

Carbohydrate Research 305 (1998) 181-191

CARBOHYDRATE RESEARCH

Synthesis of O-(2-O-sulfo- α -L-idopyranosyluronic acid) -(1 \rightarrow 3) -2-acetamido-2-deoxy-4-O-sulfo-Dgalactopyranose trisodium salt, a disaccharide fragment of dermatan sulfate ¹

Laurence Rochepeau-Jobron, Jean-Claude Jacquinet *

Institut de Chimie Organique et Analytique, UPRES-A CNRS 6005, U.F.R. Faculté des Sciences, Université d'Orléans, B.P. 6759, Orléans F-45067, France

Received 16 July 1997; accepted 9 September 1997

Abstract

Benzyl 2-acetamido-2-deoxy- α , and β -D-glucopyranoside were converted in high yield into the corresponding D-galacto analogues through a three-step procedure. These later were transformed in a straightforward manner into benzyl 2-acetamido-4-O-acetyl-6-O-benzyl-2deoxy- α , and β -D-galactopyranoside, respectively, which served as acceptors in glycosylation reactions with variously activated derivatives of methyl 2-O-benzoyl-3-O-benzyl-4-O-chloroacetyl-L-idopyranuronate. Condensation of the chloride derivative promoted by silver triflate led unexpectedly to the formation of the β -linked disaccharide, whereas the trichloroacetimidoyl derivative afforded the expected α -linked disaccharide in 63% yield. O-Dechloroacetylation of this later, followed by 4-methoxybenzylation at O-4 of the uronic acid moiety, saponification of the esters, O-sulfonation of the free hydroxyls, and catalytic hydrogenation provided the title disaccharide in high yield, as its sodium salt. © 1998 Elsevier Science Ltd

Keywords: Synthesis; Disaccharide; Dermatan sulfate; L-Iduronic acid; D-Galactosamine

1. Introduction

Dermatan sulfate (DeS) is a linear, O-sulfonated glycosaminoglycan, first isolated from pig skin [1], and mainly composed of disaccharide repeating units of 2-acetamido-2-deoxy-D-galactose and L-iduronic acid, namely, $[4)-\alpha$ -L-Ido pA- $(1 \rightarrow 3)$ - β -D-GalpNAc-

 $(1 \rightarrow]_n$. Structural studies on DeS from various origins [2] showed differences in the location of the sulfate groups, but the D-galactosamine residues are mainly sulfated at C-4, and the adjacent L-iduronic acid residues can be sulfated or not at C-2 (Fig. 1). This microheterogeneity complicates to a larger extent the biological studies on this polymer. DeS possesses anticoagulant, profibrinolytic, and antithrombotic properties associated with its ability to inhibit thrombin by potentiating of heparin cofactor II (HCII) [3]. This activation of HCII is associated with disulfated sequences, namely, $[4)-\alpha$ -L-Ido $pA2SO_3$ -(1)

^{*} Corresponding author.

¹ This work was presented at the XVIIIth International Carbohydrate Symposium, Milan, Italy, 1996, Abstract BP234.

 \rightarrow 3)- β -D-GalpNAc4SO₃-(1 \rightarrow]_n, and the active site was first postulated to be an hexasaccharide sequence [4], and more recently, a nonasaccharide [5]. However, all these isolated fragments have a lower activity with respect to the parent polymeric DeS, since longer polyanionic chains are required [3] for the formation of a ternary complex with thrombin. It has also been postulated that DeS should be a potential high-affinity ligand for membrane proteins of NK lymphocytes [6], thus, playing a prominent role in cellular recognition. Some fragments of DeS have been synthesized, such as methyl glycoside derivatives of the basic monosulfated disaccharide (nonsulfated at position 2 of the L-iduronic acid moiety) [7,8], or an hexasaccharide containing three disulfated disaccharide residues [9], but the preparation of the basic disulfated disaccharide has never been reported.

Within the frame of a programme devoted to the synthesis of glycosaminoglycan fragments [10], we now report on for the first time a preparation of the title disulfated disaccharide.

	R
8	H
9	Piv

2. Results and discussion

The preparation of D-galactosamine derivatives which could serve as acceptors was first examined. Since D-galactosamine is a rare, thus, expensive sugar, its derivatives are generally prepared by azidonitration of D-galactal [11], followed by subsequent protection and/or activation. This route was used for the previously reported synthesis of DeS fragments [7–9]. We also demonstrated [12,13] that selective inversion of configuration at C-4 of D-glucosamine derivatives, a route still explored by several groups [14,15], was efficient and well-suited for the preparation of Dgalactosamine synthons which could be used for the synthesis of glycosaminoglycan fragments. Thus, we first focused on the preparation of benzyl galactosaminides 3 and 10 from the easily available D-gluco analogues.

— ••		
۲ı	g.	

Treatment of benzyl 2-acetamido-2-deoxy- α -Dglucopyranoside 1 [16] with pivaloyl chloride (2.8 equiv.) in pyridine at 0 °C afforded the 3,6-di-Opivaloyl derivative 2 in 87% yield. Trifluoromethanesulfonylation of 2 with triflic anhydride and pyridine in 1,2-dichloroethane at -15 °C followed by treatment in situ with water and heating at 90 °C gave a mixture [13] of 3,4- and 3,6-di-O-pivaloyl-D-galacto intermediates (not described in Section 3), which was directly O-deacylated with methanolic sodium methoxide to afford the known crystalline triol 3 in 83% yield (72% yield from 1). The physical data for 3 are in agreement with those reported [17] for a compound obtained from 2-acetamido-2-deoxy-Dgalactopyranose by Fischer glycosylation with benzyl alcohol, followed by 4,6-O-benzylidenation and subsequent hydrolysis of the 4,6-acetal. The route described here, and the overall yield obtained from inexpensive D-glucosamine compares well with those previously reported.

A similar sequence was achieved in the β -D-series starting from benzyl 2-acetamido-2-deoxy- β -D-glucopyranoside 8 [18], *via* the 3,6-di-*O*-pivaloyl derivative 9, to afford crystalline 10 in 75% yield. The physical data for 10 are in agreement with those reported [19] for a derivative prepared from 2acetamido-2-deoxy-D-galactose via the intermediate corresponding acetylated methyl oxazoline.

Selective protection at O-4 and 6 was next examined, following the initial strategy for the synthesis of glycosaminoglycan fragments [20] in which the positions to be *O*-sulfonated were first protected by ester groups, while permanent benzyl ethers were used for standing hydroxyls. Treatment of **3** with neat 2,2-dimethoxypropane [21] under acid catalysis gave the thermodynamically favoured 3,4-*O*-isopropylidene derivative 4 in 88% yield, with only traces of the 4,6-isomer. Benzylation of 4 with benzyl bromide and barium hydroxide in N, N-dimethylformamide gave 5 in 91% yield, which was treated with aqueous acetic acid at 100 °C to afford crystalline 6 in 89% yield (71% from 3). The physical data for 6 are in agreement with those reported [22] for an amorphous compound obtained by reductive cleavage of the corresponding 4,6-O-benzylidene derivative. Selective acylation at O-4 was then achieved through formation of the 3,4-orthoester derivative with trimethyl orthoacetate under acid catalysis followed by its regioselective opening [23] in acidic medium to give crystalline 7 in 85% yield. The signal for H-4 (δ 5.37 ppm) in the ¹H NMR spectrum of **7** established clearly the acylation at O-4, as well as the D-galacto configuration ($J_{3,4}$ 3.2, $J_{4,5}$ 0.8 Hz).

