View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: R. R. Chada, B. Latha, K. Warudikar and K. K. Singarapu, *Org. Biomol. Chem.*, 2015, DOI: 10.1039/C5OB02085A.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

RSCPublishing

Organic & Biomolecular Chemistry

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received ooth October 2015, Accepted ooth October 2015

DOI: 10.1039/x0xx00000x

Total synthesis of a piperidine alkaloid, **Microcosamine A**

Chada Raji Reddy,*^{, a} Bellamkonda Latha,^a Kamalkishor Warudikar^a and Kiran Kumar Singarapu^b

The first asymmetric total synthesis of a new natural piperidine alkaloid, microcosamine A, has been accomplished from D-Serine and D-methyl lactate as chiral pool starting materials. Key features of the strategy include the utility of Horner-Wadsworth-Emmons reaction, Luche reduction, intramolecular carbamate N-alkylation to form the piperidine framework and Julia-Kocienski olefination to install the triene side-chain.

Introduction

2-Methyl-3-hydroxy-6-alkylated piperidines constitute an important class of natural alkaloids due to their interesting biological and pharmacological properties (anaesthetic, analgesic, antitumor, antibiotic, CNS stimulating biological properties, antihypertensive and antifungal activities etc.).¹⁻⁶ These molecules possess in different stereochemical pattern and C6 side chain with either saturated or unsaturated alkyl group. Up to date three types of 2-methyl-3-hydroxy natural piperidines having different unsaturated side chain at C6 carbon, such as corydendramines A & B (1a, 1b),⁴ microgrewiapine A $(1c)^5$ and microcosamines A & B $(2a, 2b)^6$ have been isolated. However, there is no synthesis reported for any of these molecules. The interesting structural feature of these molecules is the presence of a chiral hydroxy group at C3-position of piperidine ring with trans stereochemistry with respect to the C2 and C6 carbons, which is a rare substructure in piperidine alkaloids. Structurally, these compounds possess a polar head group with hydroxyl and amine functionalities and a hydrophobic aliphatic tail, which can be considered as cyclic analogues of the lipid sphingosine membrane.⁷ The above observations combined with our interest in the synthesis of alkaloids⁸ have driven us for the synthesis of microcosamine A (2a).

Microcosamine A (2a), was first isolated by Lin and coworkers in 2008, from the chloroform extraction of the leaves of Microcos paniculata along with microcosamine B (2b) and found their insecticidal activity against the larvae of Culex quinquefasciatus with LC50 value of 5.2 and 17.0 µg/mL, respectively.⁶ Microcos paniculata, a large shrub or small tree that grows in South and Southeast Asia countries, is found to be a rich source of bio-active compounds and several parts such as

roots, stem bark, leaves and fruits are being used traditionally to treat diarrhea and fever, as herbal tea to treat cold, enteritis, and skin rash and as insecticides.⁹ There is a good number of 2,3,6trisubstituted piperidine alkaloids which have been isolated from this species.¹⁰ Later, in 2013, it was again isolated from the same plant along with some other piperidine alkaloids by Kinghorn et al and examined for their effects on neuronal nicotinic acetylcholine receptors (nAChRs).⁵ Microcosamine A (2a) exhibited approximately 53.7% and 59% $h\alpha 3\beta 4$ and $h\alpha 3\beta 2$ nAChR activity, respectively Herein, we presented the first total synthesis of microcosamine A (2a).

Figure 1. Structures of corydendramines A & B, microgrewiapine A and microcosamines A & B

www.rsc.org/

Published on 03 November 2015. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 03/11/2015 17:58:40

Published on 03 November 2015. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 03/11/2015 17:58:40.

Results and discussion

trosynthetic strategy of 2a. We planned the Scheme 1 outlines the installation of triene-si chain at C6 position of hydroxy piperidine ring 4 by using 3 a oxidation followed by Julia-Kocienski olefination.11 Synthesis of the sulfone fragment 3 was projected from of a known conjugated alcohol 5^{12} . The 1-octyne (8) by way construction of piperid e **4** was designed through the intramolecular carbamate N-alkylation of its precursor which could be obtained erine ester 6 and β -keto phosphonate 7 using from N,O-protected Dnons (HWE) olefination¹³ as the key Horner-Wadsworth-En reaction. Ester 6 and osphonate 7 inturn could be prepared from als, D-serine (9) and D-methyl lactate (10), the chiral starting mate respectively. The C2 d C6 stereochemistry is expected to arise from 9 and C3-hydro stereochemistry envisaged from 10 using reduction¹⁴ of keto functionality. diastereoselective Luch

Scheme 1. Retrosynthetic analysis of 2a

iate 6 was prepared in three steps from The ester interme the reported procedure.¹⁵ The desired β -D-serine (9) followin as also smoothly obtained in two steps keto phosphonate 7 e (10) using literature protocol.¹⁶ The from D-methyl lacta synthesis of piperid e fragment is outlined in scheme 2. Initially, the ester 6 vas subjected to DIBAL-H reduction to aldehyde followed by HWE olefination with β -keto phosphonate 7 under Ba(OH)₂•8H₂O in THF/H₂O condition to afford the enone 11 in 87% yield, a precursor for diastereoselective Luche reduction. Exposure of 11 to NaBH₄ in MeOH in the presence of CeCl₃•H₂O at -78 °C provided the allylic alcohol 12 along with its minor diastereomer in 85% yield [dr >9:1, based on the diastereomers 17 & 17a, seperated in the cyclization step]. At this stage, we were unable to separate these diastereomers either by column or by HPLC (In ¹H NMR spectra, the signals were not seperated to verify the diasrereomeric ratio) and hence, moved for further transformations as a mixture. Thus, the hydroxyl group of 12 was protected as methoxy methyl (MOM) ether 13 using MOMCl/diisopropylethyl amine in $CH_2Cl_2(89\%)$. To obtain

Scheme 2. Synthesis of 4 from 6 and 7

free secondary hydroxyl group, a two-step protecting group manipulation was chosen. Deprotection of both the *tert*-butyldimethyl silyl groups of **13** under HF (40% in water) in CH₃CN followed by selective protection of the resulting primary hydroxyl group as a TBS ether produced the required alcohol **14** in 81% yield over two steps. After the oxidation of alcohol **14** to the corresponding ketone **14-I**, the attempt to form the piperidine ring **14-II** through hydrogenation was unsuccessful.¹⁷

Thus, an alternative sequence was followed. Hydrogenation reaction of 14 using 10% Pd/C in EtOH involves the olefin reduction as well as Cbz-deprotection to free amine, which was subsequently treated with di-tert-butyl-dicarbonate (Boc₂O)/Et₃N to get Boc-protected amino alcohol 15 in 88% yield. Treatment of 15 with methanesulfonyl chloride in presence of triethyl amine in CH₂Cl₂ gave the mesylate 16 in 85% yield. Compound 16 was successfully converted into 2,3,6-trisubstituted piperidine via intramolecular carbamate Nalkylation (SN reaction) using potassium tert-butoxide in THF (88%).¹⁸ At this point, the diastereomers formed during the Luche reduction of 11 were seperated by column chromatography (dr 92:8). The major isomer 17 was found to the desired one and the minor isomer 17a was undesired, which were characterized by 2D COSY and NOESY experiments.¹⁹ The nOe cross correlations between H8(Me)/H7(H7'), H2/H9 and H3/H8(Me) for 17 (Figure 2) support the desired

ro
ide
vi
s o
7 0
line
n
-se
nm
pho
eria
an
xyl
he
0
ų,
/4
3
01
,OF
etic
edi
ul ng
ig
wa
ate
lin
W
1
B

Journal Name

Published on 03 November 2015. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 03/11/2015 17:58:40.

diastereomer. In case of **17a** the nOe cross correlations observed between H8(Me)/H7(H7'), H7/H9, H8/H9, H2/H3 support the undesired diastereomer (Figure 2). Next, TBS group of **17** was deprotected using HF (40% in water) in CH₃CN to give the piperidinol **4** in 80% yield.

