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Abstract New X-substituted 1,3,2-oxazaphosphorinanes,

where X = NHC6H5 (1), NHC6H4S(O)2NH2-4 (2), NHC6

H4OCH3-4 (3), NHC6H4NO2-4 (4), OC6H4CH3-4 (5),

NHC(O)C6H4NO2-4 (6), plus one X-substituted 1,3,2-di-

azaphosphorinane, where X = NHC6H4S(O)2NH2-4 (7),

were synthesized and characterized by NMR, IR spectros-

copy, and elemental analysis. The antitumor activities of

these compounds, cyclophosphamide (CP), sulfanilamide

(SA), and two X-substituted 5,5-dimethyl-1,3,2-diaza-

phosphorinanes, where X = NHC6H5 (8) OC6H4CH3-4 (9),

were evaluated by cell culture on K562, MDA-MB-231,

and HepG2 cell lines using MTT cell proliferation assay.

The IC50 values for CP and compounds 1–9 were in the

range of 0.06 lM (for inhibition of HepG2 cells by com-

pound 3) to 3.17 lM (for inhibition of HepG2 cells by

compound 8). It was found that compounds 2 and 7 con-

taining sulfonamide substituent and also SA itself are the

best candidates for antitumor activity very close to CP.

Keywords 1,3,2-Oxazaphosphorinane �
Antitumor activity � MTT assay � K562 � MDA-MB-231 �
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Introduction

Oxazaphosphorinanes are widely used as antineoplastic and

immunosuppressive agents that are characterized by a rel-

atively high oncologic specificity (Chen and Waxman,

1995). Cyclophosphamide (CP) prodrug is an oxazaphos-

phorinane that is activated by liver cytochrome P450

enzymes by a metabolic pathway that ultimately yields the

alkylating agent phosphoramide mustard (Schwartz and

Waxman, 2001). The parent compound is inactive in vitro

and in vivo and exerts its biologic activity through metab-

olites, mainly phosphoramide mustard, by hepatic micro-

somal enzymes (Huang et al., 2000). The alkylating

metabolite(s) can bind to a variety of molecules including

amino acids, proteins, and peptides, but the most important

binding site is DNA where cross-linking occurs (Murata

et al., 2004). CP is effective against a wide spectrum of

malignancies such as, leukemia, lymphoma, breast, lung,

prostate, and ovarian cancers (Moore 1991). In fact, CP is

one of the most extensively used chemotherapeutic agents

in the treatment of many types of cancer that has been the

focus of research efforts to understand its mode of action

and to develop analogs with improved function (Camerman

et al., 1983). The phosphorus-containing heterocycles such

as 1,3,2-oxazaphosphorinanes are also an essential part of

phosphorus chemistry indicating unique conformational

behavior (Bentrude et al., 1986; Setzer et al., 1989; Ben-

trude et al., 1988). A great number of studies have been

carried out on various monocyclic and fused bicyclic and

tricyclic 1,3,2-oxazaphosphorinane derivatives about their

synthesis, bioactivity, and conformational analyses (Vilja-

nen et al., 1998; Martinek et al., 2000; Bentrude et al.,

1984; Ludeman et al., 1986). Modifications of CP have led

to the design and synthesis of many cyclic analogs (Li et al.,

2003; Gholivand et al., 2005a, b; Ludeman et al., 1979) to
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obtain relationships between structure and antitumor

activities. It has been shown that the steric and electronic

properties of the X substituent (Fig. 1) exert strong effects

on the conformational equilibrium of oxazaphosphorinane

ring (Martinek et al., 2000).

To obtain compounds with comparative antitumor

activities against K562, MDA-MB-231, and HepG2 cell

lines to those of CP and to explore whether there are cor-

relations between the steric and electronic properties of the

substituents and inhibitory effect, a new series of 1,3,2-

oxazaphosphorinanes and 1,3,2-diazaphosphorinanes were

designed, synthesized, and characterized. The antitumor

activities of these compounds, CP and sulfanilamide (SA) to

inhibit the K562, MDA-MB-231, and HepG2 cells growth

have been evaluated in vitro using MTT cell proliferation

assay. Using spectroscopic data, IC50 and log P values, the

antitumor activities were compared and described.