A similar sequence was attempted in the β -D-series. Treatment of 10, as described for the preparation of 4, gave 11 in 76% yield, and benzylation of 11 gave **12** in 85% yield. The J values ($J_{2,3}$ 8.5, $J_{3,4}$ 5.5, $J_{4,5}$ 2.0 Hz) observed for 11 and 12 strongly suggested a significant deviation from the expected ${}^+C_1$ conformation in solution, which was not the case in the α -D-series. Treatment of 12 with aqueous acetic acid at 100 °C, as described for the preparation of 6, caused extensive hydrolysis of the benzyl glycoside, while a similar treatment at 50 °C afforded cleanly 13. The J values observed for 13 were in agreement with those expected for a derivative retaining the usual ${}^{+}C_{\perp}$ conformation in solution. Treatment of 13, as described for the preparation of 7, gave a complex mixture of acetylated derivatives which could not be easily separated. Careful examination of the reaction showed that the initial formation of the 3,4-orthoester was sluggish, and that this later could not be isolated without extensive degradation. However, treatment of 13 with *tert*-butyldimethylsilyl chloride and imidazole in N, N-dimethylformamide followed by conventional acetylation afforded 14 in 61% overall yield. *O*-Desilylation of **14** with tetrabutylammonium fluoride in tetrahydrofuran was accompanied by extensive O-deacetylation, while treatment with aqueous hydrochloric acid in tetrahydrofuran afforded crystalline 15 in 91% yield. Both derivatives 13 and 14 retained the expected ${}^{+}C_{+}$ conformation, as demonstrated by the J values from their ¹H NMR spectra. To the best of our knowledge, such a clear-cut difference of behaviour in similar reactions between α and β -anomers was not observed previously.

	ĸ	K	K
18 20 22 23	H OBn H H	OBn H OBn OBn	ClAc ClAc H MPM

	R	R¹
19	H	OBn
21	OBn	H

	R	R ¹	R ²	R ³
24	H	Bn	H	MPM
25	Na	Bn	SO ₃ Na	MPM
26	Na	H	SO ₃ Na	H

Derivatives of methyl 2-O-benzoyl-3-O-benzyl-4-O-chloroacetyl-L-idopyranuronate, i.e., chloride 16 and trichloroacetimidate 17 [24] were tested as Liduronic acid donors in glycosylation reactions with acceptors 7 and 15. Condensation of 17 (mixture of anomers) with 7 (1 equiv.) in dichloromethane at -78 °C, with trimethylsilyl triflate as a catalyst, afforded the expected α -linked disaccharide 18 in 63% yield, along with its β -linked isomer 19 (27%). The same reaction, conducted at 0 °C, gave a $\sim 1:1$ mixture of isomers with the same overall yield. Variations of the solvent or the catalyst did not significantly improved the selectivity. A similar coupling of 17 with the β -linked acceptor 15 gave a much lower yield (52%) of disaccharides 20 and 21 with the same selectivity. That 19 and 21 were β -anomers rather than ortho-esters was evident from their NMR spectra (δ 5.08 and 5.11 for the signals for H-2', and δ 101.21 and 101.42 for the signals for C-1', respec-

Table 1

'H	NMR	data	for	disaccharide	derivatives	18–26 ^a
----	-----	------	-----	--------------	-------------	---------------------------

tively). Such a difference of behaviour between similar, but anomerically different acceptors, was still observed [25], but is difficult to rationalise. Surprisingly, coupling of the more easily available [24] chloride 16 with 7 or 15 in dichloromethane, and silver triflate as a promoter, with or without added base (sym-collidine, not described in Section 3), afforded very sluggishly, but exclusively, the β -linked disaccharides 19 and 21 in 70 and 60% yields, respectively. Silver triflate is a soluble catalyst supposed to cause abstraction of the anomeric halogen, but in the case described herein, it seems to react as an insoluble silver salt, i.e., silver silicate [26], through a push-pull-like mechanism in which complete inversion of configuration at C-1 was observed. The presence of a stereocontrolling auxiliary (benzoyl group) at C-2 had apparently no directing effect in this reaction. The low leaving-group character of the anomeric halogen is certainly due, at least partially,

Chemical shifts (δ , ppm)	Compo	ounds							
	18 ^b	19	20	21	22	23	24 ^c	25°	26 ^d
H-1	5.21	4.97	4.90	5.05	5.10	5.04	4.93	4.97	5.22, 4.75
H-2	5.07	4.67	4.68	4.58	4.55	4.51	4.38	4.48	4.35
H-3	4.41	3.96	3.80	3.90	4.03	4.20	3.88	4.32	4.24
H-4	5.89	5.42	5.51	5.46	5.51	5.43	4.09	4.74	4.98, 4.92
H-5	4.31	4.14	3.80	3.55	4.03	3.91	3.90	4.10	3.95, 3.80
H-6a,6b	3.64	3.44	3.55	3.55	3.46	3.37	3.63	3.81	3.80
NH	5.97	5.65	5.78	5.64	6.26	5.95	_	_	
CH_3CO	1.88	2.06	1.89	1.89	1.98	1.92	1.92	1.97	2.08, 2.07
5	1.62	1.61	1.84	1.73	1.97	1.76	_	_	_
H-1′	5.85	5.17	5.65	5.14	5.48	5.31	4.95	5.28	5.38, 5.36
H-2′	4.72	5.08	5.13	5.11	5.50	5.51	4.37	5.17	4.33
H-3′	4.15	3.93	4.27	3.90	4.33	4.19	4.09	4.32	4.39
H-4′	5.92	5.33	5.48	5.38	3.73	4.40	4.50	4.84	4.33
H-5′	5.26	5.15	5.28	5.15	5.14	5.30	4.02	4.54	4.60
$COOCH_3$	3.24	3.78	3.67	3.79	3.72	3.73	_	_	_
OCH_3	_		_	-		3.63	3.67	3.68	
$COCH_2CI$	3.76	3.92	4.15	4.01		_	-	_	
Coupling constants (J, in H	H_Z)								
1,	3.5	3.5	8.5	8.5	3.5	3.5	3.5	3.5	3.5, 8.0
	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.0	10.5
$\tilde{\Gamma}_{3,4}^{,0}$	3.5	3.0	3.5	3.5	3.5	3.5	3.0	3.0	3.0
$I_{4.5}^{\alpha \pi}$	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
/ _{2 NH}	9.0	10.0	8.0	8.0	10.0	8.5	_	_	_
/	6.0	1.0	7.5	1.0	6.0	1.5	4.0	3.5	1.0, 1.0
/ _{2'3'}	6.0	2.5	5.5	2.5	6.0	2.5	5.5	6.5	3.0
$\int_{\lambda' A'}^{\infty}$	2.5	2.5	2.5	2.5	3.5	2.5	2.5	3.5	3.0
$\int_{\mathbf{a}',5'}$	2.5	2.0	2.5	2.0	2.0	1.5	1.5	2.5	2.0

^aFor solutions in CDCl₃, unless otherwise stated.

