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Three-component synthesis of protected secondary and ‘‘for the

first time’’ tertiary homoallylic amines is achieved from carbonyl,

carbamate, and allyltrimethylsilanes using a Re2O7-catalyst under

mild and open flask conditions. Excellent chemoselectivities and

diastereoselectivities were observed.

In recent years, the synthesis of protected homoallylic amines1

via a direct three-component reaction of carbonyl, carbamate,

and semi-metallic allyl-reagents of silicon2,3 or tin4 has become

an attractive strategy, because this eliminated the prior isolation

of sensitive imines.5–7 Unfortunately, these attempts are limited

to the synthesis of secondary homoallylic amines starting from

aldehydes; synthesis of the corresponding tertiary homoallylic

amines from ketones using this strategy still remains elusive.8–11

However, allylsilanes are more desirable as they are less toxic

and more stable than allyltin. But, the low reactivity of

allylsilanes limits their broader synthetic utility and this also

involves the use of stronger Brönsted or Lewis acid-catalysts,

such as BF3�OEt2,
2a,c triphenyl methyl perchlorate,2b

Bi(OTf)3,
2d I2,

2e or phosphomolybdic acid.2f The strongly

acidic conditions for these methods are incompatible with many

functional groups. Also, they suffer from other limitations like,

requirement of stoichiometric Lewis acid,2a,c prior silylation of

the carbamate,2b and long reaction times.2d Therefore, a milder

catalyst aimed towards allylsilane activation to in situ formed

aldimines as well as ketimines is needed. Moreover, achieving the

chemoselectivity of homoallylamine over allyl-alcohol formation

should be an important factor, as imines are relatively less

reactive than carbonyls.7,12

Recently, oxo-rhenium complexes in higher oxidation states

have attracted considerable attention as catalysts for numerous

organic reactions due to their mild reactivity, low toxicity, and air/

moisture-tolerant nature.13 We became interested to utilize those

oxo-rhenium complexes as catalysts for this one-pot reaction

constituted of the carbonyl, carbamate, and allyltrimethylsilane

for the synthesis of the above said amines (Fig. 1).

The efficiencies of various oxo-rhenium catalysts were screened

by treatment of benzaldehyde (1a) and allyltrimethylsilane with

benzyl carbamate (2a) in the presence of 3 mol% of the catalyst in

acetonitrile at room temperature (summarized in Table 1). Amongst

the various oxo-rhenium(V)- and oxo-rhenium(VII)-catalysts, Re2O7

(1.5 mol%) was identified as the most efficient catalyst, with which

the reaction proceeded to completion within 1 h to chemoselectively

provide the desired homoallylic amine 3a (Table 1). A further

survey of the reaction conditions revealed that acetonitrile was

the solvent of choice with respect to the rate as well as the

chemoselective homoallylic amine formation.

Fig. 1 Strategic representations: (a) a one-pot homoallylic amination

of aldehydes, (b) a one-pot homoallylic amination of aldehydes and

ketones using oxo-rhenium(VII) complexes.

Table 1 Optimization of the reaction conditions

Entry Catalyst t/h 3aa [%] 3a/4b

1 None 3 0 —
2 ReCl3O(PPh3)2 3 Trace —
3 ReIO2(PPh3)2 3 Trace —
4 ReCl3O(SMe2)PPh3 1 75 Trace
5 MeReO3 (MTO) 1 40 60/40
6 Re2O7 (1.5 mol%) 1 90 499/o1

a Yield of the isolated product after column chromatography. b Ratio

was determined by 1H NMR spectroscopy of the reaction mixture.
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Encouraged by the efficiency of the Re2O7-catalyst for the above

reaction, the scope of this methodology was examined with a

variety of aldehydes (see Table 2). Various aromatic aldehydes

having –Me, –OMe, –Cl, –NO2, –CN, and –CF3 substitution at the

para-position provided the corresponding secondary homoallylic

amines in high yields (entries 1–6). Different aromatic aldehydes,

like 3-thiophenyl and a-naphthyl aldehydes, were also successfully

examined (entries 7 and 8 respectively).

Even unsaturated aldehydes (cinnamaldehyde 1j and acetylen-

aldehyde 1k) and aliphatic aldehydes (1l–o) provided the corres-

ponding homoallylamine (entries 9–14) without any complication.

Similar reactivity was observed on replacing Cbz– with EtOCO–

(entry 15). Interestingly, benzaldehyde dimethylacetal also

provided the corresponding homoallylic amine (3a) in excellent

yield, as shown in entry 16.

Once the present protocol was well established for various

aldehydes, we were interested to extend it towards ketones,

which have been nearly unachievable so far using these

reagents. Amazingly, the reaction worked smoothly even at

room temperature using 2.5 mol% Re2O7 for cyclohexanone

with Cbz–NH2 (2a) and allyltrimethylsilane to provide the

corresponding tertiary homoallylic amine (entry 1, Table 3).

Eventually, we explored various cyclic and acyclic ketones

(summarized in Table 3). Substituted cyclohexanones, like

2-Me, 4-Me, 4-HO, and 4-tert-butyl cyclohexanones, also were

successful and the obtained yield varied from moderate to high

(entries 3–7). The course of the reaction remained unaltered on

replacement of Cbz–NH2 (2a) by EtOCO–NH2 (2b) (entries 2

and 7). Other cyclic ketones, cycloheptanone (5f) and ada-

mantanone (5g) led to the desired products in good yield.

Furthermore, we also extended the present methodology to

acyclic ketones, which successfully proceeded to provide the

corresponding tertiary homoallylic amines (entries 10–15).

