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Generation of Organotantalum Reagents and
Conjugate Addition to Enones**
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Shoji Fukuoka, and Akio Baba*

Organotin compounds are good precursors for generating
active organometallic agents through transmetalation.[1, 2] For
example, active allylic titanium complexes generated from
allylic tin complexes have performed effective allylation of
carbonyl compounds.[1] In contrast, generation and synthetic
use of similar early transition metal complexes such as
tantalum reagents[3] have not been reported so far, although
Ta�C bonds are known to be moderately reactive to electro-
philes.[4, 5] We report here on the preparation of active
tantalum reagents by the transmetalation of organotin com-
pounds with tantalum(�) chloride. Of particular interest is that
certain tantalum reagents promote the conjugate allylation of
enones (Scheme 1).
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Scheme 1. Generation of an active tantalum±nucleophile complex and
subsequent addition to an enone.

Compared with the direct allylation of carbonyl groups,
little has been reported on the selective conjugate allylation of
enones.[6] The only choice for this purpose has been the
Hosomi ± Sakurai reaction (allylsilane and TiCl4).[7a] Later,
modified reagents such as allylbarium[7b] and allylcopper[7c]

were developed to avoid strong acidic conditions. However,
with these modified reagents the allylation of acyclic enones is
far more difficult than that of cyclic ones. The present system
could be the method of choice for conjugate addition of allylic
nucleophiles including sterically hindered ones to enones.[8]

The results of the conjugate allylation of enones, both
acyclic and cyclic substrates, are given in Table 1. Under the
conditions described in the Experimental Section, benzal-
acetone (1a) was allylated to give the conjugate adduct 2a in
91% yield (entry 1, Table 1). The yield decreased to 50%
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when one instead of two equivalents of the allyltin reagent was
used. Acetonitrile is the solvent of choice (see entries 2±4 for
the results with other solvents). Aromatic and aliphatic enones
are similarly applicable to this conjugate allylation to give 2b±
2h (entries 5 ± 11). In all cases, the 1,2-adduct was not obtained.

The use of allyltrimethylsilane in place of allyltri-n-butyltin
under the identical conditions resulted in lower yield of 2b
(27%), perhaps because TaCl5 does not interact with allylsi-
lane. The reaction of allylmagnesium bromide, TaCl5, and 1b
in THF at �40 �C afforded only 1,2-adduct
(34%). Furthermore, attempted allylation with
allyltitanium generated from allyltri-n-butyltin
and TiCl4 did not afford any products. Thus, the
allyltin ± tantalum system seems to be the one
efficient combination for conjugate allylation.

That the transmetalation of the tin species
with TaCl5 is facile is evident in Table 2. When
equimolar amounts of TaCl5 and allyltri-n-
butyltin were stirred at �40 �C in THF or
CH3CN for 30 min, quantitative yields of
nBu3SnCl were obtained but the transmetala-
tion is faster in the latter solvent (entries 1 and
2, Table 2). When an excess of allyltin was
used, nBu3SnCl was formed in over 100%
yield based on TaCl5, which indicates that
several Ta�Cl bonds are responsible for the
transmetalation (entries 3 and 4). The 119Sn
NMR spectrum confirmed the formation of
nBu3SnCl (�� 123) and complete disappear-
ance of allyltri-n-butyltin (�� 20). Unfortunate-
ly, no actual reacting species has been identi-
fied by 1H NMR spectroscopy, as in the case
for allylic titanium.[1] We observed only the com-
pletely demetalated product, propene. Although
the actual structure of the tantalum species,
whether the allyl ligand is �- or �-bound, is not
clear as yet, the active tantalum species is
formed by transmetalation.[9] In addition to
allyltin, benzyl- and alkynyltin compounds
also reacted to give benzyl- and alkynyltanta-
lum compounds, respectively (entries 5 and 6,
Table 2).

The synthetic advantage of this tin ± tantalum system is the
stability and easy availability of various tin precursors.[1, 2]

Thus various groups could be introduced to enones by
conjugate addition [Eq (1), Table 3]. Methallyltri-n-butyltin
gave the corresponding adduct 3a (entry 1, Table 3). When �-
substituted allyltin derivatives were used, the addition occur-
red at the �-position selectively to give 3b ± 3 f (entries 2 ± 6).
Besides allylic reagents, benzyltri-n-butyltin, alkynyltri-n-
butyltin derivatives, and �-stannyl esters could be used to
give the conjugate adducts 3g ± 3k, respectively (entries 7 ±
11). In the case of allenyltri-n-butyltin, the �-propargylated
adduct 3 l was obtained (entry 12).

