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A TOTAL SYNTHESIS OF OXETANOCIN, A NOVEL NUCLEOSIDE WITH AN OXETANE RING 
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Summary: Oxetanocin has been synthesized starting from cis-Z-buten-1,4-diol through d- or 

e-D-oxetanosyl acetate as an important intermediate which has and-(methyl oxalyloxy)methyl 

group at C2-position. 

As described in the preceding paper,1 oxetanocin with antiviral, antitumor and anti- 

bacterial activities is regarded as the first oxetanosyl-N-glycoside,2 and its synthesis has 

been accomplished by Niitsuma et a1.3 However, their synthetic method is only limited to 

oxetanocin (L). We describe herein a general method to synthesize oxetanocin and related 

nucleosides. In the light of our important results,4 retrosynthesis of oxetanocin (L) is 

shown in Scheme 1, wherein and-(methyl oxalyloxy)methyl group at C2-position operates to 

yield a favorable intermediate with a seven-membered ring on treatment of Lwith Lewis acid. 
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Scheme 1. Retrosynthesis of oxetanocin. 

The known diol f..), 5 derived from cis-2-buten-1,4-diol, was readily converted into two 

monohydroxy compounds (4_ and>)6 in 2 steps Cl) p-MeOCSH4CHO - TsOH, benzene (refluxing temp., 

3 h); 2) DIBAL-H, toluene (room temp., 3 h) (85% overall yield (2/2 = 2))]. The latter was 

reconverted into the original diol (3) using DDQ, whereas 3 was further treated with 

(But)Me2SiCl - imidazole in DMF (room>emp., 1.5 h) to afford a silyl ether, in 91% yield, 

which was directly converted into two epimers (6_ andz)6 in 2 steps [1) 0~04 (cat) - NMMO, 

acetone - H20 - ButOH (room temp., 2 days); 2) CH2=CHCH2Br - NaH, THF (room temp., 15 h) (58% 

overall yield (2/L = l/3))]. On Mitsunobu reaction followed by hydrolysis [l) PhCOOH - Ph3P 

- DEAD, THF (room temp., 20 h); 2) K2CO3, MeOH (room temp., 15 h)], the latter was converted 
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into 6_ in 47% yield. Therefore, the total yield of5 from 5 was 32%. The compound (A) so far 

obtained was treated with MsCl - Et3N in CH2C12 (room temp., 3 h) and then deprotected with 

DDQ in CH2C12 - H20 (room temp., 3 h) to afford the corresponding mesylate (8_),6 in 65% over- 

all yield, from which an oxetane (z)6 was produced in 3 steps [1) 60% NaH (1.6 equiv), THF 

(room temp., overnight) (84%); 2) RhCl(Ph3P)3 - DABCO (refluxing temp., 6 h); 3) HgO - HgC12, 

acetone (room temp., 2 h) (65% in 2 steps)]. 

As described in the preceding paper,' in the next step, the oxetane (9) was readily 

converted into a methyl ketone (1_o)6 in 3 steps [1) (COC1)2 - DMSO - Et3N, CH2C12 (-45 "C, 

30 min); 2) MeMgI, Et20 (0 'C, 2 h) (87% in 2 steps); 3) DCC - DMSO - pyridine -TFA, benzene 

(room temp., overnight) (51%)]. This ketone was further converted into an oxetane (fi)6 

with the desired two different functional groups, in 4 steps Cl) (Bu")~NF, THF (0 "C, 1 h) 

(69%); 2) MeOOCCOCl - pyridine, CH2C12 (-23 - 10 "C, 2.5 h) (95%); 3) H2/Pd-black, THF (room 

temp., 20 min); 4) C2H5COCl - pyridine, CH2C12 (0 'C, 1 h) (66% in 2 steps)]. Baeyer-Villiger 

oxidation of ll_ was carried out using mCPBA in CH2C12 (4 "C, overnight) to afford the corre- 

sponding @-D-oxetanosyl acetate (1_?)6 in quantitative yield. 

Finally, the acetate (12)7 so far obtained was subjected to condensation reaction with 
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N-benzoyl-disilyladenine in 1,2-dichloroethane (room temp., 30 min) using SnC14 as Lewis acid, 

followed by hydrolysis [O.l5N NaOMe, MeOH (room temp., 4.5 h)18 and then benzoylation [BzCl - 

pyridine, CH2C12 (room temp., overnight)] to afford three condensation products (12, 12 and 

5) in 16, 10 and 6.3% overall yields, respectively. The first one was completely identical 

with the dibenzoate (13)6 derived from natural oxetanocin (1) in all respects of spectral 

data, whereas the sec;d one was N,N-dibenzoylepioxetanocin>ibenzoate (z).6 The stereo- 

structure (15) of the remaining product is based on its spectral data.g Clearly, the four- 

membered ri:g of the oxetanose is cleaved and then recyclized to afford the corresponding 

furanoside (3). 