Results and discussion

Spectroscopic study

The structures of 1,3,2-oxazaphosphorinanes and 1,3,2-di-

azaphosphorinanes studied in this work are presented in

Fig. 2. A summary of the spectroscopic data of these

compounds is listed in Table 1. The phosphorus chemical

shift in CP is at the most downfield region (11.53 ppm)

compared to those of compounds 1–9. The phosphorus

atom in 4 (containing para-nitrophenyl moiety) is more

deshielded than the P atom in 6 (containing nitrobenzamide

moiety). In fact, among compounds 1–9, the d(31P) of 6

reveals the most upfield shift (-2.16 ppm). The 1H NMR

spectra show different chemical shifts for the Haxial and

Hequatorial atoms of CH2 groups (Table 2). These diaste-

reotopic protons suggest a single chair conformation for

six-membered ring at room temperature and exclude flex-

ible boat forms in which pseudorotation would tend to

average the chemical shifts and coupling constants (Eliel

and Hutchins, 1969). This was confirmed by the X-ray

crystal structures of their analogs (Gholivand et al., 2005a,

b). The axial hydrogen atoms are at downfield relative to

their equatorial counterparts (Jackman and Sternhell,

1969). Furthermore, the axial H resonances are shifted

downfield for 1–6 as compared to those of 7–9 (Table 2).
3J(P,C)aliphatic coupling constants in these molecules present

greater values than 2J(P,C)aliphatic coupling constants.

Compound 5 revealed the coupling of phosphorus atoms

with carbonyl group (2J(P,C=O) = 6.8 Hz). IR spectra indi-

cate that m(P=O) varies from 1232 cm-1 in 3 to 1171 cm-1

in 8.

The orientation of P=O double bond in axial or equa-

torial position depends on the changes in 31P chemical

shifts, proton chemical shift due to 1,3 diaxial interactions,

and 13C chemical shift arising from the shielding effect of

oxygen (Bentrude et al., 1986). Thus, it is suggested that

the P=O bond is in an axial position in compounds 1–6

N
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X = N(CH2CH2Cl)2

Fig. 1 The structure of

cyclophosphamide (CP)
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T0 = 0 0C,
Tfinal = R.T.

Fig. 2 The preparation pathways for analogs 1–9
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while it places in an equatorial (or pseudo-equatorial)

position in 7–9. Therefore, the antibonding P–N orbital,

when the P=O bond is axial, is suitably aligned for stabi-

lizing overlap with a neighboring electron single pair on

N(1) or O(3), an interaction which is not available when

the P=O bond is equatorial. The interaction between the

P–N antibonding orbital and the lone pair of the oxygen has

been reported (Bentrude et al., 1991) to play a substantial

role in stabilization of chair conformation. It was shown

that the P=O bond in CP places in a pseudo-axial position

(Camerman and Camerman, 1973). Also, the crystal struc-

ture of a 1,3,2-benzoxazaphosphorinane in which the P=O

bond demonstrates a pseudo-axial orientation has been

reported (Gholivand et al., 2007a).

Structure–activity relationships

As indicated in Fig. 2, the rationale design in this study is

the replacement of X = N(CH2CH2Cl)2 group in CP by

para-substituted aniline, benzoyl, or phenol moieties in

compounds 1–9. Also, one of the endocyclic NH groups

was replaced with its para-element oxygen atom in 7–9.

The effects of these structural changes on the conforma-

tional and biological properties are of our interest.

The antiproliferative activities of CP analogs 1–9 were

compared in three types of human cancer cell lines by

means of a colorimetric microculture assay technique

(MTT assay), and the corresponding mean IC50 values are

reported in Table 3. All the derivatives showed potent

antitumor activities against three cell lines in micromolar

concentrations. The cells were exposed to various con-

centrations of the compounds for 24, 48, and 72 h, and the

inhibition percentages of cell growth (I) were measured for

various times after exposure. The IC50 values (lM) after

48 h of incubation for three cell lines and also the log

P values (which is a measure of molecular lipophilicity) as

well as log D (computed at pH 7.4 by CSlog D software)

for CP, SA (sulfanilamide), and compounds 1–9 are pro-

vided in Table 3. The plots of IC50 (lM) versus compounds

obtained after exposure for 24, 48, and 72 h are shown in

Figs. 3, 4, and 5 exhibiting the increase of IC50 from 24 to

48 and 72 h in most of the cases. This means that the

antitumor activities are reduced due to further exposure to

the cancer cell lines. Thus, the main inhibition occurs

during 24 h. Also, the plots of mean IC50 (lM) against

concentration (mM) after 48 h exposure to K562 cancer

cells were presented in Figs. 6, 7, and 8 indicating the

enhancement of IC50 with increasing of the antitumor

concentration. This behavior was also observed for MDA-

MB-231 and HepG2 cell lines.