 $^{\circ}D_2O$, equilibrium.

 $^{^{}h}C_{6}D_{6}$

^cCD₃OD.

to the strong electron-withdrawing effect of the 5carboxymethyl group in 16, but this phenomenon was not encountered with trichloroacetimidate 17. These results are in agreement with recent observations [27] showing that trichloroacetimidates appear as best candidates for the activation at the anomeric centre of L-iduronic acid derivatives. *O*-Dechloroacetylation of 18 with thiourea afforded 22 in 75% yield, which is available for further chain extension at the non-reducing end [24].

For the preparation of the target molecule 26, protection at O-4 of the L-iduronic acid moiety by an hydrogenolyzable group was required. Treatment of 22 with 4-methoxybenzyl trichloroacetimidate, conveniently prepared [28] by phase-transfer catalysis, and triflic acid as a catalyst, afforded 24 in 84% yield. Similar treatment of 22 with benzyl trichloroacetimidate [29] gave a very low yield of benzylated derivative, as reported [30] for a similar reaction on an heparin disaccharide derivative. Saponification of both benzoate and methyl esters was achieved through treatment [31] of 23 with lithium hydroperoxide followed by methanolic sodium hydroxide and acidification to afford the acid 24 in 84% yield. No β -elimination reaction was observed under these conditions. O-Sulfonation of 24 with sulfur trioxide-trimethylamine complex in N,N-dimethylformamide at 50 °C followed by ion-exchange chromatography gave the disulfate 25, as its sodium salt, in 83% yield. Comparison of the ¹H NMR spectra of 25 and 24, in deuterated methanol, showed the expected [7,32] downfield shifts (-0.65 and)-0.80 ppm) of the signals for GalNAc H-4 and IdoA H-2, respectively. Final hydrogenation of 25 with Pd-C in aqueous methanol afforded the target molecule 26 in 97% yield. The NMR data for 26 are in agreement with the postulated structure. The low Jvalues observed for the 2-O-sulfonated L-iduronic acid residue (Table 1) indicate that this later retains in solution almost exclusively a ${}^{1}C_{4}$ conformation, which was not the case for its non-sulfated analogue [7].

In conclusion, a convenient preparation of Dgalactosamine acceptors from inexpensive D-glucosamine was reported. Coupling of the α -linked acceptor 7 with trichloroacetimidate 17 followed by *O*sulfonation and deprotection allowed the preparation of the title disaccharide in a straightforward manner. Unexpected behaviour of chloride 16 in glycosylation reaction promoted by silver triflate was highlighted. The target molecule 26 is currently being evaluated in biological assays.

3. Experimental

General methods.--Melting points were determined in capillary tubes with a Büchi apparatus and are uncorrected. Optical rotations were measured at 20-25 °C with Perkin-Elmer 141 or 241 polarimeters. ¹H and ¹³C spectra were recorded with Bruker DPX-250 or AM-300 spectrometers at 250 or 300 MHz, and 63 or 75.4 MHz, respectively, with Me_4Si as internal standard, unless otherwise stated. Assignments were based on homonuclear decoupling experiments, and homo- and hetero-nuclear correlations. Unprimed numbers refer to the 'reducing' unit, and primed numbers to the 'non-reducing' unit. C.i. (ammonia)-mass spectra were recorded with a Nermag R 10-10 spectrometer. The purity of the products was determined by TLC on Silica Gel F₂₅₄ (E. Merck), with detection by charring with H₂SO₄. Flash-column chromatography was performed on Silica Gel (E. Merck, 40–63 μ m). Elemental analyses were performed by the Service Central de Microanalyse du CNRS (Vernaison, France).

Benzyl 2-acetamido-2-deoxy-3,6-di-O-pivaloyl-α-Dglucopyranoside (2).—Pivaloyl chloride (10.25 mL, 84 mmol) was added dropwise at 0 °C to a soln of benzyl 2-acetamido-2-deoxy- α -D-glucopyranoside 1 [16] (9.37 g, 30 mmol) in CH₂Cl₂ (50 mL) and pyridine (80 mL), and the mixture was stirred at 0 °C for 2 h, diluted with CH_2Cl_2 (200 mL), washed with saturated aq NaHCO₃, with water, dried (MgSO₄), and concentrated. The residue was eluted from a column $(3 \times 15 \text{ cm})$ of silica gel with 1:1 heptane-EtOAc to give **2** as a foam (12.5 g, 87%); $[\alpha]_{D} + 71^{\circ}$ $(c 1, CHCl_3);$ ¹H NMR $(CDCl_3): \delta$ 7.34 (m, 5 H, Ph), 5.70 (d, 1 H, J 10.0 Hz, NH), 5.12 (dd, 1 H, J_{2.3} 10.5, J_{3.4} 9.0 Hz, H-3), 4.88 (d, 1 H, J_{1.2} 3.5 Hz, H-1), 4.61 (ABq, 2 H, OCH₂Ph), 4.42 (dd, 1 H, J_{5.6a} 4.5, J_{6a,6b} 12.5 Hz, H-6a), 4.30 (m, 2 H, H-2,6b), 3.90 (m, 1 H, H-5), 3.54 (m, 1 H, J_{4,5} 9.0, J_{4,OH} 4.5 Hz, H-4), 2.86 (d, 1 H, HO-4), 1.88 (s, 3 H, NAc),

and 1.23, 1.15 (2 s, 18 H, C(CH₃)₃); MS: m/z 480, [M + H]⁺. Anal. Calcd. for C₂₅H₃₇NO₈: C, 62.61; H, 7.78; N, 2.92. Found: C, 62.73; H, 7.79; N, 2.75.

