Organic & Biomolecular Chemistry

COMMUNICATION

View Article Online View Journal | View Issue

Check for updates

Cite this: Org. Biomol. Chem., 2018, **16**, 8940

Received 6th October 2018, Accepted 10th November 2018 DOI: 10.1039/c8ob02480d

rsc.li/obc

Chiral isoxazolidine-mediated stereoselective umpolung α -phenylation of methyl ketones[†]

Norihiko Takeda, 🝺 *ª Mizuki Furuishi,ª Yuri Nishijima,ª Erika Futaki,ª Masafumi Ueda, 🕩 *ª Tetsuro Shinada 🕩 b and Okiko Miyata 🕩 *ª,b

An effective asymmetric α -phenylation of methyl ketones with triphenylaluminium in the presence of (+)-benzopyranoisoxazolidine has been developed. The reaction proceeds *via* the *in situ* formation of a chiral *N*-alkoxyenamine and the subsequent diastereoselective nucleophilic phenylation to provide α -phenylated products in moderate to good yields, with high enantioselectivities.

Enantioenriched acyclic α-aryl carbonyl compounds are versatile intermediates for the synthesis of biologically active molecules and pharmaceutical agents, including the nonsteroidal anti-inflammatory drug (NSAID) naproxen,¹ antiplatelet agent clopidogrel,² and central nervous system stimulant dexmethylphenidate.3 Therefore, a variety of methodologies have been developed for the asymmetric synthesis of enolizable α -aryl carbonyl compounds. The nickel-catalysed asymmetric crosscoupling of α -bromoketones with any magnesium^{4a} and any zinc reagents^{4b} and the nickel-catalysed reductive acyl crosscoupling of acyl chlorides with secondary alkyl halides⁵ are particularly reliable methods for the synthesis of enantioenriched acyclic α -aryl ketones. A few other methods⁶ have also been developed for this purpose, but they often involve additional steps for the preparation of the starting materials. Therefore, a straightforward synthetic route to enantioenriched acyclic α -aryl ketones from readily available and simple ketones is desirable.

Umpolung of the α -carbon atom in carbonyl compounds is an attractive reaction because it allows the direct introduction of various substituents into the α -position using a nucleophile.^{7–9} However, the asymmetric nucleophilic introduction into the α -position of ketones and their equivalents is scarce.¹⁰ To the best of our knowledge, the asymmetric introduction of a carbon nucleophile into the α -position of ketones is limited to the umpolung α -alkylation of β -ketoimides bearing an Evans' oxazolidinone as a chiral auxiliary using Koser's reagent (PhI(OH)OTs) and dialkylzinc reagents.¹¹ This method involves separate steps for the introduction and removal of the chiral auxiliary, to furnish the desired enantioenriched ketone. Therefore, highly effective asymmetric introduction into the α -position of ketones by an umpolung strategy remains a frontier area of research in synthetic organic chemistry. In this communication, we report the asymmetric α -phenylation of ketones **1** with triphenylaluminium in the presence of (+)-benzopyranoisoxazolidine 3¹² for the preparation of enantioenriched α -phenyl ketones 2 (Scheme 1). Owing to their simplicity, convenience, and high enantioselectivity, asymmetric umpolung α -phenylation of simple ketones is a straightforward synthetic route to enantioenriched acyclic α -phenyl ketones. This protocol is advantageous in that no additional procedure for the introduction and removal of the chiral isoxazolidine is required.

To accomplish the asymmetric nucleophilic α -phenylation of ketones, we first optimized the conditions for the umpolung α -phenylation of ketone **1a** (Table 1). The reaction of **1a** with triphenylaluminium (2 equiv.) in the presence of (+)-benzopyranoisoxazolidine **3** (2 equiv.) at 0 °C gave α -phenylated ketone **2a** in moderate yield with high enantioselectivity (entry 1). The absolute configuration of **2a** could be determined as (*R*) because the optical rotation sign of **2a** and that of the one reported in the literature are negative.¹³ Pleasingly, an increase in the amount of

 $[\]dagger$ Electronic supplementary information (ESI) available: Experimental procedures and characterization data of all products and starting materials. See DOI: 10.1039/c80b02480d

Scheme 1 Asymmetric introduction of a nucleophile into the α -position of ketones through an umpolung process.

^aKobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan. E-mail: miyata@kobepharma-u.ac.jp, masa-u@kobepharma-u.ac.jp,

n-takeda@kobepharma-u.ac.jp

^bGraduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan

Table 1 Optimization of conditions for the asymmetric nucleophilic α -phenylation of 2a

 a Isolated yield. b Determined by HPLC analysis on a chiral stationary phase.

triphenylaluminium (3 equiv.) improved the yield of 2a while ensuring high enantioselectivity (entry 2). In contrast, a significant decrease in the yield was observed when the amount of triphenylaluminium was reduced to 1 equiv. (entry 4).¹⁴

With the optimized reaction conditions in hand (Table 1, entry 2), we next examined the substrate scope of the asymmetric umpolung reaction (Table 2). The asymmetric phenyla-

^{*a*} Reaction conditions: **1** (0.075 mmol), **3** (0.15 mmol), and Ph₃Al (0.23 mmol) in CH₂Cl₂ at 0 °C for 2–3 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis on a chiral stationary phase.

tion of **1b-f** with *p*-methyl, *p*-methoxy, *p*-bromo, *p*-cyano, and Boc-protected *p*-amino groups on the benzene ring proceeded smoothly at 0 °C to give the desired products 2b-f with high enantioselectivities. Moreover, various functional groups (fluoro, trifluoromethyl, methylenedioxy, phenyl, and aryloxy groups) and heterocycles (dihydrobenzofuran and thiophene) were well tolerated in the asymmetric phenylation (2g-m). The asymmetric α -phenylation of **1n** successfully afforded **2n** with good enantioselectivity. However, the reaction of 10, which is one-carbon dehomologated as compared to 1a, gave α -phenylated ketone **20** with low enantioselectivity, possibly because the α -stereocenter of 50 was easily racemized under the reaction conditions. Aliphatic methyl ketones 1p and 1q were also used in this reaction, and the corresponding α -phenylated ketones 2p and 2q were obtained in moderate yields with good enantios electivities.^{15–17}

A plausible reaction pathway for the formation of enantioenriched (R)- α -phenyl ketone 2 is depicted in Scheme 2. This umpolung reaction includes (i) the generation of N-alkoxyenamine A; (ii) coordination with a nucleophilic aluminium reagent $(A \rightarrow B)$; (iii) N–O bond cleavage and a simultaneous nucleophilic attack of the nucleophilic aluminium reagent ($\mathbf{B} \rightarrow \mathbf{C}$); and (iv) the hydrolysis of the imine intermediate C. The stereochemical feature of this reaction can be rationalized as follows. First, the thermodynamically stable (E)-N-alkoxyenamine A would be formed by the condensation of ketone 1 and chiral isoxazolidine 3. When chiral enamine A reacts with triphenylaluminium, two conformations **B** and **B**' can be considered. The σ^* (N–O bond cleavage) and π^* orbitals (enamine moiety) are aligned in both conformations. Conformation B should be favoured over B' due to the steric repulsion between the methyl group and the benzene ring. Therefore, a nucleophilic attack by another triphenylaluminium onto the Si (bottom) face is favoured by the anti-S_N2' displacement, presumably because of the steric inter-

Scheme 2 The proposed reaction pathway and stereochemical feature of asymmetric umpolung phenylation to *N*-alkoxyenamine.

Scheme 3 Asymmetric α -phenylation of biologically active ketones.

Scheme 4 Scalable synthesis and synthetic modification of 2a.

actions with the triphenylaluminium moiety coordinated with the oxygen atoms of the two ethers in the chiral auxiliary.