Figure 2: The characteristic nOe cross correlations of compound 17 and 17a.

The sulfone **3** required for Julia olefination was synthesised from dienol **5**, obtained from 1-octyne (**8**).¹² Mitsunobu reaction²⁰ of the alcohol **5** with 1-phenyl-1*H*-tetrazole-5-thiol to thio-tetrazole **18** (95% yield) followed by ammonium molybdate catalyzed oxidation²¹ using hydrogen peroxide in EtOH provided the sulfone **3** in 82% yield (Scheme 3).

Scheme 3. Synthesis of sulfone 3

The stage was set for the conversion of **4** to microcosamine A (**2a**) by connecting the side chain (Scheme 4). Accordingly, the alcohol **4** was oxidized with IBX (2-iodoxybenzoic acid) to the corresponding aldehyde followed by Julia-Kocienski olefination with the trienyl sulfone **3** by treating with KHDMS in the presence of 18-crown-6 in DME provided the trienyl-piperidine **19** exclusively as Z-isomer in 72% yield over two steps.²² Removal of MOM and Boc groups was accomplished in one step by the treatment of **19** with 3N HCl in MeOH to give the desired microcosamine A (**2a**) in 78% yield.

Scheme 4. Synthesis of 2a from 4

The spectral data (¹H, ¹³C NMR and mass) of our synthetic microcosamine A (**2a**) were in full agreement to those reported

for natural product (see Table S1 in supplementary information). The specific rotation of synthetic **2a** { $[\alpha]_D^{20}$: +5.6 (*c* 1.00, CH₃OH)} was also comparable to the natural product { $[\alpha]_D^{20}$: +4.0 (*c* 1.00, CH₃OH)}. These results confirm the structure and absolute configuration of the natural product **2a**.

Conclusions

In summary, The first asymmetric total synthesis of natural piperidine alkaloid, microcosamine A, was accomplished using commercially available *D*-serine, *D*-methyl lactate (for piperidine unit) and 1-octyne (for triene-side chain) as starting materials. The key features of the strategy are the successful utilization of HWE-olefination and intramolecular carbamate *N*-cyclization for piperidine ring construction and Julia-Kocienski olefination for the installation of side chain in the natural product synthesis. The approach is handy for the synthesis of other natural products and their analogues having different side chains.

Experimental

General

Melting points were determined on a POLMON melting point apparatus and are uncorrected. NMR spectra were recorded in CDCl₃ on 300 MHz, 400 MHz or 500 MHz spectrometers at ambient temperature. Chemical shifts δ were denoted with reference to TMS or solvent residual (CDCl₃: δ 7.26 ppm for ¹H and 77.0 ppm for ¹³C) peak given in ppm (parts per million) and coupling constants J are measured in Hz (hertz). FTIR spectra were recorded on a Perkin-Elmer 683 infrared spectrophotometer in KBr or as neat. Optical rotations were measured on an Anton Paar MLP 200 modular circular digital polarimeter by using a 2 mL cell with a path length of 1 dm with MeOH or CHCl₃ as solvent. Low-resolution MS were collected on an Agilent Technologies LC-MSD trap SL spectrometer in positive ion mode. Technical-grade EtOAc and hexanes used for column chromatography were distilled before use. All the reagents and solvents were of reagent grade and used without further purification unless otherwise stated. THF, when used as solvent for reactions, was freshly distilled from sodium benzophenone ketyl radical. Progress of the reactions was monitored by thin-layer chromatography using silica plates (UV₂₅₄, glass backed; Merk KGaA) and the spots were visualized under UV-light and/or after charring with nihydrin or potassium permanganate or β -naphthol stain solutions. Column chromatography was performed over silica gel (60–120 mesh) or on alumina (aluminium oxide activated, neutral, 150 mesh) packed in glass columns, eluted with gradients of petroleum ether and ethyl acetate. Column fractions were concentrated under reduced pressure at temperatures not more than 40 °C. All the reactions were performed under N2 in ovendried glassware with magnetic stirring.

Benzyl (6*S*,10*R*,*E*)-2,2,3,3,10,12,12,13,13-nonamethyl-9-oxo-4,11-dioxa-3,12-disilatetradec-7-en-6-ylcarbamate (11):

Published on 03 November 2015. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 03/11/2015 17:58:40

Methyl N-((benzyloxy)carbonyl)-O-(tert-butyldimethylsilyl)-Dserinate.¹⁵ 6 (2.2 g, 5.99 mmol) was taken in a round bottemed flask and added anhydrous toluene (20 mL). The mixture was cooled to -78 °C before adding DIBAL-H (25% w/v in toluene, 5.1 mL, 7.18 mmol) drop wise under N₂ and stirred at the same temperature for 10 min. The mixture was quenched with aqueous saturated sodium potassium tartrate (20 mL), diluted with DCM (20 mL), stirred for 3 h at rt for the separation of two layers. The organic layers were separated and the aqueous layer was extracted with DCM (2 x 20 mL). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The aldehyde was used for the next step without further purification. То а stirred solution of (*R*)-dimethyl (3-((tertbutyldimethylsilyl)oxy-2-oxobutyl)phosphonate¹⁶ 7 (2.2 g, 7.19 mmol) in THF (30 mL), was added Ba(OH)₂•8H₂O (2.8 g, 8.99 mmol) at rt and stirred vigorously for 45 min. The reaction mixture was cooled to 0 °C before adding above crude aldehyde in 15 mL of THF/H₂O (20:1) and the mixture was allowed to warm to rt. After completion of reaction (4 h), the reaction mixture was diluted with EtOAc (30 mL), organic layer was washed with water (30 mL), brine (30 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography (neutral alumina, hexanes/EtOAc 9:1) to afford enone 11 (2.7 g, 87%) as a colorless oil. $R_f = 0.4$ (petroleum ether : EtOAc = 9:1); $[\alpha]_D^{20} =$ + 9.5 (c 1.50, CHCl₃); IR (neat): v_{max} 3446, 2954, 2931, 2858, 1705, 1631, 1255, 1116, 837 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.28 (m, 5H, Ph), 6.93 (dd, J = 15.8, 4.7 Hz, 1H, CH=CH), 6.73 (d, J = 15.8 Hz, 1H, CH=CH), 5.22-5.06 (m, 3H, CH₂-Ph, -NH), 4.52-4.43 (br m, 1H, CH-N), 4.25 (q, J = 13.6, 6.8 Hz, 1H, CH-CH₃), 3.76 (d, J = 3.7 Hz, 2H, CH_2 -O), 1.29 (d, J = 6.8 Hz, 3H, $CH-CH_3$), 0.90 (s, 9H, ^tBu-Si), 0.85 (s, 9H, ^tBu-Si), 0.06 (s, 3H, Si(CH₃)₂), 0.05 (s, 3H, $Si(CH_3)_2$, 0.03 (s, 3H, $Si(CH_3)_2$), 0.02 (s, 3H, $Si(CH_3)_2$); ¹³C NMR (100 MHz, CDCl₃): δ 201.0, 155.7, 145.2, 136.3, 128.5, 128.1, 128.0, 124.2, 74.3, 66.9, 64.6, 53.7, 25.7, 25.7, 20.8, 18.2, 18.0, -4.8, -4.9, -5.5, -5.5; MS (ESI): *m*/*z* 544 (M+Na)⁺; HRMS (ESI): m/z calcd for $C_{27}H_{47}NO_5Si_2Na$ (M+Na)⁺, 544.2885; found 544.2890.