According to essentially the same synthetic procedure as described above, we also synthe- 

sized and-D-oxetanosyl acetate (E)6 from 7. This acetate (16) was also treated successively 

with N-benzoyl-disilyladenine - SnC14, 0.15; NaOMe and then bgzoyl chloride - pyridine to 

give both g and 2 in 26 and 8.7% overall yields, respectively. On hydrolysis with O.lN NaOMe 

in MeOH (room temp., overnight), these two dibenzoates (5 and l4) were readily converted into 

oxetanocin ((l_) and epioxetanocin (z)l" in 81 and 77% yields, respectively. 

Further synthetic studies on other nucleosides related to oxetanocin are in progress. 
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for the new compounds are-in accord with the structures assigned, and . .._ . 
on1 

f 
selected data are cited: $: C2lH2604 Lm/z 342.1817(Mf)J; IR (film) 3400 and 1610 

cm- ; s(CDCl3) 2.51(1H, m), 3.53(1H, dd, J= 5, 10 Hz), 3.63(3H, complex), 3.79(3H, s), 
4.50(1H, d, J= 11 Hz), 4.52(2H, s), 4.66(1H, d, J= 11 Hz), 5.15(2H, complex), 5.81(1H, m), 
6.86(2H, d, J= 8.8 Hz), 7.25(2H, d, J= 8.8 Hz) and 7.33(5H, complex). 2: C2lH2604 [m/z 
342.1833(M+)]; S(CDCl3) 2.50(1H, m), 3.4 - 3.5(2H, complex), 3.53(1H, dd, J= 5, 9 Hz), 
3.61(1H, dd, J= 6.3, 9 Hz), 3.79(3H, s), 4.05(1H, m), 4.43(2H, s), 4.50(1H, d, J= 12 Hz), 
4.53(1H, d, J= 12 Hz), 5.15(2H, complex), 5.88(1H, m), 6.86(2H, d, J= 8 Hz), 7.22(2H, d, 
J= 8 Hz) and 7.32(5H, complex). 2: C3 H4606Si 
(CDC13) 0.87(9H, s), 2.00(1H, m), 9 

[m/z 530.3046(M+)]; IR (film) 3520 cm-l; 6 
3.77 3H, s), 3.4 - 3.85(6H, complex), 3.97(3H, complex), 

4.10(1H, m), 4.47(1H, d, J= 9 Hz), 4.52(2H, s), 4.67(1H, d, J= 9 Hz), 5.0 - 5.3(2H, 
Complex), 5.76(1H, m), 6.82(2H, d, J= 9 Hz), 7.23(2H, d, J= 9 Hz) and 7.30(5H, s). 7: 
C3OH4606Si [m/Z 530.3056(M+)]; IR (film) 3500 cm-l; 6(CDCl 
3.4 - 3.7(6H, complex), 3.83(3H, s), 3.93(4H, complex), 4.42 lH, ? 

) 0.80(9H, s), 1.98(1H,-m), 
d, J= 12 Hz), 4.47(2H, s), 

4.62(1H, d, J= 12 Hz), 5.0 - 5.3(2H, complex), 5.80(1H, m), 6.78(2H, d, J= 9 Hz), 7.22(2H, 
d, J= 9 Hz) and 7.27(5H, s). 8_: C23H4007SSi [m/z 488.2254(M+)]; IR (film) 3550 and 1645 
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cm-l; 
5.1 

S(CDCl3) 0.83(9H, s), 2.03(1H, m), 3.03(3H, s), 3.4 -4.0(9H, complex), 4.50(2H, s), 
- 5.3(3H, complex), 5.83(lH, m) and 7.28(5H, br.s). 9: C gH3304Si [m/z 353.2140 

(M+ + 1)l; IR (film) 3450 cm-l; S(CDC1 ) 0 04(6H s) 0_88(4H s) 3 27(lH m over- 
lapped with 1H signal), 3.53(1H, dd, J= $.4,'11.2 iz),'3.5 - 3.;(lH: mj, 3.7t)(li dd 
J= 2.9, 11.2 Hz), 3.73(2H, d, J= 5.9 Hz), 3.82(lH, m), 4.58(lH, d, J= 12 Hz), 4.65(1;, d, 
J= 12 Hz, overlapped with 2H signals) and 7.35(5H, complex). 10: C OH3204Si [m/z 
364.2064(M+)]; IR (film) 1715 cm-l; s(CDC1 
11: CllH1507 [m/z 259,0798(M+ - CH3CO)]; IR i 

) 2.24(3H, s) and?.76flH, d, J= 6.8 Hz). 
film) 1770 and 1750 cm-l; b(CDC13) 1.12 

OH, t, J= 7.5 Hz), 2.25(3H, s), 2.35(2H, q, J= 7.5 Hz), 3.20(1H, m), 3.88(3H, s), 4.18 
(2H, complex), 4.50(2H, d, J= 6 Hz) and 4.70(1H, d, J= 6 Hz), overlap ed with 1H signal). 