The structure–activity relationships (SAR) is base on

this definition that the physico-chemical properties that

affect the biological activities of a molecule are of three

major types: electronic, steric, and hydrophobic and other

factors, such as hydrogen bonding, polarizability, dipole

moment, topology, and steric effects of substitutions play

less important roles (Hansch and Leo, 1995). The SAR

studies were performed on phosphoramidate compounds

and in their investigations, they have reported linear rela-

tionships between log(1/IC50) and log P, d(31P) and para-

substituent constants (Ghadimi et al., 2008, 2009). In the

following sections, the effects of several parameters on the

SAR are discussed.

Effect of sulfonamide substitution

In evaluation of the activities of the heterocyclic ring

compounds, we found that sulfanilamide is also an anti-

cancer agent with the average IC50 value of *0.12 lM in

three cell lines. It should be mentioned that the inclusion

of this amide on a phosphorus atom as in compounds

2 and 7 can increase the cytotoxicity against cancer cells.

Table 1 Some spectroscopic data of cyclophosphamide (CP) and compounds 1–9

Compound d(31P)/ppm 2J(P,Caliphatic-O)/Hz 2J(P,Cal-N)/Hz 3J(P,Cal)/Hz 3J(P,Car)/Hz m(P=O)/cm-1 Ref.

CP 11.53 6.9 2.8 6.3, 3.8 – 1223 –

1 2.41 7.04 3.1 7.5 7.3 1231 a

2 1.51 7.2 2.5 7.5 7.2 1222 a

3 3.06 7.0 – 7.4 6.7 1232 a

4 0.68 7.3 2.7 7.6 7.5 1223 a

5 -0.87 7.7 3.5 7.0 4.7 1218 a

6 -2.16 7.7 – 7.4 9.2 1229 a

7 5.13 – – 7.6 6.7 1178 a

8 5.60 – 3.3 7.7 6.7 1171 Gholivand et al. (2007b)

9 8.69 – 4.0 7.8 4.5 1198 Gholivand et al. (2007b)

al aliphatic, ar aromatic
a This work
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Diazaphosphorinanes 8 and 9 are much less toxic among

these compounds. Hence, it could be concluded that 1,3,2-

diazaphosphorinanes are often less toxic than 1,3,2-

oxazaphosphorinanes as this is seen from the IC50 values in

Table 3. The reason may be the easier opening of the ali-

phatic oxazaphosphorinane ring and P–O bond cleavage

than the diazaphosphorinane ring and P–N bond breaking.

A comparison of the IC50 values discloses that molecules 2

and 7 have much efficient activities than other diazaphos-

phorinanes. These higher activities are in consistent with

their log P values which are greater for these compounds. It

is very interesting that the IC50 values of molecules 2 and 7

are nearly the same that is most probably due to the pres-

ence of sulfonamide (SA) moiety with its close anticancer

activity to CP in these derivatives.

Electronic effects of substituents

The chemical reactivity is dependent on one or both of two

factors: steric and electronic effects (Hansch et al., 1963).

A comparison of analogs 1, 3, and 4 indicates that due to

the electronic effects, the phosphorus atom in 3 is the most

positive one. The substituents at para position of the phe-

nyl ring in compounds 1, 3, and 4 are H, OCH3, and NO2

Table 2 The C, H, and Y chemical shifts of cyclophosphamide (CP) and compounds 1–9

d(CH),
2J(P,C)al

d(CH),
2J(P,C)al

d(CH),
3J(P,C)al

dYF

(JPF)

dYX (JPE) dNHY

(JPNH)

dHC

(JPD)

dHD (JPC) dHA

(JPB)

dHB

(JPA)

Compound

40.55 (2.8) 67.25 (6.8) 25.50 (6.3) 1.69–1.72 (m) 4.65 (3.6) 3.14 (m) 3.06 (m) 4.17 (m) 4.14 (m) CP

40.67 (3.1) 67.95 (7.0) 26.30 (7.5) 1.80 (m) 1.60 (m) 4.98 (5.5) 3.11 (m) 4.11 (2.5) 4.20 (m) 1

40.57 (2.5) 68.25 (7.2) 26.10 (7.5) 1.79 (s) 1.57

(13.6)

5.19 (–) 3.11 (m) 4.10 (m) 4.21 (m) 2

40.66 (s) 67.76 (7.0) 26.30 (7.4) 1.74 (m) 1.55

(14.0)

4.88 (4.2) 3.1 (m) 4.10 (m) 4.18 (m) 3

40.47 (2.7) 68.49 (7.3) 25.95 (7.6) 1.81 (m) 1.62 (s) 5.37 (m) 3.13 (m) 4.13 (m) 4.27 (m) 4

