Phosphor-Chalkogen-Moleküle als Komplexliganden – Reaktionen mit NbCl₅

Heike Nowottnick, Klaus Stumpf, Roger Blachnik* und Hans Reuter

Osnabrück, Institut für Chemie der Universität

Bei der Redaktion eingegangen am 9. Oktober 1998.

Inhaltsübersicht. Bei der Reaktion von P₄E₃ (E = S, Se) mit NbCl₅ bildeten sich [β -P₄S₄(NbCl₅)₂] und [P₄Se₃(NbCl₅)]. [β -P₄S₄(NbCl₅)₂] kristallisiert in der monoklinen Raumgruppe P2₁/n mit den Gitterkonstanten a = 6,226(1), b = 12,971(2), c = 26,380(2) Å, β = 93,7(1)° (Z = 4). In der Verbindung ist ein Schwefelatom in den basalen P₃-Ring eingeschoben, so daß β -P₄S₄ zentrale Einheit des Komplexes ist. [P₄Se₃(NbCl₅)] hat den gleichen Raumgruppentyp und die Gitterkonstanten a = 11,939(1), b = 18,603(2), c = 12,763(4) Å, β = 90,16(2)° (Z = 8). In beiden Verbindungen sind die Liganden an basale Phosphoratome gebunden.

Phosphorus Chalcogen Molecules as Complex Ligands – Reactions with NbCl₅

Abstract. The reaction of P_4E_3 (E = S, Se) with NbCl₅ yields $[\beta$ -P₄S₄(NbCl₅)₂] and [P₄Se₃(NbCl₅)]. $[\beta$ -P₄S₄(NbCl₅)₂] crystallizes in the monoclinic space group P2₁/n with the lattice parameters a = 6.226(1), b = 12.971(2), c = 26.380(2) Å, β = 93.7(1) (Z = 4). In this compound a sulfur atom is introduced into the basal P₃-ring and the resulting β -P₄S₄ is central unit of the complex. [P₄Se₃(NbCl₅)] crystallizes in the

same space group type with the lattice parameters a = 11.939(1), b = 18.603(2), c = 12.763(4) Å, $\beta = 90.16(2)^{\circ}$ (Z = 8). In both compounds the ligands are coordinated to basal phosphorus atoms.

Keywords: Lewis adducts; cage compounds; niobium pentachloride; phosphorus heterocycles; crystal structure

Einleitung

Im Verlauf von Untersuchungen der Reaktionen von P_4E_3 (E = S, Se) sollte das Verhalten gegenüber Lewissäuren geprüft werden. Aus der elektronischen Struktur von P₄S₃ schlossen Head et al. [5], daß sowohl das apikale P-Atom als auch die drei basalen Phosphoratome ähnlich wie tertiäre Phosphine als Donor wirken können, wobei sich aus der Theorie keine Präferenz für eine dieser Möglichkeiten ergibt. In einer zweiten Reaktionsweise reagiert der basale P₃-Ring wie P₄. Eine Literaturübersicht von Wachter [6] zeigt, daß Umsetzungen, in denen das P₄S₃-Gerüst erhalten bleibt, im wesentlichen diesem Verhalten entsprechen: Sterisch anspruchsvolle Liganden besetzen die apikale Position, Angriffe an den basalen Dreiring erfolgen unter Ringöffnung. Eine Koordination von Liganden über basale P-Atome an ein intaktes P₄E₃-Gerüst wurde allerdings bisher noch nicht gefunden, nur bei Reaktionen von P₄(SiMe₂)₃ fanden Fritz et al. [7, 8] eine basale Anbindung von Liganden.

* Prof. Dr. Roger Blachnik Institut für Chemie der Universität Osnabrück Postfach 44 69
D-49069 Osnabrück Telefon: Int. + 5 41/9 69-28 07
Telefax: Int. + 5 41/9 69-23 70
email: rblachni@rz.Uni-Osnabrueck.de Die Umsetzung von P_4E_3 (E = S, Se) mit NbCl₅ führte nun zu Produkten mit unerwarteter Struktur: $[\beta - P_4S_4(NbCl_5)_2]$ und $[P_4Se_3(NbCl_5)]$. In beiden Fällen sind erstmals die Liganden über basale P-Atome koordiniert. $[\beta - P_4S_4(NbCl_5)_2]$ enthält überraschend nicht mehr P_4S_3 sondern $\beta - P_4S_4$ als zentrale Einheit.

