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Abstract 

A novel series of tetrahydroprotoberberine derivatives (THPBs) were designed, 

synthesized and evaluated as selective α1A-adrenergic receptors (AR) antagonists for 

the treatment of benign prostatic hyperplasia. Based on the pharmacophore model of 

the marketed drug silodosin, THPBs were modified by introducing an indole segment 

into their core scaffolds. In calcium assays, 7 out of 32 compounds displayed 

excellent antagonistic activities against α1A-ARs, with IC50s less than 250 nM. Among 

them, compound (S)-27 had the most potent biological activity; its IC50 toward 

α1A-AR was 12.8 ± 2.2 nM, which is 781 and 20 times more selective than that toward 

α1B- and α1D-AR, respectively. In the functional assay using isolated rat tissues, 

compound (S)-27 inhibited norepinephrine-induced urethra smooth muscle 

contraction potently (IC50 = 0.5 ± 0.3 nM), without inhibiting the aortic contraction 

(IC50 > 1000 nM), displaying a better tissue selectivity than the marketed drug 

silodosin. Additional results of preliminary safety studies (acute toxicity and hERG 

inhibition) and pharmacokinetics studies indicated the potential druggability for 

compound (S)-27 which is a promising lead for the development of selective α1A-AR 

antagonists for the treatment of BPH.  

1. Introduction 

Benign prostatic hyperplasia (BPH) is a benign increase in the size of the prostate 

that leads to urinary hesitancy, frequent urination, dysuria and increased risk of lower 

urinary tract symptoms (LUTS).
1,2

 An estimated 50% of men have histological 

evidence of BPH by the age of 50 years and that number increases to 75% by the age 
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of 80 years. As life expectancy rises, so does the occurrence of BPH.
3
 There are two 

components of BPH/LUTS, namely increased size and elevated muscle tone of the 

gland. Therefore, medications are also divided into two categories: those that decrease 

the gland size and those that relax the urethra smooth muscle. 

 

Figure 1. Marketed α1A-AR selective antagonists, tamsulosin and silodosin. 

α1-Adrenergic receptors (α1-adrenoceptors, α1-ARs) belong to the G 

protein-coupled receptor (GPCR) superfamily, and regulate the contraction of smooth 

muscle by activating phospholipase C, followed by the increase of intracellular 

calcium levels.
4,5

 α1-ARs are divided into three subtypes, α1A, α1B and α1D-AR.
6-8

 The 

α1A-AR, expressed mainly in the prostate, bladder and urethra, is considered to play a 

major role in regulating prostatic muscle contraction, while α1D-AR has a minor 

contribution.
4,9

 On the other hand, α1B-AR, expressed predominantly in the heart and 

vascular smooth muscle, is considered a drug target for treating hypertension.
10,11

 α1A 

antagonists are used as anti-BPH agents; however, antagonism of the α1B subtype will 

lead to cardiovascular side effects, such as hypotension.
12,13

 The α1D subtype is 

predominant and functional in human epicardial coronary arteries, and its inhibition 

might result in coronary vasodilation.
14

 In the last two decades, α1A-AR selective 

antagonists, such as the marketed drugs tamsulosin (1) and silodosin (2), have been 

developed to treat BPH/LUTS (Figure 1). These agents have relatively high α1A-AR 
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subtype selectivity and effectively relieve the symptoms of BPH, with reduced side 

effects.
15-18

 However, the cardiovascular adverse effects can still be observed and 

impact blood pressure. Clinical trial results showed that tamsulosin treatment results 

in a significant decrease in mean systolic blood pressure.
19

 Marks et al reported the 

incidence of orthostatic hypotension caused by silodosin is 2.6%.
20

 Recently, 

increasing efforts have been made to identify novel small molecule α1A-AR selective 

antagonists based on the scaffolds of the molecules mentioned above.
21-32

 

Table 1. The predicted target of THPB analogs by SEA, ChemMapper and calcium 

assay evaluation 

Compd. Structure 

Predicted  

Target 

E-value 
a 

Similarity 

Score
b 

Calcium Assay 

(IC50) 

3 

 

α1A-AR 3.75e-8 1.9 5.4 µM 

4 

 

α1A-AR - - 

41.2% inhibition 

@ 10 µM 

5 

 

α1A-AR - - 7.6 µM 

6 

 