Benzyl (6*S*,9*R*,10*R*,*E*)-9-hydroxy-2,2,3,3,10,12,12,13,13nonamethyl-4,11-dioxa-3,12-disilatetradec-7-en-6-

ylcarbamate (12): To a stirred solution of 11 (2.5 g, 4.79 mmol) in MeOH (30 mL) was added CeCl₃⁻⁷H₂O (3.5 g, 9.59 mmol) and was allowed to stir for 45 min at room temperature. It was cooled to -78 °C and NaBH₄ (265 mg, 7.18 mmol) was added portion wise for over 10 min and stirred for an additional 1 h at the same temperature. After completion of the reaction (10 min), it was quenched by addition of ice pieces/ice cold water (2 mL) at -78 °C and slowly allowed to warm to room temperature. After stirring at room temperature for further 30 min, it was poured into water (20 mL) and extracted with diethyl ether (3 x 25 mL). Combined organic layers were washed with brine (20 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (neutral alumina,

hexanes/EtOAc 8:2) to furnish 12 (2.1 g, 85%) as a colorless oil. $R_f = 0.2$ (petroleum ether : EtOAc = 9:1); $[\alpha]_D^{20} = -6.6$ (c 1.10, CHCl₃); IR (neat): v_{max} 3446, 2953, 2930, 1714, 1253, 773 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.41-7.28 (m, 5H, Ph), 5.79 (dd, J = 15.6, 5.7 Hz, 1H, CH=CH), 5.65 (dd, J = 15.6, 5.9 Hz, 1H, CH=CH), 5.15-5.04 (m, 1H, -NH), 5.11 (s, 2H, CH₂-Ph), 4.32-4.20 (br m, 1H, CH-N), 3.84-3.76 (m, 1H, CH-OH), 3.72 (dd, J = 10.1, 4.1 Hz, 1H, CH₂-OTBS), 3.67-3.58 (m, 2H, CH_2 -OTBS, CH-OTBS), 1.10 (d, J = 5.8 Hz, 3H, CH₃), 0.91 (s, 9H, ^tBu-Si), 0.89 (s, 9H, ^tBu-Si), 0.09 (s, 3H, $Si(CH_3)_2$, 0.08 (s, 3H, $Si(CH_3)_2$), 0.05 (s, 6H, $Si(CH_3)_2$); ¹³C NMR (125 MHz, CDCl₃): δ 155.7, 136.5, 131.2, 130.9, 130.4, 128.4, 128.0, 76.5, 71.9, 66.6, 65.2, 53.7, 25.7, 25.8, 19.8, 18.2, 17.9, -4.2, -4.8, -5.4; MS (ESI): *m/z* 524 (M+H)⁺; HRMS (ESI): m/z calcd for C₂₇H₅₀NO₅Si₂ (M+H)⁺, 524.3222; found 524.3228.

Benzyl (6*S*,9*R*,10*R*,*E*)-9-(methoxymethoxy)-2,2,3,3,10,12,12,13,13-nonamethyl-4,11-dioxa-3,12-

disilatetradec-7-en-6-ylcarbamate (13): To the compound 12 (2 g, 3.82 mmol) in dry dichloromethane (40 mL) was added iPr₂EtN (1.98 mL, 11.47 mmol) and methoxymethyl chloride chloride (MOMCl) (0.92 mL, 11.47 mmol) at 0 °C. The solution was stirred at rt for 12 h and quenched by the addition of saturated aqueous NaHCO₃ solution (30 mL). The aqueous layer was separated and extracted with DCM (2 x 25 mL). The combined organic layers were dried over Na₂SO₄ and volatiles were removed under reduced pressure. The crude product was purified by column chromatography (neutral alumina, hexanes/EtOAc 9:1) to get compound 13 as a colourless liquid (1.9 g, 89%). $R_f = 0.4$ (petroleum ether : EtOAc = 9:1); $[\alpha]_D^{20} =$ -15.4 (c 1.00, CHCl₃); IR (neat): v_{max} 3446, 2954, 2857, 1725, 1254, 1106, 836 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.27 (m, 5H, Ph), 5.71 (dd, J = 15.8, 5.6 Hz, 1H, CH=CH), 5.57 (dd, J = 15.7, 6.9 Hz, 1H, CH=CH), 5.16-5.03 (m, 3H, CH₂-Ph, -NH), 4.64 (A of AB q, J = 6.5 Hz, 1H, OCH₂O), 4.57 (B of AB q, J = 6.6 Hz, 1H, OCH₂O), 4.35-4.21 (m, 1H, CH–N), 3.89 (t, J = 6.4 Hz, 1H, CHOMOM), 3.85-3.76 (m, 1H, CH–OTBS), 3.70 (dd, J = 10.0, 4.3 Hz, 1H, CH_2 -OTBS), 3.64 (dd, J = 9.6, 3.5 Hz, 1H, CH_2 -OTBS), 3.34 (s, 3H, OCH₃), 1.06 (d, J = 6.1Hz, 3H, CH₃), 0.89 (s, 9H, ^tBu-Si), 0.87 (s, 9H, ^tBu-Si), 0.06 (s, 6H, Si(CH₃)₂), 0.03 (s, 3H, Si(CH₃)₂), 0.03 (s, 3H, Si(CH₃)₂). ¹³C NMR (100 MHz, CDCl₃): δ 155.7, 136.5, 131.8, 128.5, 128.4, 128.0, 94.4, 80.3, 70.4, 66.6, 65.2, 55.3, 53.7, 25.8, 25.8, 19.4, 18.2, 18.1, -4.6, -4.7, -5.5, -5.5; MS (ESI): m/z 590 $(M+Na)^+$; HRMS (ESI): m/z calcd for $C_{29}H_{53}NO_6Si_2Na$ (M+ Na)⁺, 590.3303; found 590.3304.