Die Kristallstruktur von $[\beta - P_4S_4(NbCl_5)_2]$

Bei der Reaktion von P₄S₃ mit NbCl₅ in CS₂/Hexan-Lösung entstanden nadelförmige orangerote Kristalle von $[\beta - P_4 S_4 (NbCl_5)_2]$. Die kristallographischen Daten sind in Tabelle 1 zusammengefaßt. Atomlagen und isotrope Auslenkungsparameter, ausgewählte Bindungslängen und -winkel enthalten die Tabellen 2 und 3. Nach der Röntgenstrukturanalyse besitzt [β - $P_4S_4(NbCl_5)_2$] ein zentrales β - P_4S_4 -Gerüst. Zwei der basalen Phosphoratome haben NbCl₅ als Liganden (Abb. 1). Die Niobatome sind verzerrt oktaedrisch von jeweils fünf Chloratomen und einem Phosphoratom umgeben. Aus sterischen Gründen sind die äquatorialen Chlorliganden in Richtung der Nb-P-Bindung geneigt. Die Bindung (2,733 bzw. 2,741 Å) ist etwas länger als in anderen Komplexen mit Nb-P-o-Bindungen (2,616–2,691 Å) [9, 10]. Die oktaedrische Umgebung wird in trans-Position zur Nb-P-Bindung durch ein Chloratom mit kurzem Nb-Cl Abstand (2,251 bzw. 2,253 A) vervollständigt. Die P-S- und

	$[\beta - P_4 S_4 (NbCl_5)_2]$	$[P_4Se_3(NbCl_5)]$
Formeleinheit	$Cl_{10}Nb_2P_4S_4$	Cl ₅ NbP ₄ Se ₃
Relative Molmasse	792.44	630.92
Kristallsystem	monoklin	monoklin
Raumgruppe	P2(1)/n	P2(1)/n
Zellabmessungen	a = 6.226(1) Å	a = 11.939(1) Å
-	b = 12.971(2) Å	b = 18.603(2) Å
	c = 26.380(2) Å	c = 12.763(4) Å
	$\beta = 93.70(1)^{\circ}$	$\beta = 90.16(2)^{\circ}$
Zellvolumen	2126.1(5) Å ³	2835.0(1)Å ³
Zahl der Formeleinheiten	Z = 4	Z = 8
Meßtemperatur	293(2) K	293(2) K
Kristallabmessungen/mm	$0.85 \times 0.23 \times 0.23$	$0.84 \times 0.43 \times 0.23$
Berechnete Dichte	2.476 g/cm^3	2.957 g/cm^3
F(000)	1504	2304
Röntgenstrahlung	Mo–Kα, 0.71073 Å	Mo–Kα, 0.71073 Å
Meßbereich	1.75 to 24.00° θ	1.71 to 22.00° θ
Indexgrenzen	$-1 \le h \le 7, -1 \le k \le 14, -30 \le l \le 30$	$-12 \le h \le 1, -19 \le k \le 1, -13 \le l \le 13$
Absorptionskoeffizient	3.012 mm^{-1}	9.902 mm^{-1}
Absorptionskorrektur	ψ-Scans	<i>ψ</i> -Scans
Anzahl der gemessenen Reflexe	4623	4331
Unabhängige Reflexe	3293 [R(int) = 0.0226]	3483 [R(int) = 0.0368]
davon mit $I > 2\sigma(I)$	2845	2589
T _{min} , T _{max}	0.709, 0.935	0.417, 0.971
Restelektronendichte	$+0.530 \text{ e/Å}^3$; -0.390 e/Å^3	$+0.825 \text{ e/Å}^3$; -0.732 e/Å^3
Zahl der Parameter	182	236
R-Werte	$R_1 = 2.92\%$	$R_1 = 4.32\%$
	$wR_2 = 6.48\%$	$wR_2 = 9.60\%$
	$(\mathbf{I} > 2\sigma(\mathbf{I}))$	$(I > 2\sigma(I))$
	$R_1 = 3.78\%$	$R_1 = 6.65\%$
	$\dot{WR}_2 = 6.86\%$	$\dot{w}R_2 = 10.92\%$
	(alle Daten)	(alle Daten)