Interestingly, the reactivity also largely depends on the steric

nature of the ketones. For example, upon changing the sub-

stitution from Me- to Et- to iPr-, the observed reactivity

decreased significantly (entries 10 - 11 - 12). Furthermore,

the corresponding dimethylketals of cyclohexanone also equally

worked under the above optimized conditions (entry 16, Table 3).

Finally, we became interested to see the diastereoselectivity

of the present methodology using carbonyls having a pre-existing

stereocenter. This was demonstrated for the tertiary homoallylic

amines obtained from 2-Me, 4-Me, 4-HO, and 4-tert-butyl

cyclohexanones. Encouragingly, the ratio was observed up to

94 : 6 for homoallylic amines from 4-tert-butyl cyclohexanones.

Finally, a series of competitive experiments were performed

to study the chemoselectivity of the present protocol for the

synthesis of secondary vs. tertiary and also between various

tertiary homoallylic amines only (summarized in Table 4).

When an equimolar mixture of aldehyde (1o) and corresponding

methyl ketone 5h was treated with amine 2a and allyl-silane under

the standard reaction conditions, a highly selective secondary

homoallylic amine (3o) was obtained (entry 1) accompanied with

unreactive ketone 5h. The selectivity for the formation of secondary

homoallylic amine (3o) increased on increasing the steric demand

of ketones (e.g., Et- and iPr-) (entries 1- 2- 3). Even excellent

selectivity was observed between the formations of tertiary

homoallylic amines. For example, between Me- vs. Et- or

Table 2 Synthesis of secondary N-protected homoallylic amines

No. R/Ar (1) PG t/h 3, [%]a,b

1 p-MeC6H5-(1b) Cbz 0.5 3b, 90
2 p-MeO–C6H5-(1c) Cbz 0.75 3c, 84
3 p-Cl–C6H5-(1d) Cbz 1 3d, 82
4 p-NO2–C6H5-(1e) Cbz 3 3e, 63
5 p-CN–C6H5-(1f) Cbz 3 3f, 64
6 p-CF3–C6H5-(1g) Cbz 0.3 3g, 87
7 3-Thiophenyl-(1h) Cbz 0.25 3h, 92
8 a-Naphthyl-(1i) Cbz 1 3i, 93
9 Cinnamyl-(1j) Cbz 0.25 3j, 85
10 Ph-CRC-(1k) Cbz 0.25 3k, 98
11 Cyclohexyl-(1l) Cbz 0.3 3l, 96
12 Isobutyl-(1m) Cbz 0.3 3m, 90
13 PhCH2-(1n) Cbz 0.25 3n, 76
14 PhCH2CH2-(1o) Cbz 0.5 3o, 88
15 PhCHO (1a) EtOCO 0.75 3p, 95
16 PhCH(OMe)2 (1p) Cbz 0.50 3a, 96

a Reaction conditions: 1 (1.0 mmol), 2a or 2b (1.2 mmol, 1.2 equiv.), Re2O7

(0.015 mmol, 1.5 mol%), allyltrimethylsilane (1.5 mmol, 1.5 equiv.),

acetonitrile (4 mL), room temperature. b Yield of the isolated products

after column chromatography; Cbz = carbobenzyloxy.

Table 3 Synthesis of tertiary N-protected homoallylic amines

No. Ketone, 5 t/h 6, PG [%]a,b (drc)

1
5a (X = H)

10 6a, Cbz 70 —
2 14 6b, CO2Et 75 —
3 5b (X = 2-Me) 16 6c, Cbz 61 (20 : 80)
4 5c (X = 4-Me) 10 6d, Cbz 82 (10 : 90)
5 5d (X = 4-OH) 6 6e, Cbz 76 (23 : 77)
6 5e (X = 4-tBu) 8 6f, Cbz 90 (6 : 94)
7 6 6g, CO2Et 86 (6 : 94)
8 5f (Cycloheptanone) 10 6h, Cbz 77 —
9 5g (2-Adamantanone) 12 6i, Cbz 68 —
10 5h (R = Me) 10 6j, Cbz 62 —
11 5i (R = Et) 12 6k, Cbz 40 —

12 5j (R = iPr) 12 Cbz — —

13 5k (n = 4, R = Me) 10 6l, Cbz 54 —
14 5l (n = 10, R = Me) 12 6m, Cbz 49 —

15 5m (n = 2, R = Et) 18 6n, Cbz 78 —

16 8 6a, Cbz 76 —

a Reaction conditions: 5 (1.0 mmol), 2a or 2b (1.5 mmol, 1.5 equiv.),

Re2O7 (0.025 mmol, 2.5 mol%), allyltrimethylsilane (2.0 mmol,

2.0 equiv.), acetonitrile (4 mL), room temperature. b Isolated yield after

column chromatography. c Diastereoselectivity (dr) was determined by
1H NMR spectroscopy of the product mixture.
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Me- vs. iPr-ketones, under similar conditions, selective formation

of Me-substituted homoallylic amine was observed (entries 4

and 5). Finally, the selectivity between ketone (5h) and corres-

ponding a,b-unsaturated ketone (5o) was compared; interestingly,

the only obtained product (6j) was from ketone (5h) (entry 6).

In conclusion, we have developed a mild, one-pot, chemo-

selective, open-flask protocol using the Re2O7 catalyst for the

synthesis of protected secondary and ‘‘for the first time’’

tertiary homoallylic amines from carbonyl, carbamate, and

allyltrimethylsilane. This not only has offered a significant

advantage over the previous reports for the synthesis of secondary

homoallylic amines, but has also provided the unachievable

synthetic protocol for tertiary homoallylic amines with high

diastereoselectivity. The chemoselective formation of secondary

as well as tertiary homoallylic amines has also been demonstrated.

Further utilization of such oxo-rhenium complexes for catalytic

reactions and developing their enantioselective variants are our

current focus.
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