Benzyl (5*R*,8*S*,*E*)-5-((*R*)-1-hydroxyethyl)-11,11,12,12tetramethyl-2,4,10-trioxa-11-silatridec-6-en-8-ylcarbamate (14): To a stirred solution of 13 (1.9 g, 3.35 mmol) in CH₃CN (20 mL) at 0 $^{\circ}$ C was added HF (40% in water, 0.29 mL, 6.70 mmol) drop wise and allowed to rt over 30 min. After completion of the reaction, saturated aqueous NaHCO₃ (20 mL) was added dropwise and the aqueous layer was extracted with EtOAc (2 x 25 mL). The combined organic extracts were washed with brine (20 mL), dried over Na₂SO₄ and evaporated under reduced pressure. To the residue in DCM (30 mL) was Published on 03 November 2015. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 03/11/2015 17:58:40

added imidazole (296 mg, 4.35 mmol) and t-BuMe₂SiCl (502 mg, 3.35 mmol) at 0 °C and warmed to rt. The reaction mixture was diluted with water (20 mL) at the point all the starting materials consumed and extracted with DCM (2 x 20 mL). The combined organic extracts were washed with brine (20 mL), dried over Na₂SO₄ and evaporated. Flash chromatography of the residue over neutral alumina (hexanes/EtOAc 7:3), gave 14 (1.23 g, 81%) as a colorless oil. $R_f = 0.3$ (petroleum ether : EtOAc = 7:3); $[\alpha]_D^{20} = -46.2$ (c 1.70, CHCl₃); IR (neat): v_{max} 3445, 3332, 2953, 2931, 1716, 1255, 1102, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.30 (m, 5H, Ph), 5.75 (dd, J = 15.7, 5.5 Hz, 1H, CH=CH), 5.49 (dd, *J* = 15.6, 8.0 Hz, 1H, CH=CH), 5.11 (s, 2H, CH₂-Ph), 4.70 (d, J = 6.1 Hz, 1H, OCH₂O), 4.55 (d, J = 6.4 Hz, 1H, OCH₂O), 4.28 (m, 1H, CH–N), 3.79 (t, J =7.6 Hz, 1H, CHOMOM), 3.74-3.62 (m, 3H, CH2-OTBS, CH-OH), 3.38 (s, 3H, OCH₃), 2.03 (br s, 1H, OH), 1.12 (d, J = 6.0 Hz, 3H, CH₃), 0.88 (s, 9H, ^tBu-Si), 0.04 (s, 3H, Si(CH₃)₂), 0.04 (s, 3H, Si(CH₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 136.4, 134.0, 128.5, 128.1, 93.9, 81.7, 69.5, 66.7, 65.0, 55.6, 53.7, 25.8, 18.4, 18.2, -5.5, -5.5; MS (ESI): *m*/*z* 476 (M+Na)⁺; HRMS (ESI): m/z calcd for $C_{23}H_{39}NO_6SiNa$ (M+Na)⁺, 476.2438; found 476.2445.

Benzyl ((5R,8S,E)-5-acetyl-11,11,12,12-tetramethyl-2,4,10trioxa-11-silatridec-6-en-8-yl)carbamate (14-I): 2-Iodoxybenzoic acid (IBX) (185 mg, 0.66 mmol) was taken in a round bottomed flask, added DMSO (0.5 mL) and stirred at rt under nitrogen atmosphere for 10 min to get a clear solution. To the clear solution, at the same temperature, added compound 14 (200 mg, 0.44 mmol) in EtOAc (2 mL) dropwise. The reaction mixture was heated to 70 °C and stirred for 30 min. After completion of reaction, the mixture was diluted with EtOAc (10 mL). The precipitate was filtered and washed with EtOAc (10 mL). The filtrate was washed with aqueous saturated NaHCO₃ solution (15 mL), brine (15 mL), dried over Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash column chromatography (neutral alumina, hexanes/EtOAc 8:2) to yield ketone 14-I as the product (175 mg, 88%). $R_f = 0.7$ (petroleum ether : EtOAc = 7:3); $[\alpha]_D^{20} =$ -28.8 (c 1.57, CHCl₃); IR (neat): v_{max} 3441, 2940, 1716, 766 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.38-7.29 (m, 5H, Ph), 5.91 (dd, J = 15.6, 5.5 Hz, 1H,CH=CH), 5.61 (dd, J = 15.6, 6.6 Hz, 1H, CH=CH), 5.15-5.07 (m, 1H, -NH), 5.09 (s, 2H, CH_2 -Ph), 4.68 (d, J = 6.4 Hz, 1H, OC H_2 O), 4.61 (d, J = 6.6Hz, 1H, OCH₂O), 4.52 (d, J = 6.6 Hz, 1H, CHOMOM), 4.34-4.26 (br m, 1H, CH-N), 3.70 (dd, J = 10.0, 4.3 Hz, 1H, CH_2 -OTBS), 3.65 (d, J = 7.2 Hz, 1H, CH_2 -OTBS), 3.35 (s, 3H, OCH₃), 2.15 (s, 3H, COCH₃), 0.86 (s, 9H, ^tBu-Si), 0.03 (s, 3H, Si(CH₃)₂), 0.02 (s, 3H, Si(CH₃)₂); ¹³C NMR (125 MHz, CDCl₃) & 206.1, 155.7, 136.3, 133.9, 128.4, 128.1, 125.7, 94.7, 82.0, 66.8, 64.9, 55.8, 53.6, 25.7, 18.2, -5.5; MS (ESI): m/z 452 $(M+H)^+$; HRMS (ESI): m/z calcd for $C_{23}H_{37}NO_6SiNa$ (M+ Na)⁺, 474.2282; found 474.2286.

tert-Butyl (5*R*,8*S*)-5-((*R*)-1-hydroxyethyl)-11,11,12,12tetramethyl-2,4,10-trioxa-11-silatridecan-8-ylcarbamate

(15): 10% Pd on C (5 mol %) was added to a degassed solution of the compound 14 (1.0 g, 2.20 mmol) in EtOH (0.5 M) and

the heterogeneous mixture was stirred for 12 h under hydrogen atmosphere at rt. The reaction mixture was filtered over celite, the volatiles removed under reduced pressure. To the residue and triethyl amine (0.62 ml, 4.41 mmol) in THF (20 ml), ditert-butyl-dicarbonate (Boc2O) (0.5 mL, 2.20 mmol) was added at 0 °C. The reaction mixture was warmed to rt and stirred for 4 h. The reaction mixture was diluted with water after the completion of reaction and extracted with EtOAc (2 x 20 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄ and concentrated under reduced pressure. Flash chromatography of the residue over neutral alumina (hexanes/EtOAc 7:3), gave 15 (817 mg, 88%) as a colorless oil. $R_f = 0.5$ (petroleum ether : EtOAc = 7:3); $[\alpha]_D^{20} = -19.5$ (c 1.00, CHCl₃); IR (neat): v_{max} 3451, 2955, 2932, 1709, 1103, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.71-4.66 (m, 2H, OCH₂O), 3.71-3.63 (m, 1H, CH-OH), 3.59-3.52 (m, 2H, CH₂-OTBS), 3.40 (s, 3H, OCH₃), 3.29-3.22 (m, 1H, CH-N), 3.05-3.14 (m, 1H, CHOMOM), 1.70-1.57 (m, 2H, CH₂-CH₂), 1.50-1.38 (m, 11H, ^{*t*}Bu in Boc, CH_2-CH_2), 1.13 (d, J = 6.4 Hz, 3H, CH₃), 0.87 (s, 9H, ^tBu-Si), 0.03 (s, 6H, Si(CH₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 97.4, 85.4, 79.0, 69.1, 64.6, 55.7, 52.0, 28.3, 27.7, 27.1, 25.8, 18.8, 18.2, -5.4; MS (ESI): m/z 444 (M+Na)⁺; HRMS (ESI): m/z calcd for C₂₀H₄₄NO₆Si (M+H)⁺, 422.2751; found 422.2761.