Tabelle 1 Kristalldaten und Angaben zur Strukturanalyse von $[\beta$ -P₄S₄(NbCl₅)₂] und [P₄Se₃(NbCl₅)]

Tabelle 2 Atomkoordinaten (×10⁴) und isotrope Temperaturfaktoren (Å²×10³) in der Kristallstruktur von [β -P₄S₄(NbCl₅)₂]

Atom	х	у	Z	U_{eq}
Nb(1)	1823(1)	8874(1)	2000(1)	28(1)
Cl(10)	3362(3)	8600(1)	1262(1)	62(1)
Cl(11)	3635(2)	10341(1)	2283(1)	53(1)
Cl(12)	-1038(2)	9916(1)	1747(1)	53(1)
Cl(13)	-567(2)	7507(1)	1996(1)	50(1)
Cl(14)	4248(2)	7861(1)	2494(1)	53(1)
Nb(2)	2282(1)	7065(1)	4749(1)	32(1)
Cl(20)	3780(3)	6063(2)	5372(1)	80(1)
Cl(21)	-729(2)	7605(1)	5146(1)	48(1)
Cl(22)	3893(2)	8643(1)	4980(1)	46(1)
Cl(23)	4821(2)	6889(1)	4151(1)	55(1)
Cl(24)	151(3)	5906(1)	4292(1)	61(1)
P(1)	500(2)	9111(1)	2961(1)	27(1)
P(2)	694(2)	8409(1)	4015(1)	26(1)
P(3)	3073(2)	9297(1)	3589(1)	32(1)
P(4)	-869(2)	10827(1)	3817(1)	40(1)
S(14)	-1606(2)	10331(1)	3055(1)	37(1)
S(24)	-1385(2)	9522(1)	4282(1)	37(1)
S(34)	2548(2)	10787(1)	3828(1)	45(1)
S(12)	-602(2)	7771(1)	3324(1)	34(1)

Tabelle 3 Ausgewählte inter- und intramolekulare Abstände (in Å) und Winkel (in °) von $[\beta$ -P₄S₄(NbCl₅)₂]

a) Bindungen am	Phosphoratom		
Abstände		Winkel	
P(1)-P(3)	2.241(2)	S(14)-P(1)-S(12)	110.17(7)
P(1)-S(12)	2.121(2)	S(24)-P(4)-S(14)	105.81(7)
P(1)-S(14)	2.081(2)	S(34)-P(4)-S(14)	99.22(7)
P(4) - S(14)	2.130(2)	S(12) - P(1) - P(3)	89.50(6)
P(3) - S(34)	2.065(2)	S(14) - P(1) - P(3)	104.79(6)
P(4) - S(34)	2.127(2)	S(34)-P(3)-P(1)	101.96(7)
P(1)-Nb(1)	2.733(1)	S(12)-P(1)-Nb(1)	116.92(5)
P(2)-Nb(2)	2.741(1)	S(14)-P(1)-Nb(1)	115.26(5)
		P(3)-P(1)-Nb(1)	116.96(6)
		P(2)-P(3)-P(1)	81.43(6)
		P(1)-S(14)-P(4)	104.09(7)
		P(2)-S(12)-P(1)	87.24(6)
		P(3)-S(34)-P(4)	101.32(7)
b) Bindungen des	Liganden		
Nb(1) - CI(10)	2253(1)	Cl(10) = Nb(1) = P(1)	171 83(6)
Nb(1)-Cl(11-14)	2.233(1) 2.312(1)-2.334(1)	Cl(11-14) = Nb(1) = P(1)	$76.63(4)_{-85.89(4)}$
Nb(2)-Cl(20)	2.512(1)-2.554(1) 2.251(2)	Cl(20) = Nb(2) = P(2)	175 27(6)
Nb(2)-Cl(21-24)	2.295(2)-2.344(1)	Cl(20)=Nb(2)=P(2) Cl(21=24)=Nb(2)=P(2)	75.95(4)-82.88(5)
c) kürzester intern	molekularer S-Cl-Abs	stand	
S(14) - CI(13)	3 325		