We next examined the asymmetric α -phenylation of biologically active compounds. The nonacidic NSAID nabumetone and the phosphodiesterase inhibitor pentoxifylline were selected for our asymmetric umpolung reaction (Scheme 3). The asymmetric introduction of a phenyl group into these compounds was successfully achieved to obtain the corresponding α -phenylated ketones **2r** and **2s** in moderate yields, with moderate to good enantioselectivities. Therefore, our protocol can provide an expedient approach to enantioenriched α -phenylmethyl ketones.

It is worth mentioning that the scalable synthesis of α -phenyl ketone **2a** was performed under optimized conditions, and the desired **2a** was obtained in 56% yield with 94% ee when the amount of **1a** was increased to 3 mmol (Scheme 4). The synthetic utility of the current method was demonstrated by applying it to the preparation of optically active phenyl-containing compounds (Scheme 4). The treatment of **2a** with methylmagnesium bromide gave methylated tertiary alcohol **4** in good yield, without a noticeable loss of ee. The effective reduction of **2a** by treatment with NaBH₄ gave secondary alcohol **5** in high yield with high diastereoselectivity.¹⁸

Conclusions

In summary, we have developed an asymmetric umpolung reaction of methyl ketones to prepare α -phenylated ketones with high enantioselectivities. This straightforward method provides rapid access to enantioenriched α -phenylated ketones *via* a simple operation. Further studies to improve the enantioselectivity and extend the catalytic protocol are in progress.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This study was supported by JSPS KAKENHI Grant Number 17K08216 (O.M.).

Notes and references

- (a) P. J. Harrington and E. Lodewijk, Org. Process Res. Dev., 1997, 1, 72; (b) X. Chen, J. Z. M. Fong, J. Xu, C. Mou, Y. Lu, S. Yang, B.-A. Song and Y. R. Chi, J. Am. Chem. Soc., 2016, 138, 7212; (c) C. Chen, H. Wang, Z. Zhang, S. Jin, S. Wen, J. Ji, L. W. Chung, X.-Q. Dong and X. Zhang, Chem. Sci., 2016, 7, 6669.
- 2 (a) G. Castaldi, G. Barreca and A. Bologna, WO 03093276, Dinamite, Dipharma S.P.A., 2003; (b) S.-F. Zhu, Y. Cai, H.-X. Mao, J.-H. Xie and Q.-L. Zhou, *Nat. Chem.*, 2010, 2, 546.
- 3 (a) R. Rometsch, U.S. Patent, 2838519, 1958; (b) M. Prashad,
 B. Hu, O. Repič, T. J. Blacklock and P. Giannousis, Org. Process Res. Dev., 2000, 4, 55.
- 4 (a) S. Lou and G. C. Fu, J. Am. Chem. Soc., 2010, 132, 1264;
 (b) P. M. Lundin, J. Esquivias and G. C. Fu, Angew. Chem., Int. Ed., 2009, 48, 154.
- 5 A. H. Cherney, N. T. Kadunce and S. E. Reisman, J. Am. Chem. Soc., 2013, 135, 7442.
- 6 (a) C. H. Cheon, O. Kanno and F. D. Toste, J. Am. Chem. Soc., 2011, 133, 13248; (b) B. C. Kang, D. G. Nam, G.-S. Hwang and D. H. Ryu, Org. Lett., 2015, 17, 4810; (c) M. Brown, R. Kumar, J. Rehbein and T. Wirth, Chem. – Eur. J., 2016, 22, 4030; (d) R. Doran and P. J. Guiry, J. Org. Chem., 2014, 79, 9112.
- 7 For umpolung reactions at the α-carbon of carbonyl compounds, see: O. Miyata, T. Miyoshi and M. Ueda, *ARKIVOC*, 2013, 60.
- 8 For α-arylation of carbonyl compounds, see:
 (*a*) D. A. Culkin and J. F. Hartwig, *Acc. Chem. Res.*, 2003, 36, 234;
 (*b*) C. C. C. Johansson and T. J. Colacot, *Angew. Chem.*, *Int. Ed.*, 2010, 49, 676.
- 9 (a) T. Miyoshi, T. Miyakawa, M. Ueda and O. Miyata, Angew. Chem., Int. Ed., 2011, 50, 928; (b) T. Miyoshi, S. Sato, H. Tanaka, C. Hasegawa, M. Ueda and O. Miyata, Tetrahedron Lett., 2012, 53, 4188; (c) T. Miyoshi, N. Takeda, M. Fukami, S. Sato, M. Ueda and O. Miyata, Chem. Pharm. Bull., 2014, 62, 927; (d) R. K. Nandi, N. Takeda, M. Ueda and O. Miyata, Tetrahedron Lett., 2016, 57, 2269; (e) N. Takeda, E. Futaki, Y. Kobori, M. Ueda and O. Miyata, Angew. Chem., Int. Ed., 2017, 56, 16342.
- 10 For examples of asymmetric α -oxylation and α -amination of ketones and their equivalents see: (*a*) B. Basdevant and