Benzyl 2-acetamido-2-deoxy- α -D-galactopyranoside (3).—Trifluoromethanesulfonic anhydride (5.8 mL, 34 mmol) was added dropwise at -15 °C, under Ar, to a soln of 2 (12.5 g, 26 mmol) in dry 1,2-dichloroethane (150 mL) and dry pyridine (12.5 mL), and the mixture was stirred for 2 h at this temperature, then allowed to attain room temperature. Water (10 mL) was added, and the mixture was stirred for 2 h at 90 $^{\circ}$ C, then cooled, diluted with CH₂Cl₂ (200 mL), washed with saturated aq NaHCO₃, with water, dried $(MgSO_4)$, and concentrated. A soln of the residue in MeOH (150 mL) was treated with methanolic NaOMe (1 M, 10 mL) for 18 h at room temperature, then deionized with Amberlite IR-120 [H⁺] resin, filtered, and concentrated. The residue was crystallised from 2-propanol to give **3** (6.72 g, 83%); mp 203–205 °C, lit. 203–205 °C [17]; $[\alpha]_{\rm D}$ +210° (c 1, H₂O), lit. $+204^{\circ}$ (*c* 0.98, H₂O).

Benzyl 2-acetamido-2-deoxy-3,4-O-isopropylidene- α -D-galactopyranoside (4).—A mixture of 3 (622) mg, 2 mmol) and (\pm) -camphor-10-sulfonic acid (40 mg) in 2,2-dimethoxypropane (20 mL) was stirred for 48 h at room temperature. Et₃N (0.14 mL) was added, and the mixture was concentrated. A soln of the residue in 10:1 MeOH-water (22 mL) was stirred for 2 h at 65 °C, then cooled, and concentrated. The residue was eluted from a column (50 g) of silica gel with EtOAc containing 0.1% of Et₃N to give sirupy 4 (623 mg, 88%); $[\alpha]_{D}$ + 193° (*c* 1, MeOH); ¹H NMR (CDCl₃): δ 7.30 (m, 5 H, Ph), 5.95 (d, 1 H, J 8.5 Hz, NH), 4.92 (d, 1 H, J₁, 3.5 Hz, H-1), 4.57 (ABq, 2 H, OCH₂Ph), 4.30–3.90 (m, 6 H, H-2,3,4,5,6a,6b), 2.80 (t, 1 H, J 6.0 Hz, HO-6), 1.97 (s, 3 H, NAc), and 1.55, 1.32 (2 s, 6 H, C(Me)₂). Anal. Calcd, for C₁₈H₂₅NO₆: C, 61.52; H, 7.17; N, 3.98. Found: C, 61.42; H, 7.09; N, 3.75.

Benzyl 2-acetamido-6-O-benzyl-2-deoxy-3,4-Oisopropylidene- α -D-galactopyranoside (5).—Benzyl bromide (0.36 mmol, 3 mmol) was added to a mixture of **4** (0.6 g, 1.7 mmol), barium oxide (2.1 g, 13.5 mmol), and barium hydroxide, 8 water (0.47 g, 1.7 mmol) in dry DMF (15 mL), and the mixture was stirred for 20 h at room temperature. MeOH (2 mL) was added, and the mixture was stirred for 2 h, then diluted with EtOAc (100 mL), and filtered through a pad of Celite. The filtrate was washed with cold aq 5% acetic acid, water, saturated aq NaHCO₃, and water, dried (MgSO₄), and concentrated. The residue was eluted from a column (40 g) of silica gel with 3:1 EtOAc-heptane containing 0.2% of Et₃N to give sirupy **5** (684 mg, 91%); $[\alpha]_D$ + 136° (*c* 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.30 (m, 10 H, 2 Ph), 5.61 (d, 1 H, J 9.0 Hz, NH), 4.88 (d, 1 H, J_{1,2} 3.5 Hz, H-1), 4.62, 4.58 (2 ABq, 4 H, 2 OCH₂Ph), 4.28 (m, 1 H, J_{2,3} 9.0 Hz, H-2), 4.20 (m, 2 H, H-4,5), 4.06 (dd, 1 H, J_{3,4} 4.0 Hz, H-3), 3.78 (m, 2 H, H-6a,6b), 1.96 (s, 3 H, NAc), and 1.54, 1.30 (2 s, 6 H, C(Me)₂). Anal. Calcd. for C₂₅H₃₁NO₆: C, 68.00; H, 7.07; N, 3.17. Found: C, 68.07; H, 7.01; N, 3.11.

Benzyl 2 - acetamido - 6 - O - benzyl - 2 - deoxy - α - D galactopyranoside (6).—A soln of 5 (600 mg, 1.36 mmol) in 4:1 acetic acid-water (20 mL) was stirred for 30 min at 100 °C, then cooled, concentrated, and evaporated with water $(3 \times 10 \text{ mL})$. The residue was crystallised from EtOH to give 6 (484 mg, 89%); mp 183–184 °C; $[\alpha]_{\rm D}$ + 151° (*c* 1, Me₂SO); lit. + 145.1° $(c 1.2, Me_2SO)$ [22]; ¹H NMR [(CD₃)₂SO]: δ 7.70 (d, 1 H, J 8.5 Hz, NH), 7.30 (m, 10 H, 2 Ph), 4.71 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1), 4.67 (d, 1 H, J 4.5 Hz, HO-4), 4.51 (ABq, 2 H, OCH₂Ph), 4.48 (s, 2 H, OCH₂Ph), 4.46 (d, 1 H, J 6.5 Hz, HO-3), 4.04 (m, 1 H, J_{2.3} 11.0 Hz, H-2), 3.87 (m, 1 H, H-5), 3.72 (m, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 1.0 Hz, H-4), 3.68 (m, 1 H, H-3), 3.59 (dd, 1 H, J_{5.6a} 5.0, J_{6a,6b} 11.0 Hz, H-6a), 3.51 (dd, 1 H, $J_{5.6b}$ 7.0 Hz, H-6b), and 1.82 (s, 3 H, NAc); MS: m/z 402, $[M + H]^+$.

Benzyl 2-acetamido-4-O-acetyl-6-O-benzyl-2-deoxy- α -D-galactopyranoside (7).—A mixture of **6** (401 mg, 1 mmol), trimethyl orthoacetate (2 mL), and (\pm) -camphor-10-sulfonic acid (40 mg) in dry toluene (20 mL) was stirred for 1 h at room temperature. Triethylamine (0.8 mL) was added, and the mixture was diluted with toluene (30 mL), washed with saturated aq NaHCO₃, and water, dried (MgSO₄), and concentrated. A soln of the residue in 4:1 acetic acid-water (20 mL) was stirred for 10 min at room temperature, concentrated, and evaporated with water $(3 \times 10 \text{ mL})$. The residue was crystallised from EtOAc-heptane to give 7 (380 mg, 85%); mp 146-147 °C; $[\alpha]_{D}$ + 94° (*c* 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.30 (m, 10 H, 2 Ph), 5.81 (d, 1 H, J 8.5 Hz, NH), 5.37 (dd, 1 H, $J_{3,4}$ 3.2, $J_{4,5}$ 0.8 Hz, H-4), 4.96 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1), 4.62, 4.53 (2 ABq, 4 H, 2 OCH_2Ph), 4.34 (m, 1 H, $J_{2,3}$ 10.2 Hz, H-2), 4.12 (m, 1 H, $J_{5.6a} = J_{5.6b} = 5.8$ Hz, H-5), 3.94 (m, 1 H, $J_{3.0H}$ 5.6 Hz, H-3), 3.53 (m, 2 H, H-6a,6b), 3.25 (d, 1 H, HO-3), 2.11 (s, 3 H, OAc), and 1.96 (s, 3 H, NAc); ¹³C (CDCl₃): δ 172.10, 170.91 (2 C=O), 137.77– 125.87 (12 C, aromatic C), 96.61 (C-1), 73.59 (C-4), 70.28, 69.68, 68.90, 68.71 (C-3,5,6, 2 CH₂Ph), 50.82 (C-2), and 22.27, 20.88 (2 CH₃CO); MS: m/z 444, $[M + H]^+$. Anal. Calcd. for $C_{24}H_{29}NO_7$: C, 65.00; H, 6.59; N, 3.16. Found: C, 65.08; H, 6.44; N, 3.11.

