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Visible-light-induced tandem radical addition-cyclization of 2-aryl 
phenyl isocyanides catalysed by recyclable covalent organic 
frameworks 
Shuyang Liu,a Wenna Pan,a Songxiao Wu,a Xiubin Bu,a Shigang Xin,a Jipan Yu, *c Hao Xu*b and 
Xiaobo Yang*a 

A visible-light-induced tandem radical addition-cyclization 
sequence via 2-aryl phenyl isocyanides as the starting material and 
two-dimensional covalent organic frameworks (2D-COFs) as the 
photocatalyst was developed, delivering multifarious 6-substituted 
phenanthridines in high yields. Benefited from the utilization of 
heterogeneous photocatalyst, this protocol features easy catalyst 
separation and excellent recyclability. Negligible loss of the 
catalytic activity was observed after multiple runs. High 
practicability of this protocol was further demonstrated by 
continuous flow experiments.

Covalent organic frameworks (COFs), which are prepared from 
readily available organic units, as a new type of highly ordered 
porous organic crystalline materials,1 find a variety of 
applications such as in catalysis2 and gas storage3 due to their 
large surface area and high stabilities. 2D-COFs, possessing 
extended π-conjugated frameworks and eclipsed stacking, 
provide ideal channels for exciton separation and charge 
percolation.4 Therefore, some well-designed 2D-COFs have 
proven photoactive and effective in heterogeneous 
photocatalytic chemical transformations.5 For example, the 
groups of Wang,6a, 6b Wu7 and Liu8a independently showed the 
remarkable photocatalytic activity of hydrazone or imine-based 
2D-COFs in visible-light-induced cross-dehydrogenative 
coupling (CDC) reactions. In 2018, Wang and co-workers 
illustrated the excellent photocatalytic performance of 
benzoxazole-based COFs in the visible-light-driven aerobic 

oxidation of arylboronic acids to phenols.6c Very recently, Liu 
reported a visible-light-driven reductive dehalogenation of 
phenacyl bromides and α-alkylation of aldehydes catalysed by 
photoactive imine-based 2D-COFs.8b These pioneering works 
have suggested the great potential catalytic ability of 2D-COFs 
in heterogeneous visible-light-induced organic transformations, 
but their applicable organic reaction scope are still limited to 
visible-light-driven CDC reaction and simple redox reaction. 
Thus, expanding the boundaries of these heterogeneous visible-
light-induced organic processes with 2D-COFs is highly needed. 

The phenanthridine derivatives widely occur in natural 
products, pharmaceuticals and materials.9 Consequently, a 
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wide range of efficient methods have been developed for the 
synthesis of these scaffolds in the past decades.10 Among them, 
visible-light-induced tandem radical addition-cyclization of  2-
aryl phenyl isocyanides is the most attractive and facile strategy 
because of its high efficiency and green features.11 Numerous 
homogeneous photosensitizers including [Ru] or [Ir] complex12 

and organic dyes13 have been reported to realize this 
photocatalytic transformation successfully (Scheme 1a), but the 
drawbacks of homogeneous photocatalysts, for example, 
difficult to separate and recycle impairs their practical 
applications,14 especially in industrialized synthesis. To address 
the above practicability issues and maximize the application 
potentials of 2D-COFs in photocatalytic organic 
transformations, in the continuation of our interests on 
photoinduced reactions and construction of N-heterocycles,15 
herein, we wish to report a heterogeneous visible-light-induced 
tandem radical addition-cyclization process from 2-aryl 
phenylisocyanides to synthesize diverse 6-substituted 
phenanthridines, in which hydrazone-based two-dimensional 
covalent organic frameworks (2D-COF-1) are utilized as the 
recyclable and reusable heterogeneous photosensitizers 
(Scheme 1b).
    At the outset of our study, the 2D-COF-1 was prepared by the 
condensation of 2,5-dimethoxyterephthalohydrazide with 
1,3,5-triformylbenzene according to a previously reported 

(a)

(b)

Figure 1 (a) Normalized UV/Vis absorption spectra of 2D-COF-1 (red line), 
[Acr+-Mes]ClO4

- (blue line), Eosin B (purple line) and Ir[(ppy)2(dtbpy)]PF6 
(green line). (b) Redox potentials (in V vs. SCE) of 2D-COF-1 and reported 
homogeneous photosensitizers.