: CllH1507 [m/z 259.0799(M+ - CH3COO)]; IR (film) 1775 and 1750 cm- ; &(CDC13) 1.15 Y 
t, J= 7.5 Hz), 2.08(3H, s), 2.38(2H, q, J= 7.5 Hz), 3.12(lH, m), 3.90(3H, s), 4.27 

(2H, complex), 4.50(2H, d, J= 6 Hz, overlapp d with 1H signal) and 6.22(lH, d, J= 3 Hz). 
l,_j: C3lH24N506 [m/z 562.1707(Mt - Bz)]* [&]86 -35 8" (c 0 63 CHCl )* 
1595, 1570 and 1490 cm-l; 

IR (film) 1710, 
s(CDC13) 4.36(lH, m), 4:64(lH, dd,'J= 4.3,'12.2 Hz), 4.70 

(lH, dd, J= 5.4, 12.2 Hz), 4.84(lH, dd, J= 3.9, 12.7 Hz), 4.92(1H, dd, J= 5.4, 12.7 Hz), 
5.07(lH, m), 6.6l(lH, d, J= 5.9 Hz), 7,35(4H, complex), 7.45(6H, complex), 7.58(2H, 
complex), 7.85(4H, complex 
C3lH24N506 [m/z 562.1708(M 

1, 8.03(4H, cg$plex), 

1580 and 1490 cm-l; 
- Bz)]; [d] 

8.32(1H, s) and 8.57(lH, s). 

$(CDCl ) 3.64(lH !?, 
-19.3" (c 0.46, CHCl ); IR (film) 1 
4 50(lH dd J= 3 91 Hz) 4 56(lH 

11 Hz), 4.68(1H, dd, J= 3, ?l Hz), 4.60(1;, dd, J='5.5: 11.7'Hz), 5.64(iH, m): 
d, J= 2.9 Hz), 7.33(4H, complex), 7.46(6H, complex), 7.59(2H, complex), 7.85(6H, compl;x), 
8.02(2H, complex), 8.38(lH, s) and 8.51(lH, s). 16: g(CDCl3) l.l5(3H, t, J= 7.5 Hz), 
2.12(3H, s), 2.38(2H, q, J= 7.5 Hz), 3.43(lH, m),T.88(3H, s), 4.26(2H, complex), 4.57 
(2H, d, J= 7.5 Hz), 4.82(1H, m) and 6.47(lH, d, J= 6 Hz). 

7. The d-(methyl oxalyoxy)methyl group at C2-position is not always better than other 
functional groups. For example, there remains a possibility that an eight-membered 
ring intermediate is more favorable than the seven-membered ring intermediate shown in 
Scheme 1. Further study on this point is in progress. In addition, pivaloyloxymethyl 
group was used instead of propionyloxymethyl group at C3-position. However, any good 
result has not yet been obtained. 
examined in due course. 

Other acyloxymethyl groups at C3-position are also 

8. Both oxetanocin and epioxetanocin were detected on analytical TLC (Kieselgel PF254). 
At this stage, however, these two epimers were not obtained in a pure state. 

9. The molecular ion peak of 2 was not observed in its mass spectr 
[BP 

, but its stereo- 
structure was unam iguously confirmed by the spectral data: -55.7" (c 0.24, 
IR (film) 1720 cm- ! 

CHC13), 
; g(CDCl3) 4.07(lH, m), 4.33(1H, br.d, J= lOD7 Hz), 4.7l(lH, dd, 

J= 7.8, 11 Hz), 4.77(1H, dd, J= 6.4, 11 Hz), 4.85(1H, dd, J= 3.4, 10.7 Hz), 6.05(1H, m), 
6.4l(lH, d, J= 7.3 Hz), 7.37(6H, complex), 7.49(5H, complex), 7.63(lH, m), 7.68(2H, 
complex), 7.86(4H, complex), 8.07(2H, complex), 8.20(1H, s) and 8.62(1H, s). 

10. The molecular ion peak of 17 has not been observed in its mass spectrum, but its structure 
is supported by the spectra data: IR (film) 3340, 163Dbr. and 1575 cm-l; $(DMSO-d ) 
2.72(1H, m), 3.55(2H, complex), 3.92(lH, dd, J= 3, 9 Hz), 4.00(1H, dd, J= 5, 9 Hz), 8.23 
(lH, m), 6.05(1H, d, J= 3.9 Hz), 8.15(lH, s) and 8.36(1H, s). 
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