40.67 (3.5) 69.70 (7.7) 25.80 (7.0) 1.82 (m) 1.61 (m) 5.48 (m) 3.12(m) 4.31 (m) 5

40.48 (s) 69.30 (7.7) 25.59 (7.4) 1.86 (m) 1.67

(13.9)

5.36 (s) 3.23 3.11

(22.0)

4.33 (m) 6

41.71 (s) – 26.75 (7.6) 1.41–1.61 (m) 4.46 (s) 2.99–3.06 (m) 7

41.86 (3.3) – 27.03 (7.7) 1.50 (m) 1.40 (m) 4.26 (m) 3.02 (m) 8

42.04 (4.0) – 26.25 (6.8) 1.52 (m) 1.46 (m) 4.78 (m) 3.03 (m) 9

al aliphatic

O

P
N
H

HD

HC

HA

HB

YE

YF

O

X
1

2

3
45

6
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groups that are neutral, electron-donating, and electron-

withdrawing groups, respectively. Results indicate that the

d(31P) values appear at more down field from 4 to 1 and 3

that means a more electron donating group gives a more

positive phosphorus atom. The IC50 values of these

compounds to inhibit K562 cells exhibit the same trend,

i.e., reduction from 4 to 1 and 3 (Table 3). Similarly, d(31P)

is more positive in compound 7 (containing electron-

withdrawing p-NH2SO2 moiety) than in compound 8

(containing neutral H atom). The IC50 values of 8 are

greater than those of 7 against all three K562, MDA-MB-

231, and HepG2 cell lines. Figure 9 represents the plot of

log (1/IC50) against d(31P) for compounds CP and 1, 4–7

exhibiting a nearly linear relationship. This linear correla-

tion diagram is not obtained for all compounds 1–9 that

shows the inhibition mechanism is dependent to several

parameters and one of them is d(31P).

Lipophilicity effect

As known, the lipophilicity of a compound plays a pivotal

role during its penetration into the cells and enhances the

activity. The log P values of the compounds 1–9 were

calculated using Hyperchem 7.0 software (Table 3). Typ-

ically, partition coefficients in the order of 100–1000 (log

P = 2–3) are required for efficient passive diffusion pro-

cess (Taylor, 1996). The results demonstrate that com-

pounds 2 and 7 both of them containing sulfonamide

moiety as well as SA itself have the maximum lipophilicity

values (*1.5–2.0). The log D values of SA and com-

pounds 2, 7 are the most negative ones. Thus, the log D

values cannot be measure of toxicity, and the log P values

are more informative and applicable. Considering this

matter plus the IC50 values, it may be suggested that

compounds 2 and 7 as well as SA are the best candidates

for anticancer activity very close to CP. It is noteworthy

that the high log P value of 1.47 for sulfonamide (SA)

confirms that presence of this substituent in compounds 2

and 7 cause their cytotoxic effects. In fact, it has been

indicated that sulfonamide derivatives possess many

biological activities such as anticancer, antibacterial,

hypoglycemic, diuretic, anti-carbonic anhydrase, and anti-

thyroid (Ghorab et al., 2009; Abbate, et al., 2004).

Figure 10 presents the plot of log (1/IC50) against log P for

Table 3 The in vitro cytotoxic activity (IC50, lM) of the compounds

1–9 toward human tumor cell lines after 48 h and their log P, log D
values

Compound Mean IC50

K562

Mean IC50

MDA-MB-231

Mean IC50

HepG2

log D log P

CP 0.15 0.09 0.24 0.05 1.12

SA 0.20 0.09 0.08 -0.38 1.47

1 0.55 0.83 0.60 0.16 0.29

2 0.15 0.17 0.14 -0.70 1.88

3 0.20 0.23 0.06 0.46 -0.71

4 0.89 0.09 0.15 0.50 -0.53

5 0.71 0.87 0.59 0.28 0.76

6 0.67 0.27 0.57 0.52 -0.45

7 0.19 0.11 0.13 -1.00 1.56

8 3.11 2.04 3.17 -0.31 -0.03

9 1.44 0.23 2.20 0.22 0.12

CP cyclophosphamide, SA sulfanilamide

Fig. 3 The plot of IC50 (lM) against compounds to inhibit K562

cells

Fig. 4 The plot of IC50 (lM) against compounds to inhibit MDA-

MB-231 cells

Fig. 5 The plot of IC50 (lM) against compounds to inhibit HepG2

cells

Med Chem Res (2012) 21:2185–2195 2189

123



compounds CP, SA and 1, 2, 4, 6, 7 which is a nearly linear

diagram. Similar to the electronic effect, the linear

behavior between lipophilicity and inhibition potency is

not obtained for all compounds 1–9. This means that the

inhibition mechanism does not just depend on log P, but

several parameters can affect it.