Benzyl 2-acetamido-2-deoxy-3,6-di-O-pivaloyl-β-Dglucopyranoside (9).—Benzyl 2-acetamido-2-deoxyβ-D-glucopyranoside 8 [18] (5.0 g, 16.1 mmol) was treated as described for the preparation of 2 to give sirupy 9 (7.34 g, 95%); $[\alpha]_D - 75^\circ$ (*c* 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.30 (m, 5 H, Ph), 5.59 (d, 1 H, J 9.5 Hz, NH), 4.99 (dd, 1 H, $J_{2,3}$ 10.5, $J_{3,4}$ 9.0 Hz, H-3), 4.72 (ABq, 2 H, OCH₂Ph), 4.46 (d, 1 H, $J_{1,2}$ 8.5 Hz, H-1), 4.40 (m, 2 H, H-6a,6b), 4.02 (m, 1 H, H-2), 3.51 (m, 2 H, H-4,5), 3.03 (bs, 1 H, HO-4), 1.88 (s, 3 H, NAc), and 1.25, 1.16 (2 s, 18 H, C(Me)₃); MS: m/z 480, [M + H]⁺. Anal. Calcd. for C₂₅H₃₇NO₈: C, 62.61; H, 7.78; N, 2.92. Found: C, 62.49; H, 7.84; N, 2.69.

Benzyl 2-acetamido-2-deoxy-β-D-galactopyranoside (10).—Compound 9 (1.34 g, 2.8 mmol) was treated as described for the preparation of **3**. Crystallisation of the residue from 2-propanol gave **10** (653 mg, 75%); mp 195–197 °C, lit. 210–212 °C (from MeOH–Et₂O) [19]; $[\alpha]_D - 7^\circ (c \ 1, H_2O)$, lit. -3.4° (c 0.5, H₂O) [19]; $[\alpha]_D - 7^\circ (c \ 1, H_2O)$, lit. -3.4° (c 0.5, H₂O) [19]; ¹H NMR [(CD₃)₂SO + D₂O]: δ 7.32 (m, 5 H, Ph), 4.87 (ABq, 2 H, OCH₂Ph), 4.28 (d, 1 H, J_{1.2} 8.5 Hz, H-1), 3.74 (dd, 1 H, J_{2.3} 10.5 Hz, H-2), 3.60 (dd, 1 H, J_{3.4} 3.5, J_{4.5} 1.0 Hz, H-4), 3.49 (m, 2 H, H-6a,6b), 3.38 (dd, 1 H, H-3), 3.28 (m, 1 H, H-5), and 1.76 (s, 3 H, NAc); MS: *m*/z 312, [M + H]⁺.

Benzyl 2-acetamido-2-deoxy-3,4-O-isopropylidene- β -D-galactopyranoside (11).—Compound 10 (2.96 g, 9.5 mmol) was treated as described for the preparation of 4. The residue was eluted from a column (100 g) of silica gel with 10:1 CH₂Cl₂-MeOH containing 0.2% of Et₃N to give **11** (2.53 g, 76%); mp 178–180 °C (from EtOAc-heptane); $[\alpha]_D = 5^\circ (c \ 1, \text{ CHCl}_3);$ ¹H NMR (CDCl₃): δ 7.30 (m, 5 H, Ph), 6.24 (d, 1 H, J 7.5 Hz, NH), 4.98 (d, 1 H, $J_{1.2}$ 8.5 Hz, H-1), 4.72 (ABq, 2 H, OC H_2 Ph), 4.65 (dd, 1 H, $J_{2,3}$ 8.5, J_{3.4} 5.5 Hz, H-3), 4.14 (dd, 1 H, J_{4.5} 2.0 Hz, H-4), 4.0-3.80 (m, 3 H, H-5,6a,6b), 3.20 (m, 1 H, H-2), 2.56 (bs, 1 H, HO-6), 1.94 (s, 3 H, NAc), and 1.52, 1.32 (2 s, 6 H, C(Me)₂); MS: m/z 352, $[M + H]^+$. Anal. Calcd. for C₁₈H₂₅NO₆: C, 61.52; H, 7.17; N, 3.99. Found: C, 61.33; H, 7.29; N, 4.08.

Benzyl 2-acetamido-6-O-benzyl-2-deoxy-3, 4-Oisopropylidene- β -D-galactopyranoside (12).—Compound 11 (2.53 g, 7.2 mmol) was treated as described for the preparation of 5 to give 12 (2.69 g, 85%); mp 95–97 °C (from heptane–EtOAc); [α]_D –26° (*c* 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.34 (m, 10 H, 2 Ph), 6.16 (d, 1 H, J 7.5 Hz, NH), 5.01 (d, 1 H, J_{1,2} 8.5 Hz, H-1), 4.75, 4.65 (2 ABq, 4 H, 2 OC H_2 Ph), 4.68 (dd, 1 H, $J_{2,3}$ 8.5, $J_{3,4}$ 5.5 Hz, H-3), 4.19 (dd, 1 H, $J_{4,5}$ 2.0 Hz, H-4), 4.08 (m, 1 H, $J_{5,6a} = J_{5,6b} = 5.5$ Hz, H-5), 3.85 (m, 2 H, H-6a,6b), 3.23 (m, 1 H, H-2), 1.90 (s, 3 H, NAc), and 1.52, 1.31 (2 s, 6 H, C(Me)₂); MS: m/z 442, [M + H]⁺. Anal. Calcd. for C₂₅H₃₁NO₆: C, 68.01; H, 7.08; N, 3.17. Found: C, 68.26; H, 7.21; N, 2.96.