P–P-Bindungslängen im zentralen Gerüst entsprechen den Abständen in anderen binären Phosphorsulfiden P₄S₃, α -P₄S₅, P₄S₇, β -P₄S₆ und P₄S₁₀ [11–14]. Die Bindungswinkel an den vierfach koordinierten Phosphoratomen (90°–117°) weichen deutlich von einer idealen tetraedrischen Umgebung (109,5°) ab. Für die beiden dreifach koordinierten Phosphoratome sind wegen des freien Elektronenpaares die Bindungswinkel erwartungsgemäß kleiner (81°–102°). Die lange

Nb–P-Bindung und die symmetrisch angeordneten Liganden lassen erwarten, daß Bindungswinkel und -längen des P₄S₄-Käfigs in [β -P₄S₄(NbCl₅)₂] durch die Koordination mit NbCl₅ kaum beeinflußt werden, so daß seine Geometrie der von β -P₄S₄ entsprechen sollte. Auch in anderen Komplexen mit P₄E₃-Gerüsten wurden nur geringe Veränderungen durch Koordination

Abb.1 Perspektivische Darstellung der Molekülstruktur von $[\beta$ -P₄S₄(NbCl₅)₂] mit der Bezeichnung der Atome, die als thermische Schwingungsellipsoide für 30% Aufenthaltswahrscheinlichkeit dargestellt sind.

Abb. 2 Verknüpfung der Moleküle von $[\beta$ -P₄S₄(NbCl₅)₂] zwischen S(14) und Cl(13).

mit Liganden beobachtet [6]. Ein kurzer intermolekularer Abstand von 3,325 Å zwischen S(14) und Cl(13), der um 0,175 Å kleiner ist als der Van der Waals-Abstand (S–Cl = 3,50 Å), führt zur Bildung von Strängen entlang der b-Achse (Abb. 2).

Die Kristallstruktur von [P₄Se₃(NbCl₅)]

Bei der Reaktion von P_4Se_3 mit NbCl₅ in CS₂/Hexan-Lösung entstanden plättchenförmige dunkelrote Kristalle von [$P_4Se_3(NbCl_5)$]. Die kristallographischen Daten sind mit weiteren Angaben zur Strukturbestimmung in Tabelle 1 enthalten, Atomlagen und isotrope Auslenkungsparameter, sowie ausgewählte Bindungslängen und -winkel enthalten die Tabellen 4 und 5. In der Elementarzelle finden sich zwei kristallographisch

Tabelle 4 Atomkoordinaten $(\times 10^4)$ und isotrope Temperaturfaktoren $(\mathring{A}^2 \times 10^3)$ in der Kristallstruktur von $[P_4Se_3(NbCl_5)]$

Atom	x	у	Z	U_{eq}
Nb(1)	3354(1)	7392(1)	9278(1)	25(1)
Cl(10)	2732(3)	8463(2)	9910(3)	55(1)
Cl(11)	4684(3)	7163(2)	10545(2)	44(1)
Cl(12)	2108(2)	6641(2)	10143(3)	46(1)
Cl(13)	2249(3)	7335(2)	7797(2)	50(1)
Cl(14)	4793(3)	7821(2)	8249(2)	45(1)
P(1)	4067(2)	6091(2)	8447(2)	29(1)
P(3)	5804(3)	5714(2)	8325(3)	38(1)
P(2)	4844(3)	6000(2)	6882(2)	39(1)
P(4)	3931(3)	4346(2)	7793(3)	40(1)
Se(14)	2936(1)	5159(1)	8708(1)	39(1)
Se(34)	5631(1)	4524(1)	8508(1)	46(1)
Se(24)	4144(1)	4955(1)	6290(1)	47(1)
Nb(2)	1646(1)	2392(1)	9278(1)	25(1)
Cl(20)	2269(3)	3459(2)	9903(3)	55(1)
Cl(21)	2886(3)	1638(2)	10145(3)	50(1)
Cl(22)	321(3)	2160(2)	10544(2)	44(1)
Cl(23)	209(3)	2817(2)	8247(2)	46(1)
Cl(24)	2756(3)	2337(2)	7805(2)	48(1)
P(20)	931(2)	1089(2)	8447(2)	29(1)
P(21)	-810(3)	710(2)	8326(3)	39(1)
P(22)	159(3)	1001(2)	6882(2)	41(1)
P(23)	1076(3)	-654(2)	7794(3)	39(1)
Se(20)	2063(1)	160(1)	8707(1)	38(1)
Se(21)	-631(1)	-478(1)	8509(1)	46(1)
Se(22)	857(1)	-47(1)	6288(1)	46(1)