C. Y. Legault, *Org. Lett.*, 2015, **17**, 4918; (*b*) P. Mizar and T. Wirth, *Angew. Chem., Int. Ed.*, 2014, **53**, 5993; (*c*) D. H. Miles, J. Guasch and F. D. Toste, *J. Am. Chem. Soc.*, 2015, **137**, 7632.

- 11 T. A. Targel, J. N. Kumar, O. S. Shneider, S. Bar, N. Fridman, S. Maximenko and A. M. Szpilman, *Org. Biomol. Chem.*, 2015, **13**, 2546.
- 12 (a) A. Abiko, O. Moriya, S. A. Filla and S. Masamune, Angew. Chem., Int. Ed. Engl., 1995, 34, 793; (b) H. Nemoto, R. Ma, T. Kawamura, M. Kamiya and M. Shibuya, J. Org. Chem., 2006, 71, 6038; (c) A. C. Evans, D. A. Longbottom, M. Matsuoka, J. E. Davis, R. Turner, V. Franckevičius and S. V. Ley, Org. Biomol. Chem., 2009, 7, 747; (d) A. C. Evans, D. A. Longbottom, M. Matsuoka and S. V. Ley, Synlett, 2005, 646; (e) A. Abiko and S. Masamune, Tetrahedron Lett., 1996, 37, 1077.
- 13 (a) S.-M. Lu and C. Bolm, Angew. Chem., Int. Ed., 2008, 47, 8920; (b) T.-L. Liu, T. W. Ng and Y. Zhao, J. Am. Chem. Soc., 2017, 139, 3643.
- 14 The excess amount of Ph₃Al plays an important role in enamine formation because it can trap one equivalent of

water which was *in situ* generated by the condensation reaction of **1a** and **3**.

- 15 Asymmetric α -phenylation of a diethylketone under the optimal reaction conditions gave an α -phenylated ketone in 74% yield with 45% ee, while α -phenylation of cyclohexanone gave the α -phenylated product in 64% yield with 34% ee. In addition, asymmetric α -phenylation of 2-hexanone afforded the corresponding α -phenylated product in 57% yield with 90% ee.
- 16 When **1a** was treated with tri(*p*-tolyl)aluminium in the presence of **3**, an α -(*p*-tolylated) ketone was obtained in 51% yield with 33% ee. An erosion of the enantioselectivity is probably caused by the effect of inorganic salt which was *in situ* generated during the preparation of tri(*p*-tolyl)aluminium (3*p*-tolylMgBr + AlCl₃ \rightarrow *p*-tolyl₃Al + 3MgClBr).
- 17 The use of triethylaluminium for the asymmetric α -ethylation of **1a** gave a complex mixture. However, the reaction of **1a** with triisobutylaluminium in the presence of **3** gave 4-phenyl-2-butanol in 81% yield with 0% ee.
- 18 We have not yet been able to establish the relative stereochemistry of the major diastereomer.