Benzyl 2-acetamido -6-O-benzyl-2-deoxy-β-Dgalactopyranoside (13).—A soln of 12 (1.44 g, 3.26 mmol) in 4:1 acetic acid-water (25 mL) was stirred at 50 °C for 40 min, cooled, and concentrated to give 13 as a white powder which could not be induced to crystallise (1.28 g, 98%); $[\alpha]_D - 56^\circ$ (*c* 0.5, MeOH); ¹H NMR [(CD₃)₂SO + D₂O]: δ 7.30 (m, 10 H, 2 Ph), 4.58, 4.50 (2 ABq, 4 H, 2 OCH₂Ph), 4.34 (d, 1 H, $J_{1,2}$ 8.5 Hz, H-1), 4.08 (dd, 1 H, $J_{3,4}$ 3.0, $J_{4,5}$ 1.0 Hz, H-4), 3.78 (m, 2 H, H-2,3), 3.58 (dd, 1 H, $J_{5,6a}$ 3.5, $J_{6a,6b}$ 11.5 Hz, H-6a), 3.56 (m, 1 H $J_{5,6b}$ 3.5 Hz, H-5), 3.42 (dd, 1 H, H-6b), and 1.82 (s, 3 H, NAc); MS: m/z 402, [M + H]⁺. Anal. Calcd. for C₂₂H₂₇NO₆: C, 65.82; H, 6.78; N, 3.49. Found: C, 65.72; H, 6.91; N, 3.52.

Benzyl 2-acetamido-4-O-acetyl-6-O-benzyl-2-deoxy- $3 - O - tert - butyldimethylsilyl - \beta - D - galactopyranoside$ (14).—A mixture of 13 (355 mg, 0.88 mmol), tertbutyldimethylsilyl chloride (0.26 g, 1.77 mmol), and imidazole (0.24 g, 3.54 mmol) in dry DMF (5 mL) was stirred at 80 °C for 2 h, then cooled. The mixture was diluted with EtOAc (30 mL), washed with saturated ammonium chloride, with water, dried (MgSO₄), and concentrated. The residue was eluted from a column (20 g) of silica gel with 1:1 EtOAc-heptane to give a fraction (344 mg, 76%) which was dissolved in pyridine (5 mL). Ac_2O (2.5 mL) and DMAP (20 mg) were added, and the mixture was stirred for 2 h at room temperature, then concentrated. The residue was eluted from a column (30 g)of silica gel with 1:1 EtOAc-heptane to give sirupy **14** (297 mg, 61% from **13**); $[\alpha]_{\rm D} - 32^{\circ} (c \ 1, \text{CHCl}_3);$ ¹H NMR (CDCl₃): δ 7.32 (m, 10 H, 2 Ph), 5.49 (d, 1 H, J 8.0 Hz, NH), 5.31 (dd, 1 H, $J_{3,4}$ 3.5, $J_{4,5}$ 1.0 Hz, H-4), 5.11 (d, 1 H, J_{1,2} 8.5 Hz, H-1), 4.77, 4.56 (2 ABq, 4 H, 2 OCH₂Ph), 4.38 (dd, 1 H, J_{2.3} 10.5 Hz, H-3), 3.86 (m, 1 H, $J_{5,6a} = J_{5,6b} = 6.0$ Hz, H-5), 3.61 (dd, 1 H, J_{6a,6b} 10.0 Hz, H-6a), 3.55 (dd, 1 H, H-6b), 3.42 (m, 1 H, H-2), 2.07, 1.88 (2 s, 6 H, 2 Ac), 0.82 (s, 9 H, C(CH₃)₃), and 0.07, 0.02 (2 s, 6 H, SiCH₃); MS: m/z 588, [M + H]⁺. Anal. Calcd. for C₃₀H₄₃NO₇Si: C, 64.60; H, 7.77; N, 2.51. Found: C, 64.51; H, 7.70; N, 2.62.

Benzyl 2-acetamido-4-O-acetyl-6-O-benzyl-2-deoxy-

 β -D-galactopyranoside (15).—HCl (1 M, 10 mL) was added to a soln of 14 (0.5 g, 0.9 mmol) in THF (20 mL), and the mixture was stirred for 36 h at room temperature, then concentrated. The residue was eluted from a column (40 g) of silica gel with 10:1 $CH_{2}CI_{2}$ -MeOH to give 15 (360 mg, 91%); mp 171–173 °C (from CH₂Cl₂–heptane); $[\alpha]_{\rm D} = -77^{\circ} (c$ 1. CHCl₃); ¹H NMR (CDCl₃): δ 7.32 (m, 10 H, 2 Ph), 5.59 (d, 1 H, J 5.5 Hz, NH), 5.38 (dd, 1 H, J_{3.4} 3.5, J₄₅ 1.0 Hz, H-4), 4.83, 4.56 (2 ABq, 4 H, 2 OCH_2Ph), 4.51 (d, 1 H, $J_{1,2}$ 8.5 Hz, H-1), 3.91 (m, 1 H, J_{2.3} 10.5, J_{3.0H} 2.0 Hz, H-3), 3.80 (m, 3 H, H-2,5, *H*O-3), 3.64 (dd, 1 H, $J_{5.6a}$ 6.0, $J_{6a.6b}$ 12.0 Hz, H-6a), 3.59 (dd, 1 H, $J_{5.6b}$ 6.0 Hz, H-6b), and 2.10, 1.94 (2 s, 6 H, 2 Ac); ¹³C (CDCl₃): δ 172.64, 170.80 (2 C=O), 137.74–127.85 (12 C, aromatic C), 99.03 (C-1), 76.51 (C-4), 73.59, 73.10, 71.86, 70.73, 69.26 (5 C, C-3,5,6, 2 CH₂Ph), 55.77 (C-2), and 23.47, 20.88 (2 CH_3CO); MS: m/z 444, $[M + H]^+$. Anal. Calcd. for C₂₄H₂₉NO₇: C, 65.00; H, 6.59; N, 3.16. Found: C, 64.94; H, 6.59; N, 2.91.

Benzyl O-(methyl 2-O-benzoyl-3-O-benzyl-4-Ochloroacetyl - α , and β - L - idopyranosyluronate) - $(1 \rightarrow 3)$ -2-acetamido-4-O-acetyl-6-O-benzyl-2-deoxy- α -D-galactopyranoside (18) and (19).—A mixture of 17 (57 mg, 92 μ mol), 7 (40 mg, 92 μ mol), and 4 Å powdered molecular sieves (50 mg) in dry CH_2Cl_2 (1 mL) was stirred for 40 min at room temperature, then cooled to -78 °C. Trimethylsilyl triflate in dry toluene (1 M, 13 μ L, 13 μ mol) was added at this temperature, and the mixture was allowed to attain room temperature. Et₃N (8 μ L) was added, and the mixture was diluted with CH₂Cl₂ (5 mL), filtered, and concentrated. The residue was eluted from a column (12 g) of silica gel with 12:1 CH₂Cl₂-acetone to give first the β -linked isomer 19 (15 mg, 27%); $[\alpha]_{\rm D}$ +56° (c 1, CHCl₃); ¹H NMR (CDCl₃): see Table 1; ${}^{13}C$ (CDCl₃): δ 101.21 (C-1'), 96.54 (C-1); MS: m/z 904, $[M + H]^+$ for ³⁵Cl. Anal. Calcd. for C₄₇H₅₀ClNO₁₅: C, 62.43; H, 5.57; N, 1.55. Found: C, 62.20; H, 5.46; N, 1.73.