Table 1. Conjugate allylation of enones 1 according to Scheme 1 (Nu�
allyl, R3�E or Z H).[a]

Entry Starting
compound

R1 R2[b] Solvent Product Yield [%]

1 1a Me Ph CH3CN 2a 91 (50[c])
2 1a Me Ph CH2Cl2 2a trace
3 1a Me Ph THF 2a 49
4 1a Me Ph Et2O 2a 7
5 1b Ph Ph CH3CN 2b 99
6 1c Ph Me CH3CN 2c 63
7 1d Ph H CH3CN 2d 48
8 1e Ph PhMeCH CH3CN 2e 63[d]

9 1 f Et Me CH3CN 2 f 83
10 1g �(CH2)2� CH3CN 2g 56
11 1h �(CH2)3� CH3CN 2h 81

[a] Conditions: allyltributyltin (2 mmol), TaCl5 (1 mmol), enone 1
(1 mmol), solvent (1 mL). [b] Entries 1 ± 9: E isomers; entries 10 and 11:
Z isomers. [c] Allyltin (1 mmol). [d] d.r.� 89:11.

Table 2. Generation of active tantalum reagents ™Ta ±Nu∫ according to
Scheme 1.[a]

Entry Nu Solvent nBu3SnR
[equiv]

Yield of nBu3SnCl
[%]

1 allyl THF 1 99 (16[b])
2 allyl CH3CN 1 99 (99[b])
3 allyl CH3CN 2 189
4 allyl CH3CN 3 250
5 PhCH2 CH3CN 2 76
6 PhC�C CH3CN 2 83

[a] Yields are from GLC and based on TaCl5. The reactions were carried
out in 1 mL of solvent using TaCl5 (1 mmol) and allyltin at �40 �C for
30 min. [b] Reaction time of 5 min.

Table 3. Conjugate addition of tantalum reagents to enone [Eq (1)].[a]

R1 R2

O

Ta Nu R1 R2

O Nu
1 3

" "

Entry Tin precursor Enone Product Yield [%]

1 1b 3a 54

2 1b R1,R2�Ph,Ph 3b 70[b]

3 1 f R1,R2�Et,Me 3c 79[c]

4 1b R1,R2�Ph,Ph 3d 89[d]

5 1 f R1,R2�Et,Me 3e 97[e]

6 1b 3 f 83[f]

7 1b 3g 97

8 1b R1,R2�Ph,Ph 3h 76
9 1 f R1,R2�Et,Me 3 i 99

10 1b 3j 57

11 1b 3k 50

12 1b 3 l 60

[a] All reactions were carried out in CH3CN (1 mL) using tin compound (2 mmol), TaCl5
(1 mmol), and enone 1 (1 mmol) at �40 �C for 2 h. [b] d.r.� 56:44. [c] d.r.� 77:23. [d] d.r.�
82:18. [e] d.r.� 69:31. [f] d.r.� 77:23.
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As shown in Scheme 2, even tri-n-butylprenyltin effectively
gave the corresponding products 3m ± 3p in high yields in
spite of the bulky gem-dimethyl substituents at the �-position.
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Scheme 2. Conjugate prenylation of enones.

In particular, the product 3n bearing contiguous quaternary
carbon centers could be obtained in 82% yield.[10] We
confirmed that the Sakurai ±Hosomi reagent, trimethylpre-
nylsilane/TiCl4, under the standard conditions[7] resulted in
lower yields of 3n (11% at �78 �C. 17% at �40 �C).
Interestingly, in the competition experiment shown in
Scheme 3, more sterically demanding prenyltin reacted pre-
dominantly over allyltin to give 3m.[11]
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Scheme 3. Competition experiment between conjugate prenylation and
allylation.

In all cases discussed above, the required molar ratio of
TaCl5 to the allylic tin reagent was 1:2. However, we found
that addition of an equimolar amount of trimethylsilyl
chloride (Me3SiCl) enabled the catalytic use of TaCl5
(Scheme 4). Careful isolation afforded the conjugate adducts
as silyl enolates, which were converted to 2b, 3d, and 3m by
simple protonolysis. As a tentative catalytic cycle, it can be
assumed that the conjugate adduct, tantalum enolate, is
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Scheme 4. Catalytic version of the TaCl5-mediated conjugate addition.

trapped by Me3SiCl to form silyl enolate along with the
regeneration of TaCl5.

In conclusion, various tantalum reagents could be gener-
ated from organotin compounds by transmetalation. In
particular, the system described is more broadly applicable
on the conjugate allylation of enones than conventional
methods.