(2*R*,3*R*,6*S*)-6-(*tert*-Butoxycarbonylamino)-7-(*tert*-butyldimethylsilyloxy)-3-(methoxymethoxy)heptan-2-yl

methanesulfonate (16): To a stirred solution of compound 13 (1.0 g, 2.37 mmol), triethyl amine (0.66 mL, 4.75 mmol) in dichloromethane (20 mL) at 0 °C, was added methane sulfonyl chloride (0.27 mL, 3.56 mmol) dropwise. The mixture was allowed to warm to rt and stirred for a further 1 hour. After completion of reaction, it was diluted with water (20 mL) and the aqueous layer was extracted with DCM (2 x 15 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄. Volatiles were removed under reduced pressure and the residue was purified by flash column chromatography (neutral alumina, hexanes/EtOAc 7:3) to yield pale yellow oil 16 as the product (1 g, 85%). $R_f = 0.6$ (petroleum ether : EtOAc = 7:3); $[\alpha]_D^{20} = -6.9$ (c 1.20, CHCl₃); IR (neat): v_{max} 3392, 2933, 1712, 1361, 1176, 837 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.87-4.59 (m, 3H, OCH₂O, CHOMs), 3.69-3.49 (m, 4H, CH2-OTBS, CH-N, CHOMOM), 3.39 (s, 3H, OCH3), 3.02 (s, 3H, CH₃ in Ms), 1.80-1.60 (m, 2H, CH₂-CH₂), 1.56-1.47 (m, 2H, CH₂-CH₂), 1.47-1.38 (m, 12H, tBu in Boc, CH₃), 0.88 (s, 9H, tBu-Si), 0.04 (s, 6H, Si(CH₃)₂). ¹³C NMR (100 MHz, $CDCl_3$) δ 155.6, 96.9, 79.6, 79.2, 79.1, 64.8, 55.9, 51.9, 38.4, 28.3, 26.9, 26.6, 25.8, 18.2, 16.8, -5.4; MS (ESI): m/z 522 $(M+Na)^+$; HRMS (ESI): m/z calcd for $C_{21}H_{45}NO_8SSiNa$ (M+Na)⁺, 522.2527; found 522.2560.

(2*S*,3*R*,6*S*)-*tert*-Butyl 6-((*tert*-butyldimethylsilyloxy)methyl)-3-(methoxymethoxy)-2-methylpiperidine-1-carboxylate

(17): The mesylated compound 16 (650 mg, 1.30 mmol) was dissolved in dry THF (20 mL) under nitrogen atmosphere and added potassium *tert*-butoxide (1.16 g, 10.4 mmol) dropwise as a solution in dry THF (10 mL). The reaction was stirred at rt for 2 h then quenched with water (30 mL) and extracted with

Chemistry Accepted Manus

ganic & Biomolecular (

EtOAc (3 x 20 mL). The combined organic layers were washed with brine (1 x 20 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography (neutral alumina, 2% EtOAc in hexanes) to give 17 (425 mg, 81%) and 17a (37 mg, 7%) as a separable mixture (92:8) of diastereomers. $R_f = 0.4$ (petroleum ether : EtOAc = 9:1); **17:** $[\alpha]_D^{20} = -8.7$ (*c* 0.90, CHCl₃); IR (neat): v_{max} 2954, 2932, 1691, 1367, 1099, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.70-4.61 (m, 2H, OCH₂O), 4.25 (q, J = 6.8 Hz, 1H, 2-CH-N), 4.17-4.06 (m, 1H, 6-CH-N), 3.61-3.50 (m, 2H, CH₂-OTBS, CHOMOM), 3.46 (dd, J = 9.3, 4.7 Hz, 1H, CH₂-OTBS), 3.36 (s, 3H, OCH₃), 1.97-1.56 (m, 4H, CH_2 - CH_2), 1.45 (s, 9H, ^tBu in Boc), 1.07 (d, J = 7.1 Hz, 3H, CH_3 , 0.89 (s, 9H, tBu-Si), 0.06 (s, 3H, Si(CH_3)₂), 0.05 (s, 3H, Si(CH₃)₂). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 94.7, 79.3, 73.5, 63.1, 55.3, 51.2, 50.0, 28.4, 25.8, 19.6, 19.3, 18.2, 17.3, -5.2, -5.4; MS (ESI): *m/z* 426 (M+Na)⁺; HRMS (ESI): *m/z* calcd for C₂₀H₄₂NO₅Si (M+H)⁺, 404.2827; found 404.2858.

17a: $[\alpha]_D^{20} = -26.2$ (*c* 1.01, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 4.62 (q, *J* = 7.0 Hz, 2H, OCH₂O), 4.11 (qd, *J* = 7.0, 3.1 Hz, 1H, 2-CH–N), 3.87 (t, *J* = 9.5 Hz, 1H, CH₂–OTBS), 3.75 (dd, *J* = 9.6, 4.2 Hz, 1H, CH₂–OTBS), 3.69-3.55 (m, 2H, 6-CH–N, CHOMOM), 3.34 (s, 3H, OCH₃), 2.00-1.83 (m, 2H, CH₂–CH₂), 1.81-1.69 (m, 2H, CH₂–CH₂), 1.44 (s, 9H, *t*Bu in Boc), 1.22 (d, *J* = 7.1 Hz, 3H, CH₃), 0.88 (s, 9H, ^{*t*}Bu-Si), 0.04 (s, 6H, Si(CH₃)₂). ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 94.5, 79.2, 73.9, 62.9, 55.3, 53.3, 51.3, 28.4, 25.9, 22.9, 20.2, 18.2, 17.9, -5.2, -5.3.

6-(hydroxymethyl)-3-(methoxy-(2*S*,3*R*,6*S*)-*tert*-Butyl methoxy)-2-methylpiperidine-1-carboxylate (4): HF (40% in water, 0.04 mL, 0.99 mmol) was added to a stirred solution of 17 (400 mg, 0.99 mmol) in CH₃CN (10 mL) at 0 °C. The reaction mixture was allowed to warm to rt slowly over 30 min and added saturated aqueous NaHCO₃ (10 mL) dropwise. The reaction mixture was extracted with EtOAc (2 x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure. Flash chromatography of the residue over neutral alumina (hexanes/EtOAc 1:1) gave 4 (229 mg, 80%) as a colorless oil. $R_f = 0.2$ (petroleum ether : EtOAc = 6:4); $[\alpha]_D^{20} = -5.4$ (c 1.10, CHCl₃); IR (neat): v_{max} 3444, 2973, 2936, 1667, 1686, 1369, 1042 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 4.67 (s, 2H, OCH_2O), 4.29 (q, J = 6.9 Hz, 2H, CH-N), 3.68-3.52 (m, 3H, CH2-OH, CHOMOM), 3.37 (s, 3H, OCH3), 2.06-1.94 (m, 1H, CH2-CH2), 1.84-1.49 (m, 3H, CH2-CH2), 1.46 (s, 9H, tBu in Boc), 1.15 (d, J = 7.2 Hz, 3H, CH_3). ¹³C NMR (75 MHz, CDCl₃) & 156.9, 94.9, 80.0, 73.5, 65.6, 55.4, 51.1, 50.5, 28.4, 19.7, 19.5, 18.4; MS (ESI): *m/z* 312 (M+Na)⁺; HRMS (ESI): m/z calcd for C₁₄H₂₇NO₅Na (M+Na)⁺, 312.1781; found 312.1808.