Next eluted was **18** (35 mg, 63%); $[\alpha]_D$ + 68° (*c* 1. CHCl₃); ¹H NMR (C₆D₆): see Table 1; ¹³C (CDCl₃): δ 170.92, 170.20, 169.67, 167.28, 167.04 (5 C=O), 137.49–127.15 (20 C, aromatic C), 96.83 (C-1), 93.43 (C-1'), 74.77, 71.96, 71.85, 70.29, 69.81, 69.37, 66.83, 66.45 (10 C, C-3,4,5, C-2',3',4',5', 3 OCH₂Ph), 60.16 (C-6), 52.54 (COOCH₃), 48.49 (C-2), 40.22 (COCH₂Cl), and 23.11, 20.81 (2 CH₃CO); MS: *m*/*z* 904, [M + H]⁺ for ³⁵Cl. Anal. Calcd. for C₄₇H₅₀ClNO₁₅: C, 62.43; H, 5.57; N, 1.55. Found: C, 62.49; H, 5.74; N, 1.43. Benzyl O-(methyl 2-O-benzoyl-3-O-benzyl-4-Ochloroacetyl - α , and β - L - idopyranosyluronate) -(1 \rightarrow 3)-2-acetamido-4-O-acetyl-6-O-benzyl-2-deoxy- β -D-galactopyranoside (20) and (21).—A mixture of 17 (42 mg, 68 μ mol) and 15 (30 mg, 68 μ mol) was treated as described for the preparation of 18 to give first the β -linked isomer 21 (10 mg, 16%); [α]_D - 30° (c 1, CHCl₃); ¹H NMR (CDCl₃): see Table 1; ¹³C (CDCl₃): δ 101.42 (C-1'), 99.45 (C-1); MS: m/z904, [M + H]⁺ for ³⁵Cl. Anal. Calcd. for C₄₇H₅₀ClNO₁₅: C, 62.43; H, 5.57; N, 1.55. Found: C, 62.25; H, 5.61; N, 1.42.

Next eluted was **20** (23 mg, 36%); $[\alpha]_{\rm D} - 17^{\circ}$ (*c* 1, CHCl₃); ¹H NMR (CDCl₃): see Table 1; ¹³C (CDCl₃): δ 99.27 (C-1), 93.61 (C-1'); MS: *m/z* 904, [M + H]⁺ for ³⁵Cl. Anal. Calcd. for C₄₇H₅₀ClNO₁₅: C, 62.43; H, 5.57; N, 1.55. Found: C, 62.57; H, 5.60; N, 1.41.

Benzyl O-(methyl 2-O-benzoyl-3-O-benzyl- α -Lidopyranosyluronate) - $(1 \rightarrow 3)$ - 2 - acetamido - 4 - O acetyl- 6-O-benzyl-2-deoxy- α -D-galactopyranoside (22).—A mixture of 18 (91 mg, 0.1 mmol) and thiourea (24 mg, 0.3 mmol) in 1:1 pyridine–EtOH (3 mL) was stirred for 24 h at 80 °C, then cooled, and concentrated. The residue was taken up in CH₂Cl₂ (20 mL), washed with water, dried (MgSO₄), and concentrated. The residue was eluted from a column (6 g) of silica gel with 10:1 CH₂Cl₂–acetone to give 22 (63 mg, 75%); $[\alpha]_D$ +45° (c 1, CHCl₃); ¹H NMR (CDCl₃): see Table 1; MS: m/z 828, [M + H]⁺. Anal. Calcd. for C₄₅H₄₉NO₁₄: C, 65.29; H, 5.96; N, 1.69. Found: C, 65.40; H, 5.88; N, 1.65.

Benzyl O-[methyl 2-O-benzoyl-3-O-benzyl-4-O-(4methoxybenzyl)- α -L-idopyranosyluronate]- $(1 \rightarrow 3)$ -2 $acetamido - 4 - O - acetyl - 6 - O - benzyl - 2 - deoxy - \alpha - D$ galactopyranoside (23).—Triflic acid in CH₂Cl₂ (0.01 M, 1 mL) was added at 0 °C, under Ar, to a soln of **22** (83 mg, 0.1 mmol) and 4-methoxybenzyl trichloroacetimidate [28] (84 mg, 0.3 mmol) in dry CH₂Cl₂ (2 mL), and the mixture was stirred for 2 h at room temperature. Et₃N (50 μ L) was added, and the mixture was concentrated. The residue was eluted from a column (8 g) of silica gel with 3:2 heptane-EtOAc to give 23 (80 mg, 84%); $[\alpha]_{\rm D} + 62^{\circ}$ (c 1, CHCl₃); ¹H NMR (CDCl₃): see Table 1; MS: m/z966, $[M + NH_6]^+$. Anal. Calcd. for $C_{53}H_{57}NO_{15}$: C, 67.15; H, 6.06; N, 1.48. Found: C, 67.22; H, 6.20; N, 1.51.

Benzyl O-[3-O-benzyl-4-O-(4-methoxybenzyl)- α -Lidopyranosyluronic acid]-(1 \rightarrow 3)-2-acetamido-6-Obenzyl-2-deoxy- α -D-galactopyranoside (24).—A soln of 23 (40 mg, 42 μ mol) in THF (4 mL) was treated at -5 °C with 30% H₂O₂ (0.5 mL) and lithium hydroxide (1 M, 1 mL), and the mixture was stirred for 2 h at this temperature and for 16 h at room temperature, then cooled to 0 °C. MeOH (3 mL) and NaOH (4 M, 1 mL) were then added, and the mixture was stirred for 6 h at room temperature, then acidified to pH 2 with HCl (1 M), and extracted with EtOAc (5 × 10 mL). The organic layers were washed with water, dried (MgSO₄), and concentrated. The residue was eluted from a column (3 g) of silica gel with 15:1 CH₂Cl₂-MeOH to give **24** (28 mg, 84%); [α]_D +87° (*c* 1, CHCl₃); ¹H NMR (CD₃OD): see Table 1; MS: *m/z* 788, [M + H]⁺. Anal. Calcd. for C₅₃H₅₇NO₁₅: C, 65.55; H, 6.27; N, 1.78. Found: C, 65.48; H, 6.30; N, 1.75.