In summary, results of bioassay demonstrate that

attachment of sulfonamide to the phosphorus atom in 1,3,2-

oxaza-, 1,3,2-diazaphosphorinanes 1–9 does lead to potent

and selective antitumor activities against the studied K562,

MDA-MB-231, and HepG2 cell lines in compounds 2 and

7. Moreover, the electronic features of the substituents,

lipophilicity as well as conformational properties can affect

the inhibition potencies of CP and its analogs.

Material and methods

All of the chemicals and solvents for syntheses were

prepared from Fluka and Merck companies. The K562,

MDA-MB-231, and HepG2 cell lines were purchased from

Pasteur Institute of Iran (Tehran, Iran). Melting points were

determined on an electrothermal apparatus. 1H, 13C, and
31P NMR spectra were recorded on a Bruker (Avance

DRS) 500 spectrometer. 1H, 13C, and 31P chemical shifts

were determined relative to TMS and 85% H3PO4,

respectively, as external standards. IR spectra (KBr pellets)

were obtained with a Shimadzu, IR-60 model spectrometer.

Elemental analysis was performed using a Heraeus CHN-

O-RAPID instrument.
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Fig. 6 The plot of IC50 (lM)

against concentration (lM) to

inhibit K562 cells for CP, SA,

and compounds 1–3
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Fig. 7 The plot of IC50 (lM) against concentration (lM) to inhibit K562 cells for compounds 4–6
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Synthesis (general procedure)

To a solution of 10 mmol of corresponding phospho-

ramidic dichlorides (N-4-phenylsulfonylphosphoramidic

dichloride, N-4-nitrophenylphosphoramidic dichloride,

N-nitrobenzoylphosphoramidic dichloride (Amirkhanov et al.,

1997), N-phenylphoramidic dichloride, 4-methoxyphenyl

phosphoramidic dichloride (Cates and Lemke, 1974), and

4-tolyl-dichlorophosphate (Tolkimth, 1959) in dry CCl4, a

mixture of 10 mmol of related diamine (propane-1,3-dia-

mine, 2,2-dimethylpropylene diamine and 3-aminopropane-

1-ol) plus 10 mmol triethylamine was added dropwise at

about 0�C and the reaction mixture stirred for 10 h. Then

the precipitate was filtered and washed with distilled water

and dried.

5.812.512.501.821.581.501.321.301.00.82.75.60.53.35.32.26.25.19.14.11.05

Concentration/mM

100.00

80.00

60.00

40.00

20.00

0.00

M
ea

n 
IC

50

9

8

7
Antitumor

Fig. 8 The plot of IC50 (lM) against concentration (lM) to inhibit K562 cells for compounds 7–9

Fig. 9 The plot of log (1/IC50) against d(31P) for compounds CP, 1,

and 4–7

Fig. 10 The plot of log (1/IC50) against log P for compounds CP, SA,

and 1, 2, 4, 6, 7
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2-(N-phenyl)-1,3,2-oxazaphosphorinane-2-oxide

C6H5NHP(O)[NHCH2CH2CH2O]  (1)

Yield: 89%, m.p. 185�C. Anal. Calc. for C9H13N2O2P: C,

50.95%; H, 6.18%; N, 13.20%. Found: C, 50.94%; H, 6.19%;

N, 13.25%. 1H NMR (d6-DMSO): d 1.54–1.58 (m, CH2), 1.77

(m, 1H, CH2), 3.21 (m, 1H, CH2), 4.11 (m, 1H, CH2),),

4.19 (m, 1H, CH2), 4.98 (m, 1H, NHcyclic), 6.79 (t,
3J(H,H) = 7.3 Hz, 1H), 7.04 (d, 3J(H,H) = 7.8 Hz, 2H, CH),

7.15 (m, 2H), 7.51 (d, 2J(P,NH) = 10.65 Hz 1H, NHsulf).
13C

NMR (d6-DMSO): d 26.30 (d, 3J(P,C) = 7.53 Hz, 1C, CH2),

40.68 (d, 2J(P,C) = 3.08 Hz, 1C, CH2–N), 67.98 (d,
2J(P,C) = 7.0 Hz, 1C, CH2–O), 117.23 (d, 3J(P,C) = 7.3 Hz,

CH–Ar), 119.80 (s), 128.64 (s), 145.07 (s). 31P NMR (d6-

DMSO): d 2.41 (s). IR (KBr), t (cm-1): 3235 (NH), 3090,

1601, 1497, 1429, 1371, 1338, 1284, 1231 (P=O), 1202, 1125,

1034, 998, 933 (P–N), 863(P–N), 747, 691, 617, 497.