$\texttt{5-}((2E,\!4E)\text{-}Nona\text{-}2,\!4\text{-}dien\text{-}1\text{-}ylthio)\text{-}1\text{-}phenyl\text{-}1H\text{-}tetrazole$

(18): To a solution of (2E,4E)-nona-2,4-dien-1-ol¹² 5 (500 mg, 3.57 mmol) in THF (30 mL) was added PPh₃ (1.12 g, 4.28 mmol) and 1-phenyl-1*H*-tetrazole-5-thiol (762 mg, 4.28 mmol). The reaction mixture was cooled to 0 °C, DIAD (0.9 mL, 4.64 mmol) was slowly added and stirred at room temperature for 1

h. After completion of the reaction, solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography (silica gel, hexanes/EtOAc 9:1) to give **18** (1.01 g, 94%) as a colorless oil. $R_f = 0.4$ (petroleum ether : EtOAc = 9:1); ¹H NMR (300 MHz, CDCl₃) δ 7.68-7.43 (m, 5H, Ar), 6.31 (dd, J = 15.0, 10.4 Hz, 1H, 3-CH), 5.97 (dd, J = 15.2, 10.4 Hz, 1H, 4-CH), 5.81-5.55 (m, 2H, 2-CH, 5-CH), 4.06 (d, J= 7.6 Hz, 2H, 1-CH₂), 2.05 (q, J = 6.7 Hz, 2H, 6-CH₂), 1.43-1.20 (m, 4H, CH₂-CH₂), 0.87 (t, J = 7.0 Hz, 3H, -CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 153.8, 137.0, 135.8, 133.6, 130.0, 129.6, 128.7, 123.7, 122.8, 35.7, 32.2, 31.1, 22.1, 13.8; MS (ESI): m/z 323 (M+Na)⁺; HRMS (ESI): m/z calcd for C₁₆H₂₁N₄S (M+H)⁺, 301.1481; found 301.1482.

5-((2E,4E)-Nona-2,4-dien-1-ylsulfonyl)-1-phenyl-1H-

tetrazole (3): To the solid $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ (1.03 g, 0.834 mmol) in a round bottemed flask at 0 °C was added aq. H₂O₂ (30% w/w, 4 mL) and stirred for 15 min at 0 °C before it was added to a solution of 18 (0.5 g, 1.66 mmol) in EtOH (17 mL) at 0°C. The mixture was allowed to warm up to room temperature and stirred overnight. After completion of the reaction, it was diluted with water (20 mL) and extracted with EtOAc (2 x 20 mL). The combined organic extracts were washed with saturated aqueous Na2S2O3 (20 mL), brine (20 mL), dried over Na2SO4 and concentrated under reduced pressure. Flash column chromatography of the residue (silica gel, hexanes/EtOAc 9:1) gave 3 (453 mg, 82 %) as a colorless oil. $R_f = 0.4$ (petroleum ether : EtOAc = 9:1); IR (neat): v_{max} 2958, 2930, 2871, 1723, 1498, 1349, 1153, 763 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.69-7.50 (m, 5H, Ar), 6.35 (dd, J = 15.2, 10.5 Hz, 1H, 3-CH), 6.01 (dd, J = 15.2, 10.5 Hz, 1H, 4-CH), 5.86-5.78 (m, 1H, 2-CH), 5.48 (dt, J = 15.3, 7.6 Hz, 1H, 5-CH), 4.41 (d, J = 7.6 Hz, 2H, 1-CH₂), 2.09 (q, J = 7.0 Hz, 2H, 6- CH_2), 1.40-1.24 (m, 4H, CH_2 - CH_2), 0.89 (t, J = 7.2 Hz, 3H, $-CH_3$; ¹³C NMR (125 MHz, CDCl₃) δ 153.0, 142.4, 139.9, 132.9, 131.3, 129.5, 128.3, 125.2, 111.8, 60.0, 32.2, 30.9, 22.1, 13.8; MS (ESI): *m/z* 355 (M+Na)⁺; HRMS (ESI): *m/z* calcd for C₁₆H₂₁N₄O₂S (M+H)⁺, 333.1380; found 333.1404.

(2*S*,3*R*,6*S*)-*tert*-Butyl 6-((1E,3E,5E)-deca-1,3,5-trienyl)-3-(methoxymethoxy)-2-methylpiperidine-1-carboxylate (19): A round bottomed flask charged with 2-iodoxybenzoic acid (IBX) (116 mg, 0.41 mmol), DMSO (0.2 mL) was stirred under nitrogen atmosphere for 10 min at rt to get a clear solution. To this solution was then added compound 4 (60 mg, 0.20 mmol) in EtOAc (1 mL) dropwise at room temperature. The reaction mixture was heated to 70 °C and stirred for 30 min. After completion of the reaction, the reaction mixture was cooled to room temperature and diluting with EtOAc (5 mL). The precipitate was filtered and washed with EtOAc (5 mL). The filtrate was washed with aqueous saturated NaHCO3 solution (10 mL), brine (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure to get aldehyde which was used for the next step without further purification.

To a solution of sulfone **3** (82 mg, 0.24 mmol) and 18-crown-6 (64 mg, 0.24 mmol) in dry DME (5 mL) was added dropwise KHMDS (1 M in THF, 0.2 mL, 0.2 mmol) at -78 °C under nitrogen atmosphere. After being stirred for 30 min, a solution

mistry Accepted Manuscrip

UD UD

danic & Biomolecular (

Journal Name

of above prepared aldehyde in dry DME (3 mL) was added slowly to the reaction mixture and stirred for 2 h at -78 °C before warming to rt and stirred over night. The reaction mixture was poured into aqueous saturated NH₄Cl solution (5 mL) and extracted with ethyl acetate (2 x 5 mL). The combined organic layer was washed with brine (5 mL), dried over Na₂SO₄, and solvent was removed under reduced pressure. Flash chromatography of the crude over neutral alumina (5% EtOAc in hexanes) gave 19 (58 mg, 72%) as a colorless oil. R_f = 0.3 (petroleum ether : EtOAc = 9:1); $[\alpha]_D^{20} = -18.6$ (*c* =1.30, CHCl₃); IR (neat): v_{max} 2930, 1688, 1365, 1038 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.20-5.98 (m, 4H, =CH-CH=CH-CH=), 5.76-5.62 (m, 2H, $-CH_2-CH=$, =CH-CHN), 4.77 (br t, J = 5.1Hz, 1H, 6-CH–N), 4.66 (q, J = 7.0 Hz, 2H, OCH₂O), 4.31 (q, J = 7.0 Hz, 1H, 2-CH-N), 3.64-3.55 (m, 1H, CHOMOM), 3.36 (s, 3H, OCH₃), 2.19-2.00 (m, 2H, =CH-CH₂), 1.90-1.54 (m, 3H, CH₂-CH₂), 1.45 (s, 9H, ^tBu in Boc), 1.50-1.22 (m, 5H, CH_2 - CH_2), 1.11 (d, J = 7.2 Hz, 3H, CH- CH_3), 0.88 (t, J = 7.0Hz, 3H, CH₂-CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 155.4, 135.4, 134.7, 132.5, 130.3, 130.1, 130.1, 94.7, 79.4, 73.3, 55.3, 50.5, 50.4, 32.4, 31.4, 28.4, 22.1, 21.6, 19.8, 19.3, 13.8; MS (ESI): m/z 416 (M+Na)⁺; HRMS (ESI): m/z calcd for C₂₃H₄₀NO₄ (M+H)⁺, 394.2952; found 394.2976.