Benzyl O-[3-O-benzyl-4-O-(4-methoxybenzyl)-2-Osulfo - α - L - idopyranosyluronic acid] - $(1 \rightarrow 3)$ - 2 acetamido - 6 - O - benzyl - 2 - deoxy - 4 - O - sulfo - α - Dgalactopyranoside, trisodium salt (25).—A mixture of 24 (52 mg, 60 μ mol) and sulfur trioxidetrimethylamine complex (102 mg, 0.73 mmol) in dry DMF (2 mL) was stirred at 50 °C for 3 d, then cooled, and concentrated. The residue was eluted from a column (6 g) of silica gel with 6:1 CH₂Cl₂-MeOH, then from a column (1 × 15 cm) of Sephadex SP-C25 (Na⁺) with 9:1 MeOH–water to give 25 (50 mg, 83%); $[\alpha]_D$ + 54° (*c* 1, MeOH); ¹H NMR (CD₃OD): see Table 1. Anal. Calcd. for C₄₃H₄₆NNa₃O₁₉S₂ · H₂O: C, 50.05; H, 4.69; N, 1.36. Found: C, 49.80; H, 4.75; N, 1.21.

O-(2-O-sulfo- α -L-idopyranosyluronic acid)-(1 \rightarrow 3)-2-acetamido-2-deoxy-4-O-sulfo- α -D-galactopyranose, trisodium salt (26).—A soln of 25 (48 mg, 46 μ mol) in 1:1 MeOH-water (1 mL) was hydrogenated in the presence of 10% Pd-C (50 mg) for 24 h at room temperature. The mixture was directly eluted from a column $(1 \times 5 \text{ cm})$ of 1:1 charcoal–Celite with 1:1 MeOH-water, then freeze-dried to give 26 (28 mg, 97%); $[\alpha]_{\rm D}$ + 7° (*c* 1, equil., water); ¹H NMR (D₂O, 27 °C, internal H₂O, $\delta_{\rm H}$ 4.754): see Table 1; ¹³C (D₂O, internal MeOH, δ_{C} 49.40): δ 178.82, 178.54, 174.13, 173.63 (C=O), 97.65, 96.48 (C-1'), 92.27 $(C-1\beta)$, 88.97 $(C-1\alpha)$, 82.35, 82.20 (C-3), 76.33, 76.29, 76.25, 75.47 (C-4,2'), 72.45, 72.15, 71.65, 70.32, 70.24, 70.04, 69.90, 69.38 (C-5,3',4',5'), 61.53, 60.90 (C-6), 52.10, 51.15 (C-2), and 23.43, 22.16 (CH₃CO). Anal. Calcd. for $C_{14}H_{16}NNa_3O_{18}S_2$: C, 27.15; H, 2.60; N, 2.26. Found: C, 26.90; H, 2.80; N, 2.05.

References

- [1] K. Meyer and E. Chaffee, J. Biol. Chem., 138 (1941) 491-499.
- [2] C.A. Poblacion and Y.M. Michelacci, *Carbohydr. Res.*, 147 (1986) 87–100.
- [3] D.M. Tollefsen, C.A. Pestka, and W.J. Monafo, J. *Biol. Chem.*, 258 (1983) 6713–6716.
- [4] M.M. Maimone and D.M. Tollefsen, J. Biol. Chem., 265 (1990) 18263–18271.
- [5] G. Mascellani, L. Liverani, A. Prete, G.L. Bergonzoni, P. Bianchini, L. Silvestro, G. Torri, A. Bisio, M. Guerrini, and B. Casu, J. Carbohydr. Chem., 14 (1995) 1165–1171.
- [6] K. Bezouska, C.T. Yuen, J. O'Brien, R.A. Childs, W. Chai, A.M. Lawson, K. Drbal, A. Fiserova, M. Pospisil, and T. Feizi, *Nature*, 372 (1994) 150–157.
- [7] J.-C. Jacquinet and P. Sinaÿ, Carbohydr. Res., 159 (1987) 229–253.
- [8] A. Marra, X. Dong, M. Petitou, and P. Sinaÿ, *Carbo-hydr. Res.*, 195 (1989) 39–50.
- [9] F. Goto and T. Ogawa, Bioorg. Med. Chem. Lett., 4 (1994) 619–624.
- [10] G. Blatter and J.-C. Jacquinet, *Carbohydr. Res.*, 288 (1996) 109–125 and references cited therein.
- [11] R.U. Lemieux and R.M. Ratcliffe, *Can. J. Chem.*, 57 (1979) 1244–1251.
- [12] C. Coutant and J.-C. Jacquinet, J. Chem. Soc., Perkin Trans. 1, (1995) 1573–1581.
- [13] F. Belot and J.-C. Jacquinet, *Carbohydr. Res.*, 290 (1996) 79–86.
- [14] P.H. Gross, F. du Bois, and R.W. Jeanloz, *Carbohydr. Res.*, 4 (1967) 244–248.
- [15] L. Lay, F. Nicotra, L. Panza, G. Russo, and E. Adobati, *Helv. Chim. Acta*, 77 (1994) 509–514.
- [16] M.L. Shulman and A.Ya. Khorlin, *Carbohydr. Res.*, 27 (1973) 141–147.
- [17] H.M. Flowers and D. Shapiro, J. Org. Chem., 30 (1965) 2041–2043.
- [18] P.H. Gross and R.W. Jeanloz, J. Org. Chem., 32 (1967) 2759–2763.
- [19] K.L. Matta, E.A. Johnson, and J.J. Barlow, Carbohydr. Res., 26 (1973) 215–218.
- [20] J.-C. Jacquinet, M. Petitou, P. Duchaussoy, I. Lederman, J. Choay, G. Torri, and P. Sinaÿ, *Carbohydr. Res.*, 130 (1984) 221–241.
- [21] G. Catelani, F. Colonna, and A. Marra, *Carbohydr. Res.*, 182 (1988) 297–300.
- [22] S.S. Rana and K.L. Matta, Carbohydr. Res., 116 (1983) 71–81.
- [23] R.U. Lemieux and H. Driguez, J. Am. Chem. Soc., 97 (1975) 4069-4075.
- [24] L. Rochepeau-Jobron and J.-C. Jacquinet, *Carbohydr. Res.*, (1997) in press (CAR 916).
- [25] G. Blatter, J.-M. Beau, and J.-C. Jacquinet, Carbohydr. Res., 260 (1994) 189–202.
- [26] H. Paulsen and O. Lockhoff, *Chem. Ber.*, 114 (1981) 3102–3114.

- [27] C. Tabeur, F. Machetto, J.-M. Mallet, P. Duchaussoy, M. Petitou, and P. Sinaÿ, *Carbohydr. Res.*, 281 (1996) 253-276.
- [28] V.J. Patil, Tetrahedron Lett., 37 (1996) 1481-1484.
- [29] T. Iversen and D.R. Bundle, J. Chem. Soc. Chem. Commun., (1981) 1240–1241.
- [30] G. Jaurand, C. Tabeur, and M. Petitou, *Carbohydr. Res.*, 255 (1994) 295-301.
- [31] H. Lucas, J.E.M. Basten, T.G. van Dinther, D.G. Meuleman, S.F. van Aelst, and C.A.A. van Boeckel, *Tetrahedron*, 46 (1990) 8207–8228.
- [32] J.-C. Jacquinet, *Carbohydr. Res.*, 199 (1990) 153–181 and references cited therein.