2-(N-4-phenylsulfonyl)-1,3,2-oxazaphosphorinane-

2-oxidez

 (2) 4-NH2SO2C6H4NHP(O)[NHCH2CH2CH2O]

Yield: 49%. Anal. Calc. for C9H14N3O4PS: C, 37.11%;

H, 4.84%; N, 14.43%. Found: C, 37.21%; H, 4.89%; N,

14.35%. 1H NMR (d6-DMSO): d 1.60 (d, 3J(H,H) =

13.7 Hz, 1H, CH2), 1.78(b, 1H, CH2), 3.095 (b, 2H, CH2),

4.12 (t, 3J(H,H) = 10.9 Hz, 1H, CH2), 4.23(d, 3J(H,H) =

10.4 Hz, 1H, CH2), 5.19 (d, 2J(P,NH) = 4.8 Hz, 1H, NHa-

mine), 7.07 (s, 2H, NHsulf), 7.14 (d, 3J(H,H) = 8.0 Hz, 2H,

CH), 7.63 (d, 3J(H,H) = 8.0 Hz, 2H), 8.05 (d, 2J(P,NH) =

10.5 Hz 1H, NHamine).
13C NMR (d6-DMSO): d 26.15 (d,

3J(P,C) = 7.47 Hz, 1C, CH2), 40.58 (d, 2J(P,C) = 2.54 Hz,

1C, CH2), 68.29 (d, 2J(P,C) = 7.2 Hz, 1C, CH2), 116.50 (d,
3J(P,C) = 7.2 Hz, 2C, CH), 126.83 (s), 135.09 (s), 145.59

(s). 31P{1H} NMR (d6-DMSO): d 1.51 (s). IR (KBr), t
(cm-1): 3340 (NH), 3210 (NH), 2940, 1597, 1500, 1467,

1319(s), 1222 (P=O), 1202, 1156 (SO2), 1094, 1044, 982,

932 (P–N), 830 (P–N), 751, 590, 540.

2-(N-4-methoxy-phenyl)-1,3,2-oxazaphosphorinane-

2-oxide

4-CH3OC6H4NHP(O)[NHCH2CH2CH2O]   (3)

Yield: 70%, m.p. 185–186�C. Anal. Calc. for

C10H15N2O3P: C, 49.59%; H, 6.24%; N, 11.57%. Found: C,

49.59%; H, 6.27%; N, 11.55%. 1H NMR (d6-DMSO): d 1.55

(d, 2J(H,H) = 13.5 Hz, 1H, CH), 1.74 (m, 1H, CH2), 3.03 (m,

2H, CH2), 3.65(s, OCH3), 4.14 (m, 2H, CH2–O), 4.88 (d,
2J(P,NH) = 4.2 Hz, 1H, NH), 6.75 (d, 3J(H,H) = 8.2 Hz, 2H,

Ar–H), 6.97 (d, 3J(H,H) = 8.2 Hz, 2H, Ar–H), 7.25 (d,

2J(PNH) = 10.0 Hz, 1H, NHexocyclic).
13C NMR (d6-DMSO):

d 26.32 (d, 3J(P,C) = 7.35 Hz, 1C, CH2), 40.66 (s), 55.15(s),

67.8 (d, 2J(P,C) = 6.98 Hz, 1C, CH2), 114.08(s), 118.67(d,
3J(P,C) = 6.7 Hz, 2C, CH), 135.07 (s), 153.28 (s). 31P{1H}

NMR (d6-DMSO): d 3.06 (s). IR (KBr), t (cm-1): 3275

(NH), 1510, 1457, 1278, 1232 (P=O), 1209, 1178, 1127,

1030, 977, 947 (P–N), 816 (P–N), 760, 587, 492.