Tabelle 5Ausgewählte inter- und intramolekulare Abstände (in Å) und Winkel (in °) von $[P_4Se_3(NbCl_5)]$

a) Bindungen am	Phosphoratom ^{a)}			
Abstände		Winkel		
P(1)–P(3)	2.198(2)	P(3)-P(1)-Nb(1)	126.6(0)	
P(1)-P(2) P(3)-P(2)	2.208(4)	P(2)-P(1)-Nb(1) Se(14)-P(1)-Nb(1)	122.7(1) 115.83(3)	
P(1)-Se(14)	2.222(3)	P(1)-P(3)-Se(34)	102.75(5)	
P(3)-Se(34)	2.235(3)	P(3)-P(1)-Se(14)	109.6(0)	
P(4)–Se(14)	2.248(5)	P(2)-P(3)-Se(34)	105.95(5)	
P(4)–Se(34)	2.253(5)	Se(34)-P(4)-Se(14)	99.6(7)	
Nb(1)-P(1)	2.778(2)	Se(24)-P(4)-Se(34)	99.74(3)	
		P(4)-Se(14)-P(1)	97.3(1)	
		P(4)-Se(34)-P(3)	100.8(6)	
		P(1)-P(3)-P(2)	59.7(2)	
		P(1)-P(2)-P(3)	59.26(0)	
		P(3)–P(1)–P(2)	61.1(2)	
b) Bindungen des	Liganden			
Nb(1)-Cl(10)	2.270(6)	Cl(10)-Nb(1)-P(1)	177.98(7)	
Nb(1)–Cl(11–14)	2.301(3)-2.314(9)	Cl(11-14)-Nb(1)-P(1)	80.7(9)-83.0(1)	
c) kürzester intermolekularer Se-Cl und P-Cl-Abstand				
Se(34)-Cl(11)	3.380			

^{a)} [P₄Se₃(NbCl₅)] enthält zwei symmetrisch voneinander unabhängige Moleküle in der asymmetrischen Einheit. Die inter- und intramolekularen Abstände und Winkel sind als Mittelwerte angegeben.

unterschiedliche Moleküle, in denen jeweils ein basales Phosphoratom mit NbCl₅ verknüpft ist (Abb. 3). Die Nb–P- und Nb–Cl-Abstände sind etwas länger als in [β -P₄S₄(NbCl₅)₂]. Die äquatorialen Cl-Atome sind ebenfalls in Richtung der Nb–P-Bindung geneigt. Die Kernabstände im P₄Se₃-Gerüst sind wiederum mit denen im unkoordinierten Molekül [17] vergleichbar, während die Bindungswinkel stärker abweichen. Ursache sind wahrscheinlich sterische Wechselwirkungen des Liganden mit dem Käfig, der in Richtung des Li-

Abb. 3 Perspektivische Darstellung der Molekülstruktur von $[P_4Se_3(NbCl_5)]$ mit der Bezeichnung der Atome, die als thermische Schwingungsellipsoide für 30% Aufenthaltswahrscheinlichkeit dargestellt sind.

Abb. 4 Verknüpfung der Moleküle von $[P_4Se_3(NbCl_5)]$ zwischen Se(34) und Cl(11) bzw. P(4) und Cl(14).

ganden geneigt ist. Kurze intermolekulare Se–Cl-Abstände von 3,384 und 3,375 Å führen zur Bildung von Dimeren, die ihrerseits über Kontakte von 3,486 und 3,493 Å zwischen P und Cl zu Schichten aus jeweils kristallographisch gleichen Molekülen verbunden sind, die in der Anordnung ABAB gestapelt sind (Van der Waals-Abstände: Se–Cl 3,70 Å, P–Cl 3,65 Å) (Abb. 4).

