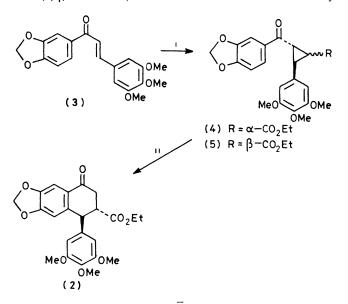
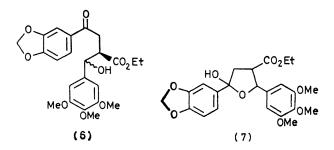

J.C.S. Снем. Сомм., 1980

An Improved Route to an Intermediate in Podophyllotoxin Synthesis

By WILLIAM S. MURPHY* and SOMPONG WATTANASIN (Department of Chemistry, University College, Cork, Ireland)


Summary Cyclopropanation of the chalcone (3) with dimethylsulphonium ethoxycarbonylmethylide affords a 1:1 mixture of the cyclopropanyl keto-ester epimers (4) and (5); both stannic chloride and boron trifluoride etherate in nitromethane catalyse the stereoselective cyclisation of this mixture to the tetralone (2), the known podophyllotoxin precursor, in 51% overall yield.

PODOPHYLLOTOXIN (1) and other related lignan lactones have received considerable attention as cancer chemotherapeutic agents.¹ Accordingly much effort has been expended


on new and improved syntheses of these lignans² Podophyllotoxin itself has been synthesised via the key intermediate, tetralone $(2)^{2b,c}$ One approach to (2), the Gensler^{2b} classical³ route, required separation of E and Z isomers of an intermediate Stobbe condensation product ^{2a} Most recently Kende and coworkers²⁰ used a novel aryl benzyl coupling reaction but eight steps were involved in the synthesis of (2)

Further to our studies on phenol cyclisation,⁴ the possibility arose that a one step tetralone synthesis could be effected by an acid catalysed reaction of aryl aroyl cyclopropanes The chalcone (3) was cyclopropanated using a modification of Trost's^{5a} and Kondo's^{5b} method The oily product (> 90%) was a separable (t l c) 1:1 mixture of (4) and (5) (see Scheme) The structure and stereochemistry

Reagents 1, Me₂S+CHCO₂Et, 11, SnCl₄, MeNO₂ SCHEME

of (4) and (5) were assigned by comparison (n m r) with known closely related aryl aroyl cyclopropanes 5a Cyclisation of (4) or (5) separately or as a mixture with $SnCl_4$ in benzene⁶ or in methylene chloride⁷ under a variety of conditions failed, and (2) was not formed Varying yields of (6) and (7) as diastereomeric mixtures, were obtained following basic (dilute NaOH)⁸ work-up However, when nitromethane⁹ was used as solvent (2) was the main product (53%) Boron trifluoride etherate in nitromethane (15 d, N_2 , room temp) was rather more effective and produced (2) (57%) and (6) (9%) but the diastereomer of (2) was not formed

The epimers (4) and (5) either separately or as a mixture gave the same product Thus, (4) with stannic chloride in nitromethane produced (2) (43%) and (6) (31%), whereas (5) under the same conditions yielded (2) (53%) and (6) (40%) Close examination (t l c) of (4) and (5) in stannic chloride-nitromethane solution at 0 °C, under N₂, showed that (5) epimerised to (4) within 10 min, before cyclisation commenced, $(4)\ {\rm did}$ not rearrange to $(5)\ ^{10}$

Since the tetralone (2) has been converted by others^{2b,c} into (1), this route to (2) constitutes a new total synthesis of podophyllotoxin

(Received, 19th September 1979, Com 1013)

1 S M Kupchan, J C Hemingway, and J R Knox, J Pharm Sci, 1965 54 659, P Dombernowsky, N I Nissen, and V Larsen,

⁴ S M Rupenan, J C Hemingway, and J K Knox, *J Pharm Sci*, 1965 54 659, P Dombernowsky, N I Nissen, and V Larsen, *Cancer Chemother Rep*, 1972, 56, 71, Brit Med J, 1972, 2, 747 ² (a) W J Gensler, C M Samour, S Y Wang, and F Johnson J Amer Chem Soc, 1960, 82, 1714 (b) W J Gensler and C D Gatsons, J Org Chem, 1966, 31, 4004, (c) A S Kende, L S Liebeskind, J E Mills, P S Rutledge, and D P Curran, J Amer Chem Soc 1977, 99, 7082, (d) E Brown, J -P Robin, and R Dhal, J C S Chem Comm, 1978, 556 ³ R D Haworth, T Richardson, and G Sheldrick, J Chem Soc, 1936, 1576 ⁴ W S Murphy and S Wattanasin, J C S Perkin I, in the press ⁵ (a) L Adames L Hoffman L and R M Treet L Org Chem 1070, 25, 1600 (b) H Norghy D Turamete S Maturaba and

⁵ (a) J Adams, L Hoffman, Jr, and B M Trost, J Org Chem 1970 35 1600, (b) H Nozaki, D Tunemoto, S Maturaba, and K Kondo, Tetrahedron, 1967, 23, 545

⁶ G Stork and M Marx, J Amer Chem Soc, 1969, 91, 2371, G Stork and M Gregson, *ibid*, p 2371, P A Grieco and R S Finkelhor, Tetrahedron Letters, 1974, 527

F E Ziegler and J A Schwartz, J Org Chem, 1977, 43, 983

⁸ C U Pittman and S P McManus, J Amer Chem Soc, 1969, 91, 5915 ⁹ W S Johnson, T-t Li, C A Harbert, W R Bartlett, T R Herrin, B Staskun, and D H Rich, J Amer Chem Soc, 1970, 92, 4461

¹⁰ O Itoh, N Yamamoto, H Fujimoto, and K Ichikawa, J C S Chem Comm, 1979, 101