Table 1 Visible-light-induced tandem radical addition-cyclization of 2-aryl phenyl 

isocyanides (1) with hydrazines (2) by using 2D-COF-1 as the photosensitizera,b

a1 (0.1 mmol), 2 (0.3 mmol), 2D-COF-1 (0.001 mmol, 4 mg), K2CO3 (0.3 mmol), DMSO (1 mL),
5 W Blue LEDs, under air for 20 h at room temperature. bIsolated yield. cHydrazine
hydrochlorides were used.
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protocol6 (Scheme S1, see details in ESI). Its structure, porosity 
and thermostability were confirmed and characterized by FT-IR 
spectra, 13C CP/MAS NMR spectra, powder X-ray diffraction, 
thermogravimetric analysis, nitrogen adsorption-desorption 
experiments and scanning electron microscopy respectively 
(Figure S1-S6, Table S1, see details in ESI). The results indicate 
that the synthesized 2D-COF-1 possesses high crystallinity and 
good thermostability which are the key features of the suitable 
heterogeneous catalyst. Subsequently, to verify the feasibility 
of the above visible-light-induced organic transformation with 
this 2D-COF, the comparison of UV/Vis absorption and redox 
potential between 2D-COF-1 and reported homogeneous 
photosensitizers16 were conducted (Figure 1, S7, S8), and the 
potential photocatalytic activity of this 2D-COF material was 
investigated by electrochemical impedance spectroscopy (EIS) 
and the photocurrent tests (Figure S9, S10, see details in ESI). 
All of these results demonstrate that it is qualified to be an 
effective photocatalyst in the tandem radical addition-
cyclization of 2-aryl phenyl isocyanides under blue LED light 
irradiation. 

Motivated by the remarkable suitability of 2D-COF-1 in 
photocatalytic reactions, we further investigated the 
application of 2D-COF-1 as the heterogeneous photosensitizers 
for the installation of various radical precursors onto 2-aryl 
phenyl isocyanides, delivering a wide range of 6-substituted 
phenanthridines. 
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Initially, we chose phenylhydrazine 2a as the phenyl radical 
precursor to synthesize 6-aryl phenanthridines under visible-
light irradiation in the presence of 10 mol% 2D-COF-1. To our 
delight, after the optimization and adjustments of the reaction 
conditions (Table S2, see details in ESI), the desired product 3aa 
was obtained in 77% yield. Then we examined the generality of 
this photocatalytic transformation by using different 2-aryl 
phenyl isocyanides and hydrazines. As shown in the Table 1, all 
of the selected 2-aryl phenyl isocyanides participated the 
reactions well regardless of the position or type of the 
substituted group. Halogenated aryl isocyanides also gave the 
corresponding products in high yield, providing a chance for 
further derivatization and modification (3ba, 3bc, 3dc, 3ec, 3gc, 
3jc). Apart from phenylhydrazines, tert-butyl hydrazine 2c is 
also compatible with this reaction, producing the target 
molecules in excellent yields (3ac-3jc). Compared with previous 
work using the homogeneous photosensitizer, there is no 

Table 2 Visible-light-induced tandem radical addition-cyclization of 2-aryl phenyl 

isocyanides (1) with CF3SO2Na (4) a,c, diphenylphosphine oxide (5)b,c by using 2D-

COF-1 as the photosensitizer

a1 (0.1 mmol), 4 (0.2 mmol), 2D-COF-1 (0.001 mmol, 4 mg), K2S2O8 (0.2 mmol), Na2CO3 (0.2
mmol), EA (1 mL), 34 W Blue LED, under N2 for 36 h at room temperature. b1 (0.1 mmol), 5
(0.3 mmol), 2D-COF-1 (0.001 mmol, 4 mg), K2S2O8 (0.3 mmol), CsF (0.2 mmol), EA (1 mL), 34
W Blue LED, under N2 for 12 h at room temperature. cIsolated yield.
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Scheme 2 Visible-light-induced tandem radical addition-cyclization of 2-aryl 
phenyl isocyanides (1) with diphenyl disulfide (6) by using 2D-COF-1 as the 
photosensitizer
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Scheme 3 (a) Recycling experiments (b) Reactions in continuous flow

obvious diminishing reaction efficiency.5a

Next, the scope of this strategy was expanded by installing 
trifluoromethyl radical and P-centered radical onto 2-aryl 
phenyl isocyanides (Table 2). Under the modified reaction 
conditions (Table S3, S4, see details in ESI), CF3SO2Na and 
diphenylphosphine oxide were both smoothly converted to the 
corresponding radicals respectively under the blue LED light 
irradiation with the photocatalyst 2D-COF-1, producing a series 
of 6-trifluoromethyl phenanthridines and 6-phosphorylated 
phenanthridines in good to excellent yields. The electronic 
effect and substituent type are not the key factors of this 
reaction. Notably, in the reactions towards the above two types 
of phenanthridines, ethyl acetate (EA), as a greener solvent, was 
employed instead of environmental-unfriendly DMF, which was 
used in previous works.10c More importantly, because of the 
excellent porosity and photoactivity of the 2D-COF-1, the 
corresponding product yields of these two heterogeneous 
photocatalytic transformations are comparable with reported 
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homogeneous photocatalysis. In some cases, it is even higher 
than previous protocols. 

