the formation of 4-quinolones.23 However, most of these 

reported methods require special substrates, multiple steps and 

transition metal catalysts. Herein, we describe a facile approach 

to synthesize 2-aryl-4-quinolones via transition-metal-free 

oxidative cyclization of 1-(2-aminophenyl)ethan-1-ones with 

aldehydes. 

Table 1. Optimization of the Reaction Conditionsa. 

 

Enty Oxidant Base Solvent Yieldb (%) 

1 TEMPO (2) KHCO3 (2) DMSO 68 
2 TEMPO (2) KHCO3 (2) DMA 23 
3 TEMPO (2) KHCO3 (2) DMF 18 
4 TEMPO (2) KHCO3 (2) toluene Ndc 
5 PhI(OAc)2 (2) KHCO3 (2) DMSO nd 
6 TBHP (2) KHCO3 (2) DMSO 50 
7 DDQ (2) KHCO3 (2) DMSO nd 
8 K2S2O8 (2) KHCO3 (2) DMSO 5 
9 Oxone (2) KHCO3 (2) DMSO nd 

10 TEMPO (2) K2CO3 (2) DMSO 59 
11 TEMPO (2) Na2CO3 (2) DMSO 10 
12 TEMPO (2) NaHCO3 (2) DMSO 52 
13 TEMPO (2) DBU (2) DMSO 21 
14 TEMPO (2) Et3N (2) DMSO trace 
15d TEMPO (2) KHCO3 (2) DMSO  35 
16e TEMPO (2) KHCO3 (2) DMSO  52 
17 TEMPO (3) KHCO3(2) DMSO 82 
18 TEMPO (3) KHCO3(3) DMSO 55 
19f TEMPO (3) KHCO3 (2) DMSO   86 

aReaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), oxidant (2 equiv), base (2 

equiv), solvent (1 mL), 120 oC, under air atmosphere. bIsolated yields. cnd = not 

detected. d100 oC. e140 oC. fReaction was performed under O2 atmosphere. 

  At the outset of our investigation, we selected 1-(2-

aminophenyl)ethan-1-one 1a and benzaldehyde 2a as model 

substrates. In the presence of 2 equiv of TEMPO as the oxidant 

and 2 equiv of KHCO3 as base in DMSO at 120 oC, the desired 

product 2-phenylquinolin-4(1H)-one 3aa was isolated in 68% 

yield (Table 1, entry 1). Encouraged by this result, we continued 

to explore the optimal reaction conditions. The desired product 

3aa was detected when DMA and DMF were used as the 

solvents, respectively. The results illustrated that DMSO, DMA 

and DMF were better solvents in this transformation, and the 

highest yield was given in DMSO. 3aa was obtained in 68% yield 

(Table 1, entries 1−4). Under the chosen reaction conditions, no 

useful conversion was observed with the presence of PhI(OAc)2, 

DDQ and Oxone as oxidants, and TEMPO was more favorable 

than TBHP and K2S2O8 (Table 1, entries 1, 5−9). In order to find 

the best base, we chose K2CO3, Na2CO3, NaHCO3, DBU and Et3N 

as candidates. The results showed that using KHCO3 as base 

gave the best yield (Table 1, entries 1, 10−14). In addition, the 

screening of various reaction temperatures showed it to be a 

crucial factor, as the yield of 3aa decreased when the reaction 

was conducted at a higher or lower temperature. The results 

suggest that 120 °C was favorable for the formation of the 

target product (Table 1, entries 1, 15−16). Gratifyingly, the yield 

of 3aa was dramatically increased to 82% when the dosage of 

TEMPO increased to 3 equiv (Table 1, entry 17). In addition, 2 

equiv of KHCO3 showed a superior yield than the 3 equiv one 

(Table 1, entries 17−18). The investigation of reaction 

atmosphere showed that O2 was better than air (Table 1, entries 

17, 19). In the end, the optimized reaction conditions were 

obtained as follows: 1-(2-aminophenyl)ethan-1-one (0.2 mmol), 

benzaldehyde (0.4 mmol), TEMPO (3 equiv) and KHCO3 (2 equiv) 

in 1 mL of DMSO at 120 oC under O2 atmosphere. 
Scheme 2. Synthesis of 2-phenylquinolin-4(1H)-one Derivatives. 

 

 

  With the optimized reaction conditions in hand, we then 

investigated the substrate scope and generality of this oxidative 

coupling protocol, the results are summarized in Scheme 2. Firstly, 

we investigated the effect of the substituent group on the 

benzaldehyde (Scheme 2, 3aa-3aq). A diverse array of benzaldehydes, 

bearing electron-withdrawing, electron-donating groups and 
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heterocycle-aldehyde, could react with 1-(2-aminophenyl)ethan-1-

one 1a smoothly and the desired quinolones could be obtained 

efficiently in good yields. Benzaldehydes with electron-donating 

groups such as methyl and methoxyl, achieved better results than 

those with electron-withdrawing groups (Scheme 2, 3ab-3ao), and 

the functional groups at the para-position exhibited more 

outstanding results than those at the meta-position, followed by 

those at the ortho-position (Scheme 2, 3ab-3an). These results 

demonstrated that the electronic effects and steric effect had 

considerable influence on the formation of the target products. 

Heterocycle-aldehyde 2p and 1-naphthaldehyde 2q were also 

successfully converted to the desired product respectively (Scheme 

2, 3ap-3aq). Unfortunately, an aliphatic aldehyde did not get desired 

product (Scheme 2, 3ar). We then examined the substituent group 

on 1-(2-aminophenyl)ethan-1-ones. 1-(2-amino-4-

methylphenyl)ethan-1-one 1b and 1-(2-amino-4-

fluorophenyl)ethan-1-one 1c transformed smoothly to give the 

desired products (3ba, 3ca) in 58% and 52% yields, respectively 

(Scheme 2, 3ba-3ca). 

 
Scheme 3. Control Experiments. 

To gain mechanistic insights into this transformation, some 

control experiments were carried out (Scheme 3). Firstly, we 

carried out a reaction of 1a and 2a in the presence of 3 equiv of 

TEMPO and 2 equiv of KHCO3 at 80 oC in DMSO, the desired 

product 3aa was  not gained, whereas the intermediate 4 was 

harvested as major product (Scheme 3, a). Then the 

intermediate 4 was performed under standard conditions and 4 

could convert to 3aa successfully (Scheme 3, b). 

 

Scheme 4. Plausible mechanistic pathway. 

  Based on the above results and previous literatures,14 a plausible 

mechanism is proposed for the formation of the 2-Aryl-4-quinolones 

as shown in Scheme 4. Firstly, 1-(2-aminophenyl)ethan-1-one 1a 

reacts with benzaldehyde 2a to provide intermediate 4. Then the 

cyclization of 4 to get the intermediate A, which was further oxidized 

to obtain the desired product 3aa. 

Conclusions 

  In conclusion, we have developed a novel and efficient method 

to synthesize substituted 2-Aryl-4-quinolones which are useful 

intermediates for the preparation of biologically active 

compounds. Simple operation with inexpensive reagents and 

mild reaction conditions make this efficient protocol practical. 

The avoidance of preparation of substrates and fewer synthetic 

steps will arouse keen interest to chemistry and biology. 
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