Diskussion

In den letzten Jahren hat sich gezeigt, daß in der Chemie der Phosphorchalkogenide trotz ihrer langen Geschichte noch immer überraschende Ergebnisse möglich sind, so werden noch immer neue binäre Phosphorchalkogenide gefunden [1–3]. Allerdings fehlen oft Informationen über ihre Bindungslängen und -winkel, da einige Verbindungen nur in Lösung mit Hilfe der ³¹P-NMR-Spektroskopie nachgewiesen wurden, so auch β -P₄S₄ [4]. Seine Struktur ist zwar vom baugleichen β -As₄S₄ [21] her bekannt, es selbst konnte jedoch weder als Verbindung noch in Komplexen in fester Form dargestellt werden, so daß über die Struktur von [β -P₄S₄(NbCl₅)₂] erstmals Informationen über die Bindungsverhältnisse dieses Gerüstes in festem Zustand vorliegen.

Komplexe mit P₄S₃ und P₄Se₃ als Liganden wurden bereits von DiVaira et al. [15-18] und Cordes et al. [19] bei der Umsetzung von d¹⁰-Übergangsmetallkomplexen mit Phosphorchalkogeniden gefunden. In den Fällen, in denen die Bindungen des P₄S₃-Gerüsts erhalten bleiben, ist der Ligand immer an das apikale Phosphoratom gebunden. Eine basale Addition erfolgte stets unter Ringöffnung. Das Verhalten von P₄S₃ und P₄Se₃ in den Reaktionen mit NbCl₅ ist aus verschiedenen Gründen unerwartet. Unabhängig von den Reaktionsbedingungen lagert P₄Se₃ nur ein NbCl₅ an, während P₄S₃ unter Aufnahme eines S-Atoms und Bildung von β -P₄S₄ zwei Liganden koordiniert, so daß mehrere Reaktionsschritte erforderlich sind. Letztere Reaktion erfolgt sowohl in CS₂ als auch in Toluol, so daß eine Übertragung von Schwefel aus dem Lösemittel ausgeschlossen werden konnte. Eine ähnliche Bildung von schwefelreicheren Produkten wurde bei der Umsetzung von As₄S₃ mit [Cp₂*Ru₂(CO)₄] beobachtet, wobei aber Metall-Atome in den molekularen Käfig eingeschoben werden [20]. In beiden NbCl₅-Verbindungen sind die Liganden erstmals an basale P-Atome gebunden, ohne daß das zentrale Phosphor-Chalkogen-Gerüst geöffnet oder wesentlich verändert ist, so daß die Voraussage über die Donor-Eigenschaften der basalen P-Atome von P_4E_3 von *Head* et al. bestätigt werden konnte [5].

Experimentelles

Die Einwaage der Edukte erfolgte in einer Trockenbox unter Stickstoffatmosphäre. Alle Experimente wurden mit der Schlenktechnik durchgeführt. P_4S_3 und P_4Se_3 wurden durch Zusammenschmelzen von stöchiometrischen Mengen der entsprechenden Elemente (roter Phosphor: Fa. Knapsack, 99,999%, Schwefel: Fa. Merck, 99,9%, Selen: Fa. Heraeus, 99,999%) in evakuierten Quarzglasampullen bei ca. 600 K präpariert und anschließend aus CS₂ umkristallisiert. Durch GC-MS Messungen konnte nachgewiesen werden, daß P_4S_3 weder elementaren Schwefel noch β - P_4S_4 enthielt. Das verwendete Niobchlorid stammte von der Firma H. C. Starck GmbH & Co KG (Reinheit ca. 99,999%).

 $[\beta-P_4S_4(NbCl_5)_2]$: 1,0 g (4,5 mmol) P_4S_3 und 2,4 g (9 mmol) NbCl₅ wurden in einem Schlenkrohr mit 10 mL CS₂ versetzt und mit ca. 7 mL Hexan überschichtet. Nach einem Tag entstanden, neben einem gelben Niederschlag, nadelförmige orangerote Kristalle, die sich an der Wandung des Schlenkrohrs befanden. Ausbeute 3%. $[P_4Se_3(NbCl_5)]:$ 1,0 g (2,77 mmol) P_4Se_3 und 1,4 g (5,54 mmol) NbCl₅ wurden in einem Schlenkrohr mit 10 mL CS₂ versetzt und mit ca. 7 mL Hexan überschichtet. Nach drei Tagen entstanden, neben einem orangeroten Niederschlag, plättchenförmige dunkelrote Kristalle, die sich an der Wandung des Schlenkrohrs befanden. Ausbeute 5%.