2-(N-4-Nitrophenyl)-1,3,2-oxazaphosphorinane-

2-oxide

4-NO2C6H4NHP(O)[NHCH2CH2CH2O]   (4) 

Yield: 67%. Anal. Calc. for C10H16N3O4P: C,43.96%;

H,5.90%; N,15.38%;. Found: C, 43.99%; H,5.95%; N,

15.39%. 1H NMR (d6-DMSO): d = 1.62 (d, 3J(P,H) =

12.6 Hz, 1H, CH2), 1.80 (m, 1H, CH2), 3.12 (m, 2H, N–

CH2), 4.12 (m, 1H, O–CH2), 4.26 (m, 1H, O–CH2), 5.38

(m, 1H, NHcyclic), 7.18 (d, 3J(H,H) = 9.0 Hz, 2H, Ar–H),

8.10 (d, 3J(H,H) = 9.0 Hz, 2H, Ar–H), 8.50 (s, 1H, NH).
13C NMR (d6-DMSO): d = 25.95(d, 3J(P,C) = 7.6 Hz, 1C,

CH2), 40.47 (d, 2J(P,C) = 2.7 Hz, 1C, N–CH2), 68.49(d,
2J(P,C) = 7.3 Hz, 1C, O–CH2), 116.57 (d, 2C, 3J(P,C) =

7.47 Hz, CH), 125.2 (s), 139.81 (s), 149.48 (s). 31P{1H}

NMR (d6-DMSO): d = 0.68 (s). IR (KBr), t (cm-1): 3335,

3170, 2870, 1598, 1517, 1477, 1340, 1254, 1223 (P=O),

1100, 1039, 985, 928 (P–N), 843, 782, 745, 541, 479.

2-(4-Methyl-phenoy)-1,3,2-oxazaphosphorinane-

2-oxide

   (5)       4-CH3C6H4OP(O)[NHCH2CH2CH2O] 

Yield: 47%, m.p. 84–85�C. Anal. Calc. for C10H14NO3P:

C,54.32%; H,7.46%; N,5.76%;. Found: C, 54.31%; H,

7.43%; N, 5.73%. 1H NMR (d6-DMSO): d = 1.61 (m, 1H,

CH2), 1.83 (m, 1H, CH2), 2.26 (s, 3H, CH3), 3.11 (m, 2H, N–

CH2), 4.31 (m, 2H, O–CH2), 5.29 (m, 1H, NH), 7.09 (d,
3J(H,H) = 8.3 Hz, 2H, Ar–H), 7.15 (d, 3J(H,H) = 8.3 Hz,

2H). 13C NMR (d6-DMSO): d = 20.21 (s, 1C, CH3), 25.85

(d, 3J(P,C) = 7.04 Hz 1C, CH2), 40.68 (d, 2J(P,C) = 3.5 Hz,

1C, CH2), 69.73 (d, 2J(P,C) = 7.66 Hz, 2C, CH2), 119.75 (d,
3JP,C = 4.67 Hz, 2C, CH), 129.92 (s, 2C, CH), 133.26 (s,1C,

C), 148.70(d, 2J(P,C) = 6.78 Hz, 1C, C). 31P{1H} NMR (d6-

DMSO): d = -0.87 (s). IR (KBr), t (cm-1): 3230, 2925,

1737, 1437, 1257, 1218 (P=O), 1166, 990, 932, 910 (P–N),

869 (P–N), 818, 763, 682, 634, 479.

2-(N-4-Nitrobenzueil)-1,3,2-oxazaphosphorinane-

2-oxide

(4-NO2)C6H4CONHP(O)[NHCH2CH2CH2O]        (6)           
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Yield: 75%, m.p. 219�C. Anal. Calc. for C10H12N3O5P:

C,42.11%; H,4.24%; N,14.73%;. Found: C, 42.07%;

H,4.33%; N,14.68%. 1H NMR (d6-DMSO): d 1.67 (d,
2J(H,H) = 13.9 Hz, 1H), 1.86 (m, 1H), 3.11 (dm, 3J(P,H) =

22.0 Hz, 1H), 3.23 (t, 1H), 4.33 (m, 2 H), 5.36 (s, 1 H, NHa-

mine), 8.15 (d, 3J(H,H) = 8.2 Hz, 2 H), 8.30 (d, 3J(H,H) =

8.2 Hz, 2 H), 9.85 (s, 1 H, NHamide).
13C NMR (d6-DMSO): d

25.59 (d, 3J(P,C) = 7.4 Hz), 40.48 (s), 69.30 (d, 2J(P,C) =

7.7 Hz), 123.38 (s), 129.54 (s), 139.00 (d, 3J(P,C) = 9.2 Hz),

149.47 (s), 167.13 (s). 31P{1H} NMR (d6-DMSO):d = -2.16

(s). IR (KBr, cm-1): 3230 (NH), 3105 (NH), 2870, 1686

(C=O), 1515, 1465, 1343, 1260, 1229 (P=O), 1202, 1100, 988,

880 (P–N), 852 (P–N), 715, 498.