Experimental Section

Representative procedure of conjugate addition: To a dry nitrogen-filled
10-mL round-bottomed flask containing TaCl5 (0.358g, 1 mmol) in MeCN
(1 mL) was added allyltri-n-butyltin (0.662 g, 2 mmol) at�40 �C. TaCl5 was
partly insoluble. The mixture was stirred at �40 �C for 30 min, before
benzalacetone (1a) (0.146 g, 1 mmol) was added. As the reaction pro-
ceeded, the mixture gradually turned homogeneous and very pale yellow; a
drastic change in color was not observed. After the mixture had been
stirred at �40 �C for 2 h, MeOH (2 mL) was added and the volatiles were
removed under reduced pressure. The residue was chromatographed on a
silica-gel column (FL100-DX (Fuji silysia)); eluting with hexane/EtOAc
(3/1) gave conjugate adduct 2a (0.171 g, 91%).
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Total Synthesis of (�)-Pamamycin-607**
Sung HoKang,* Joon Won Jeong, Yu Sang Hwang, and
Sung Bae Lee

The pamamycins are a novel family of naturally occurring
homologous macrodiolides, which are found in Streptomy-
ces sp.[1±9] They induce the aerial mycelium formation in
S. alboniger to display autoregulatory activity.[1±3] . They also
exhibit antibiotic activity against Gram-positive bacteria and
pathogenic fungi,[1,2] inhibit myosin light chain kinase,[5] and
mediate hydrophilic ion transport through lipophilic phases.[6]

In addition, they show vasodilating,[7] anionophoric,[2±7] pro-
tonophoric,[8] and autolytic properties.[9] A major component
of the family is pamamycin-607 (1), which has a molecular
weight of 607. While the structure and relative stereochem-
istry of pamamycin-607 were elucidated by NMR spectro-
scopy, its absolute stereochemistry was later determined by a
correlation study.[10] The remarkable biological activity of
pamamycin-607 and its unique structural features led us to
choose 1 as a synthetic target.[11] Herein we report an
asymmetric total synthesis of 1.

The two ester linkages of 1 were disconnected by retro-
synthetic analysis to provide alcohol 2 and carboxylic acid 3 as
the precursors of the C1� ±C11� and C1 ±C18 subunits,
respectively (Scheme 1). As we envisaged that the three cis-
2,5-disubstituted tetrahydrofurans comprising 2 and 3 could
be formed[12] by iodoetherification of �-triethylsilyloxyal-
kenes,[13] 9 (see Scheme 2) and 21 (see Scheme 3) were
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proposed as the intermediates. Construction of the double
bonds in 9 and 21 was planned by means of a sulfone
olefination[14] and the Horner ±Emmons reaction. The C2
methyl group could be installed by the cuprate epoxide
opening of 23 (see Scheme 4), in which the regioselectivity
was assumed to be dictated by the bulky substituent. In
addition, while the adjacent hydroxyl and methyl functional
groups of 9 were expected to be delivered from the known
alcohol 4 (Scheme 2),[15] those of 21 would be transformed by
a Paterson[16] aldol reaction and Evans anti reduction.[17]

To prepare the bottom subunit 2, alcohol 4 (78% de) was
consecutively subjected to silylation, hydroboration, Mitsu-
nobu reaction, and mCPBA oxidation to afford sulfone 5
(Scheme 2). The requisite aldehyde 8 (the coupling partner of
5) was obtained from the known diol 6[18] by a sequence of
benzylidene formation, DIBAH reduction,[19] and Swern

OH O
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Scheme 2. a) TESCl, imidazole, DMF, RT, 83% of desired diastereomer;
b) H3B ¥ SMe2, THF, RT, then aqueous NaOH, H2O2, RT, 85% ; c) Ph3P,
2-mercaptobenzothiazole, DEAD, THF, 0�C�RT, 87%; d) mCPBA,
CH2Cl2, RT, 90%; e) TsOH, PhCHO, PhMe, reflux (�H2O), 94%;
f) DIBAH, PhMe, 0�C, 88% for 7; g) Swern oxidation; h) LiHMDS,
THF, �78�C, then 8, RT, 80%; i) I2, Ag2CO3, Et2O, RT, 92%; j) Ph3SnH,
Et3B, THF, 0�C, 90%; k) H2, 10% Pd/C, MeOH, RT, 99%. TES� tri-
ethylsilyl, DMF�N,N-dimethylformamide, DEAD� diethyl azodicarbox-
ylate, mCPBA� 3-chloroperoxybenzoic acid, Ts� toluenesulfonyl,
DIBAH�diisobutylaluminum hydride, LiHMDS� lithium bis(trimethyl-
silyl)amide.
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