Sulfur-containing compounds, as an important class of 
chemicals, play the key role in the pharmaceutical industry and 
materials science.17 Although a number of excellent methods 
for their synthesis have been reported,18 there is still extremely 
necessary for the development of more practical and 
environmentally benign methods to construct them. Hence, 
diphenyl disulfide was introduced to generate the S-radical with 
the 2D-COF-1 via a visible-light- enabled process. As depicted in 
Scheme 2, two sulfur contained phenylhydrazines were 
synthesized in moderated yields under the established reaction 
conditions (Table S5, see details in ESI). To the best of our 
knowledge, the present approach illustrates the first method to 
prepare 6-phenylthiophenanthridines via visible-light-induced 
tandem radical addition-cyclization, avoiding the high reaction 
temperature in the previous report.10f

As a heterogeneous photosensitizer, the recyclability and 
reusability are crucial features in practical process. In this context, 
the recycling experiment was performed using 2-isocyano-4'-
methoxy-1,1'-biphenyl (1a) and tert-butyl hydrazine (2c) as the 
substrates with 10 mol% 2D-COF-1 under the standard conditions. As 
shown in Scheme 3a, it displays almost unchanged reaction efficiency 
after six runs. Furthermore, inspired by the pioneer work on 
heterogeneous transformations19, the reaction between 2-isocyano-
4'-methoxy-1,1'-biphenyl (1a) and diphenyl disulfide 6 was 
conducted and scaled-up in continuous flow by using a modified 
continuous-flow photoreactor (see details in ESI), giving the desired 
product 9a in 79% yield (Scheme 3b). All of these experiments 
suggest the great potential of 2D-COF-1 as the photocatalyst to 
generate radicals with visible light as the driving force.

To gain the mechanistic insights of this photoinduced reaction, 
several trapping experiments were conducted. As shown in Scheme 
4a, in the four model reaction systems, the radical addition-
cyclization reactions were significantly suppressed with the addition 
of TEMPO (common radical scavenger), suggesting that a radical 
process should be involved. Furthermore, in Scheme 4b, the 
apparent quantum efficiency (450 nm) values for the four model 
reactions were calculated to be 9.5%, 5.4%, 17.6% and 6.8% 
respectively (see details in ESI, part VIII), which indicate that this 
radical process should present a closed photoredox cycle without 
chain propagation. 

+1a 2a 3aa (trace)

(a) Radical trapping experiments:

"Standard conditions"

TEMPO (3 equiv)

+1a 7a (0%)
"Standard conditions"

TEMPO (2 equiv)

+1a 8a (trace)
"Standard conditions"

TEMPO (3 equiv)

+1a 9a (0%)
"Standard conditions"

TEMPO (2 equiv)

(b) The apparent quantum efficiency values:

(1)

(2)

(3)

(4)

A. Q. E. (%)

Model reaction 1 2 3 4

9.5 5.4 17.6 6.8

(PhS)2

PPh2H

O

CF3SO2Na

Scheme 4 (a) Radical trapping experiments (b) The apparent quantum 
efficiency values

Based on the above experiments, the measurement of the redox 
potential for the 2D-COF-1 and previous reports12-13, a plausible 
reaction mechanism was proposed as depicted in Scheme 5. Initially, 
under the visible-light irradiation, the excited-state 2D-COF-1* 
reduces the oxidant with the formation of radical anion A. It abstracts 
one electron from the radical precursor to generate the key radical 
B. Then, intermediate I is formed via the intermolecular addition 
from B and the substrate 1. Subsequently, the intramolecular 
cyclization delivers a cyclohexadienyl-type radical II, which is 
oxidized by 2D-COF-1+ to afford the cation intermediate III with the 
regeneration of the photocatalyst 2D-COF-1. Finally, in the presence 
of base, the deprotonation of intermediate III produces the desired 
6-substituted phenanthridine.

R

2D-COF-1

2D-COF-1

2D-COF-1*

RP

N R
Ar

Ar

N R
Ar H

N R
Ar H

N R
Ar

Ar

1
I

II

3, 7, 8, 9

III

B

O O

O O
A

Scheme 5 A plausible mechanism 

Conclusions
Overall, we have described a practical protocol toward the 

synthesis of diverse 6-substituted-phenanthridines from 2-aryl 
phenyl isocyanides via visible-light-induced tandem radical 
addition-cyclization under very mild conditions, in which the 
hydrazone-based 2D-COF-1 was employed as the 
heterogeneous photosensitizer. The reaction shows good 
functional-group compatibility and efficiency. The recycling 
experiments and continuous flow experiments suggest that the 
use of heterogeneous photosensitizer 2D-COF-1 exhibits 
excellent recyclability and practicability. Studies on other 
visible-light-induced organic transformations with photoactive 
2D-COFs are currently ongoing.
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Graphics abstract

Visible-light-induced tandem radical addition-cyclization of 2-aryl 

phenyl isocyanides catalysed by recyclable covalent organic 

frameworks

Shuyang Liu,a Wenna Pan,a Songxiao Wu,a Xiubin Bu,a Shigang Xin,a Jipan Yu,*c Hao Xu*b

and Xiaobo Yang*a

A heterogeneous visible-light-induced tandem radical addition-cyclization of isocyanides by 

photoactive covalent organic frameworks was developed, delivering diverse phenanthridines 

with high reaction efficiency and easy catalyst recyclability. 
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