2-(N-4-phenylsulfonyl)-1,3,2-diazaphosphorinane-

2-oxide

 (7) 4-NH2SO2C6H4NHP(O)[NHCH2CH2CH2NH]

Yield: 69%, m.p. 193.5�C. Anal. Calc. for C9H15N4O3PS:

C, 37.24%; H, 5.21%; N, 19.30%. Found: C, 37.21%; H,

5.18%; N, 19.25%. 1H NMR (d6-DMSO): d 1.54 (s, 2 H,

CH2), 3.04 (d, 3J(P,H) = 24.9 Hz, 2H, CH), 3.15 (s, 2H, CH),

4.46 (s, 2 H, NHamine), 6.80 (b, 2H, NHsulf), 7.19 (d,
3J(H,H) = 8.4 Hz, 2H), 7.58 (d, 3J(H,H) = 8.4 Hz, 2H), 7.66

(d, 2J(P,NH) = 9.8 Hz 1H, NHamide).
13C NMR (d6-DMSO):

d 26.78 (d, 3J(P,C) = 7.6 Hz, 1C, CH2), 41.71 (s), 116.45 (d,
3J(P,C) = 6.7 Hz, 2C, CH), 126.49 (s), 134.21 (s), 146.63 (s).
31P{1H} NMR (d6-DMSO): d 5.13 (s). IR (KBr), t (cm-1):

3320 (N–H), 3195(N–H), 2930, 1588, 1490, 1468, 1332,

1305, 1178 (P=O), 1143 (SO2), 1086, 918 (P–N), 825 (P–N),

536.

Cell culture and growth inhibition assay

In order to study the degree of selectivity of the cytotoxic

activity of the compounds under investigation, assays using

healthy cells (Human Peripheral Blood Mononuclear Cells)

were carried out on some compounds. The compounds

selected were those that showed activity in tumor cells.

Isolation and culture of human peripheral blood

mononuclear cells lymphocytes

Separation of lymphocyte was done according to the fol-

lowing procedure (Noble et al., 1968): defibrinated or anti-

coagulant-treated blood is diluted with an equal volume of

phosphate buffered saline (PBS) and layered carefully over

Ficoll-Paque PLUS (without intermixing) in a centrifuge

tube. After a short centrifugation at room temperature (typ-

ically at 400 rpm for 30–40 min), lymphocytes together with

monocytes and platelets are harvested from the interface

between the Ficoll-Paque PLUS and sample layers. This

material is then centrifuged twice in balanced salt solution to

wash the lymphocytes and to remove the platelets.

In vitro antitumor assays

For evaluation of antiproliferative activity of CP and

compounds 1–9, three types of cells, i.e. K562 cells

(5 9 103 cells/well), MDA-MB-231 cells (2.5 9 103 cells/

well), and HepG2 cells (3 9 103 cells/well), were plated in

96-multiwell microtiter plate for 24 h before treatment

with the test compounds to allow attachment of cell to the

wall of the plate. Cells were maintained in RPMI medium

(Gibco BRL) supplemented with 10% fetal bovine serum,

2% L-glutamine (Gibco BRL), penicillin (100 U/ml), and

streptomycin (100 lg/ml) at 37�C in an atmosphere

humidified with 5% CO2 and 95% air. Cells were seeded in

96-well cell culture plates and treated on the second day

with the candidate drugs.

Test compounds stock solutions were prepared by dis-

solving of each compound in DMSO and then aliquots of

stock solutions further diluted with sterile RPMI to the

required concentration, such that the total DMSO concen-

tration did not exceed 2%. At this concentration, DMSO was

found to be nontoxic to the cells tested. As a control, a

solution containing 2% DMSO in RPMI was used. Various

concentrations of compounds 1–9 were added to each well in

triplicate at 37�C with 5% CO2 in the incubator for 24, 48,

and 72 h. After incubation for the indicated times, the cell

number was estimated by the MTT assay as described in the

literature (Mosmann, 1983). After treatment, 20 ll of

aqueous MTT solution (5 mg/ml) was added and incubated

for 3–4 h at 37�C in an atmosphere humidified with 5% CO2

and 95% air. After incubation, the medium/MTT mixtures

were removed, and formazan crystals were dissolved in

200 ll DMSO/well. Optical densities at 540 nm were

measured with an ELIZA plate reader (Labsystems Multi-

scan, MS). The IC50 values of compounds 1–9, CP, and

sulfonamide (SA) for 50% cell death were measured after

48 h of incubation. Statistical analyses were performed

using GraphPad prism software, version 5 (GraphPad soft-

ware) so that using nonlinear regression modeling, one IC50

value was calculated from each set of triplicate wells.
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