Microcosamine A (2a): To the compound 19 (100 mg, 2.18 mmol) was added 3N HCl in methanol (2 mL) and stirred for 12 h at rt. After completion of the reaction, methanol was evaporated to dryness under reduced pressure and 6N HCl (5 mL) was added. The aqueous layer was washed with diethyl ether (2 x 10 mL), basified with 2 N NaOH solution and extracted with diethyl ether (3 x 15 mL), dried over Na₂SO₄ and concentrated under reduced pressure to furnish the desired compound 2a (49 mg, 78%) as a pale yellow solid. . Mp: 107-109 °C; $R_f = 0.2$ (EtOAc : MeOH = 95:5); $[\alpha]_D^{20} = +5.6$ (c 1.00, CH₃OH); IR (neat): v_{max} 3445, 2924, 2854, 1660, 1127, 473 cm⁻ ¹; ¹H NMR (500 MHz, CDCl₃) δ 6.22-6.11 (m, 2H, =CH-CH=CH-CH=),6.11-5.98 2H, (m, =CH-CH=CH-CH=), 5.73-5.66 (m, 1H, -CH₂-CH=), 5.60 (dd, J = 15.2, 7.1 Hz, 1H, =CH-CHN), 3.23-3.14 (m, 2H, 6-CH-N, CHOH), 2.57-2.50 (m, 1H, 2-CH-N), 2.25 (br s, 1H, OH), 2.11-2.04 (m, 3H, =CH-CH₂, CH₂-CH₂), 1.77-1.71 (m, 1H, CH_2 - CH_2), 1.40-1.28 (m, 6H, CH_2 - CH_2), 1.20 (d, J = 6.1Hz, 3H, CH–CH₃), 0.89 (t, J = 7.1 Hz, 3H, CH₂–CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 135.6, 135.0, 132.9, 130.4, 130.1, 129.8, 73.6, 58.6, 58.3, 33.9, 32.4, 31.9, 31.4, 22.2, 18.9, 13.9; MS (ESI): m/z 250 (M+H)⁺; HRMS (ESI): m/z calcd for C₁₆H₂₈NO (M+H)⁺, 250.2165; found 250.2180.

Acknowledgements

The authors thank Council of Scientific and Industrial Research (CSIR)-New Delhi for the award of research fellowship to BL and KW, and for financial support as part of XII-five year plan project under title ORIGIN (CSC-0108).

Notes and references

^aDivision of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India 500 007 E-mail: <u>rajireddy@iict.res.in</u> ^bCentre for NMR & Structural Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad, 500 007, India

†Electronic Supplementary Information (ESI) available: See DOI: 10.1039/b000000x/

- 1. For selected reviews of piperidine alkaloids, see; (a) Makabe, H. Stud. Nat. Prod. Chem. 2014, 42, 353-371; (b) Ojima, I.; Iula, D. M. Alkaloids: Chemical and Biological Perspectives; Elsevier: Oxford, UK, 1999; Vol. 13, p 371-412; (c) Plunkett, O.; Sainsbury, M. In Rodd's Chemistry of Carbon Compounds, 2nd ed.; Sainsbury, M., Ed.; Elsevier: Amsterdam, 1998, Part F/Part G (partial), pp 365-421; (d) Schneider, M. J. Alkaloids: Chemical and Biological Perspectives; Elsevier: Oxford, UK, 1996; Vol. 10, p 155-299; (e) Angle, S. R.; Breitenbucher, J. G. Stud. Nat. Prod. Chem. 1995, 16, 453-502; (f) Strunz, G. M.; Findlay, J. A. In The Alkaloids; Brossi, A., Ed.; Academic: New York, NY, 1985, Vol. 26, pp 89-183; (g) Fodor, G. B.; Colasanti, B. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, NY, 1985, Vol. 3, pp 1-90; (h) Jones, T. H.; Blum, M. S. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, 1983; Vol. 1, Chapter 2, pp. 33-84.
- 2 Representative references, for isolation, see: (a) Viegas Jr., C.; Bolzani, V. da S.; Furlan, M.; Barreiro, E. J.; Young, M. C. M.; Tomazela, D.; Eberlin, M. N. J. Nat. Prod. 2004, 67, 908-910; (b) Kusano, G.; Orihara, S.; Tsukamoto, D.; Shibano, M.; Coskun, M.; Guvenc, A.; Erdurak, C. S. Chem. Pharm. Bull. 2002, 50, 185-192; (c) Highet, R. J. J. Org. Chem. 1964, 29, 471-474; (d) Rice, W. Y.; Coke, J. L. J. Org. Chem. 1966, 31, 1010-1012; For activity, see: (e) Sansores-Peraza, P.; Rosado-allado, M.; Brito-Loeza, W.; Mena-Rejon, G. J.; Quijano, L. Fitoterapia 2000, 71, 690-692; (f) Astudillo, S. L.; Jurgens, S. K.; SchmedaHirschmann, G.; Griffith, G. A.; Holt, D. H.; Jenkins, P. R. Planta Med. 1999, 65, 161-162; (g) Cook, G. R.; Beholz, L. G.; Stille, J. R. J. Org. Chem. 1994, 59, 3575-3584; (h) Aguinaldo, A. M.; Read, R. W. Phytochemistry 1990, 29, 2309-2313; (i) Ahmad, A.; Khan, K. A.; Ahmad, V. U.; Qazi, S. Planta Med. 1986, 4, 285-288; (j) Fodor, G. B.; Colasanti, B. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, 1985; Vol. 3, Chapter 1, pp. 1-90; (k) Fodor, G.; Fumeaux, J.-P.; Sankaran, V. Synthesis 1972, 464-472; (1) Bourinet, P.; Quevauviller, A. Compt. Rend. Soc. Biol. 1968, 162, 1138-1140; (m) Bourinet, P.; Quevauviller, A. Ann. Pharm. Fr. 1968, 26, 787-796.
- Selected recent references for synthesis, see: (a) Pijl, F. V. D.; Delft,
 F. L. V.; Rutjes, F. P. J. T. *Eur. J. Org. Chem.* 2015, 4811–4829; (b)
 Xiao, K.-J.; Wang, Y.; Huang, Y.-H.; Wang, X.-G.; Huang, P.-Q. *J. Org. Chem.* 2013, 78, 8305–8311; (c) Wijdeven, M. A.; Willemsen,
 J.; Rutjes, F. P. J. T. *Eur. J. Org. Chem.* 2010, 2831–2844; (d)

Koulocheri, S. D.; Pitsinos, E. N.; Haroutounian, S. A. Curr. Org. Chem. 2008, 12, 1454–1467; (e) Liu, L.-X.; Ruan, Y.-P.; Guo, Z.-Q.; Huang, P.-Q. J. Org. Chem. 2004, 69, 6001; (f) Maa, D.; Ma, N. Tetrahedron Lett. 2003, 44, 3963–3965; (g) Singh, R.; Ghosh, S. K. Tetrahedron Lett. 2002, 43, 7711–7715; (h) Zhai, H.; Parvez, M.; Back, T. G. J. Org. Chem. 2007, 72, 3853–3858; (i) Kim, G.; Kim, N. Tetrahedron Lett. 2007, 48, 4481–4483; (j) Yu, S.; Pu, X.; Cheng, T.; Wang, R.; Ma, D. Org. Lett. 2006, 8, 3179–3182; (k) Pu, X.; Ma, D. J. Org. Chem. 2006, 71, 6562–6572; (l) Snider, B. B.; Neubert, B. J. Org. Lett. 2005, 7, 2715–2718; (m) Lofstedt, J.; Pettersson-Fasth, H.; Backvall, J.-E. Tetrahedron 2000, 56, 2225–2230; (n) Toyooka, N.; Yoshida, Y.; Yotsui, Y.; Momose, T. J. Org. Chem. 1999, 64, 4914–4919.