Beide Verbindungen sind extrem luft- und wasserempfindlich und vollständig unlöslich in allen gängigen organischen Lösemitteln. Deshalb war es nicht möglich, NMR- und IR-Spektren aufzunehmen. In der Mutterlauge konnte mittels ³¹P-NMR-Spektroskopie ausschließlich P_4S_3 bzw. P_4Se_3 nachgewiesen werden.

Röntgenstrukturanalysen

Einkristalle wurden in je eine Glaskapillare eingebracht, unter Vakuum abgeschmolzen und auf einem Siemens P4 Vierkreisdiffraktometer mit Mo–K α -Strahlung vermessen. Die Strukturen wurden mit direkten Methoden gelöst und gegen F^2 mit anisotropen Auslenkungsparametern für alle Atome verfeinert. Die Strukturlösungen und Verfeinerungen erfolgten jeweils mit dem Siemens-SHELXTL/PC-Paket [22]. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen unter Angabe der Hinterlegungsnummer CSD-408674/75 angefordert werden.

Wir danken der DFG und dem Fonds der Chemie für die Unterstützung der Arbeiten.

Literatur

- [1] T. Bjorholm, H. J. Jakobsen, J. Am. Chem. Soc. 1991, 113, 27.
- [2] M. E. Jason, T. Ngo, S. Rahman, *Inorg. Chem.* 1997, 36, 2633.
- [3] R. Blachnik, U. Peukert, A. Czediwoda, B. Engelen, K. Boldt, Z. Anorg. Allg. Chem. 1995, 621, 1637.

- [4] A. M. Griffin, P. C. Minshall, G. M. Sheldrick, J. Chem. Soc. Chem. Commun. 1976, 809.
- [5] J. D. Head, K. A. R. Mitchell, L. Noodleman, N. L. Paddock, *Can. J. Chem.* **1977**, 55, 669.
- [6] J. Wachter, Angew. Chem. 1998, 110, 782; Angew. Chem. Int. Ed. Engl. 1998, 37, 750.
- [7] G. Fritz, R. Uhlmann, Z. Anorg. Allg. Chem. 1980, 465, 59.
- [8] G. Fritz, R. Uhlmann, K. D. Hoppe, Z. Anorg. Allg. Chem. 1982, 491, 83.
- [9] M. L. H. Green, A. K. Hughes, P. C. McGowan, P. Mountford, P. Scott, S. J. Simpson, J. Chem. Soc., Dalton Trans. 1992, 1591.
- [10] F. Calderazzo, C. Felten, G. Pampaloni, D. Rehder, J. Chem. Soc., Dalton Trans 1992, 2003.
- [11] Y. C. Leung, U. J. Waser, Acta Crystallogr. 1957, 10, 574.
- [12] T. K. Chattopadhyay, W. May, H.-G. Schnering, Z. Kristallogr. 1983, 165, 47.
- [13] S. Van Houten, E. H. Wiebenga, Acta Crystallogr. 1957, 10, 156.
- [14] A. Vos, E. H. Wiebenga, Acta Crystallogr. 1955, 8, 217.
- [15] M. DiVaira, M. Peruzzini, P. Stoppioni, J. Chem. Soc., Dalton Trans. 1985, 291.
- [16] M. DiVaira, M. Peruzzini, P. Stoppioni, J. Chem. Soc., Chem. Commun. 1983, 903.
- [17] M. DiVaira, M. Peruzzini, P. Stoppioni, J. Organomet. Chem. 1983, 258, 373.
- [18] M. DiVaira, M. Peruzzini, P. Stoppioni, *Inorg. Chem.* 1983, 22, 2196.
- [19] A. W. Cordes, R. D. Joyner, R. D. Shores, E. D. Dill, *In-org. Chem.* 1974, 13, 132.
- [20] H. Brunner, B. Nuber, L. Poll, G. Roidl, J. Wachter, *Chem. Eur. J.* **1997**, *3*, 57.
- [21] E. J. Porter, G. M. Sheldrick, J. Chem. Soc., Dalton Trans. 1972, 1347.
- [22] G. M. Sheldrick, Program Package SHELXTL Release 5, Analytical X-Ray Instruments Inc., Madison, WI 53719, 1994.