- (a) Lindquist, N.; Shigematsu, N.; Pannell, L. J. Nat. Prod. 2000, 63, 1290–1291;
 (b) McCrea-Hendrick, M.; Nichols, C. J. Synthetic Communications, 2009, 39, 3611–3620.
- Feng, S. X.; Lin, L. D.; Xu, H. H.; Wei, X. Y. J. Asian Nat. Prod. Res. 2008, 10, 1155–1158.
- Still, P. C.; Yi, B.; Cestari, T. F. G.; Pan, L.; Pavlovicz, R. E.; Chai, H. B.; Ninh, T. N.; Li, C.; Soejarto, D. D.; McKay, D. B.; Kinghorn, A. D. J. Nat. Prod. 2013, 76, 243–249.
- Saitoh, Y.; Moriyama, Y.; Hirota, H.; Takahashi, T.; Khuong-Huu, Q. Bull. Chem. Soc. Jpn. 1981, 54, 488–.
- (a) Reddy, C. R.; Reddy, M. D.; Dilipkumar, U. *Eur. J. Org. Chem.* 2014, 6310–6313; (b) Reddy, C. R.; Latha, B.; Rao, N. N. *Tetrahedron* 2012, 68, 145–151; (c) Reddy, C. R.; Latha, B. *Tetrahedron: Asymmetry* 2011, 22, 1849–1854.
- (a) L. J. Dorr, In *Flora of China*, Vol. 12; Z. Y. Wu, P. H. Raven, D. Y. Hong (Eds), Science Press, Beijing, and Missouri Botanical Garden Press: St. Louis, MO, 2007, 1753, 251–258; (b) T. Ya, M. G. Gilbert, L. J. Dorr, *Tiliaceae*, eFlora China 12, 2007; (c) State Administration of Traditional Chinese Medicine, *Chinese Herbal Medicine*, Vol. 5, (Shanghai Science and Technology Press, Shanghai) 1999, 324–326.
- (a) J. Luo, L. Zhang, M. F. Roberts, J. D. Phillipson, *Acta Pharm. Sin.* 2009, 44, 150–153; (b) K. A. N. P. Bandara, V. Kumar, U. Jacobsson, L.-P. Molleyres, *Phytochemistry* 2000, 54, 29–32; (c) A.M. Aguinaldo, R.W. Read, *Phytochemistry* 1990, 29, 2309–2313.
- (a) Keck, G. E.; Savin, K. A.; Weglarz, M. A. J. Org. Chem. 1995, 60, 3194–3204; (b) Kocienski, P. J. Phosphorus and Sulfur 1985, 24, 97–127; (c) Julia, M.; Launay, J.; Verpeaux, S.; Verpeaux, J. Tetrahedron Lett. 1982, 23, 2465–2472; (d) Kocienski, P. J.; Lythgoe, B.; Ruston, S. J. Chem. Soc., Perkin Trans. 1 1978,

829-834; (e) Julia, M.; Paris, J. M. Tetrahedron Lett. 1973, 14, 4833-4836.

- Experimental procedures for preparation of the conjugated alcohol 5 from 1-octyne 8 were described in the supplementary information (Scheme S1). For reference, see: (a) Rychnovsky, S. D.; Kim, J. J. Org. Chem. 1994, 59, 2659–2660; (b) Kazmaier, U. Tetrahedron 1998, 54, 1491–1496.
- 13. (a) Paterson, I.; Yeung, K. S.; Smaill, J. B. *Synlett*, **1993**, 774–776;
 (b) Wadsworth, W. S.; Emmons, W. D. *J. Am. Chem. Soc.* **1961**, *83*, 1733–1738; (c) Horner, L.; Hoffmann, H. M. R.; Wippel, H. G. *Ber.* **1958**, *91*, 61–63.
- 14. (a) Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454–5459; (b) Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226–2227.
- (a) Tamamura, H.; Koh, Y.; Ueda, S.; Sasaki, Y.; Yamasaki, T.; Aoki, M.; Maeda, K.; Watai, Y.; Arikuni, H.; Otaka, A.; Mitsuya, H.; Fujii, N. J. Med. Chem. 2003, 46, 1764–1768; (b) Jacobsen, E. J. et al., J. Med. Chem. 1999, 42, 1525–1536; (c) Konradi, A. W. et al., J. Am. Chem. Soc. 1994, 116, 1316–1323.
- Rodriquez, M.; Bruno, I.; Cini, E.; Marchetti, M.; Taddei, M.; Gomez-Paloma, L. J. Org. Chem. 2006, 71, 103–107.
- 17. Oxidation of compound 14 under IBX condition smoothly gave ketone 14-I in 88% yield. Further, hydrogenation of compound 14-I in the presence of H₂/Pd-C (10 wt%) in EtOH gave the complex mixture of diastereomeric products 14-II along with the starting material.

- (a) Biela, A.; Oulaïdi, F.; Gallienne, E.; Gorecki, M.; Frelek, J.; Martin, O. R. *Tetrahedron* **2013**, *69*, 3348–3354; (b) Chandrasekhar, B.; Rao, J. P.; Rao, B. V.; Naresh, P. *Tetrahedron Lett.* **2011**, *52*, 5921–5925; (c) Alegret, C.; Ginesta, X.; Riera, A. *Eur. J. Org. Chem.* **2008**, 1789–1796.
- 19. The 2D COSY and NOESY spectras of compouds **17** and **17a** were included in the supporting information.
- 20. Mitsunobu, O. Synthesis 1981, 1-28.
- Schultz, H. S.; Freyermuth, H. B.; Buc, S. R. J. Org. Chem. 1963, 28, 1140–1142.
- (a) Pospisil, J. *Tetrahedron Lett.* 2011, *52*, 2348–2352; (b) Nakatani,
 Y.; Oshita, J.; Ishigami, K.; Watandbe, H.; Kitahara, T. *Tetrahedron* 2006, *62*, 160–165; (c) Blakemorea, P. R.; Colea, W. J.; Kocienski,
 P. J.; Morley, A. *Synlett* 1998, 26–28.

Journal Name

rganic & Biomolecular Chemistry Accepted Manuscri

Graphical Abstract

Total synthesis of a piperidine alkaloid, Microcosamine A Chada Raji Reddy* and Bellamkonda Latha, Kamalkishore Warudikar and Kiran Kumar Singarapu

The first total synthesis of a novel piperidine alkaloid, microcosamine A, is achieved from commercially available *D*-serine, *D*-methyl lactate and 1-octyne as starting materials.