α1A-AR - - 462 nM 

a
 SEA E-values against all 246 MDDR activity classes. 

b
 ChemMapper similarity score against the 

ChEMBL database. 
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As a rapid complementary approach to experimental methods, in silico target 

prediction methods had been approved to identify the pharmacological effects of a 

drug.
33,34

 Tetrahydroprotoberberines (THPBs) extracted from the Chinese herb 

Corydalis ambigua, are important and intriguing scaffolds. Herein, to find their 

potential targets, we have used the similarity ensemble approach (SEA)
35

 and 

ChemMapper
36,37 

to predict their potential targets.
33,34

 Through comparison of the 

results derived from the above two methods, adrenergic receptor is an interesting 

unreported target for these compounds, which were therefore selected for further 

biological evaluation. The calcium assay results indicated that THPBs presented 

moderate antagonism against α1A-AR, with sub-micromolar affinities (Table 1, 

compounds 3-6). 

 

Figure 2. THPB analogs and their binding affinities (pKi) on α1-AR. 

With the above results in mind, a literature research was carried out and evidence 

that some THPBs including tetrahydroberberines (THB, 7), l-tetrahydropalmatine 

(l-THP, 4), l- stepholidine (l-SPD, 8) and l-chlorosoulerine (l-CSL, 9), were observed 

to possess weak α1-AR binding affinity and to block phenylephrine-induced 

vasocontraction (Figure 2).
35

  

Based on these findings, we believed that THPB derivatives should be explored 

as a novel class of α1A-AR antagonists for the treatment of BPH/LUTS. Therefore, we 

report the design and synthesis of a series of novel indole-containing THPB 
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derivatives as selective α1A-AR antagonists, as well as the detailed structure-activity 

relationship analysis, in vitro and in vivo biological evaluation, preliminary toxicity 

and pharmacokinetic studies. 

2. Chemistry 

2.1 Design of Target Compounds 

In addition to a chemical similarity approach, pharmacophore models and 

quantitative structure–activity relationship (QSAR) studies have been used frequently 

to design novel α1A-AR antagonists in recent years. Meaningful pharmacophore and 

QSAR models have been established, and several key components of pharmacophores 

were identified in various scaffolds, including the marketed drugs tamsulosin and 

silodosin. 
36-40

  

To design our compounds, silodosin was treated as a model molecule. Interestingly, 

we found that THB has a pharmacophore similar to silodosin. The positive ionizable 

(PI) nitrogens in the center of both molecules are probably crucial for recognition 

between the compound and the receptor. In addition, the two aromatic ring segments 

(Ar) at both ends of the two compounds represent evidence of hydrophobic interaction. 

The alkoxy groups on the aromatic rings are potential hydrogen bond sites (HBS) that 

form interactions with α1-AR. Note that both molecules have an chiral carbon located 

next to the PI nitrogen. These common pharmacophore patterns of the two molecules 

provide a reasonable explanation for the interaction between THB and α1-AR (Figure 

3).  

Page 6 of 54

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 3. Similar pharmacophore models of silodosin and THB. 

Based on these findings, we hypothesized that THB could be modified into 

α1A-AR antagonists with higher affinity and selectivity. In our previous studies, a class 

of indole-containing polycyclic compounds obtained by the gold catalyzed cascade 

reaction was identified as selective α1A-AR blockers with moderate activities.
41

 Other 

indole-based scaffolds have also been reported to exhibit good bioactivities toward 

ARs.
42-46

 Thus, an indole fragment was introduced into THB on its D-ring, such that a 

series of indole-containing THB derivatives were designed and synthesized (Figure 4). 

All synthesized compounds (13-44) were further evaluated for their biological 

activities using calcium mobilization assays. In addition, chiral compounds (S)-18, 

(S)-27 and (R)-27 were also synthesized to explore the influence of the molecular 

configuration (Scheme 2).  

 

Figure 4. The structural optimization for THB 

2.2 Synthetic Procedures of Target Compounds 

The designed compounds were synthesized via the procedures shown in Schemes 

1-3. Condensation of commercially available phenylethanamines and indole-3-acetic 

acids generated amides 10a-u, which were further cyclized under the presence of 
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phosphoryltrichloride (POCl3) to give imines 11a-u in excellent yields, according to 

the procedures of the Bischler–Napieralski reaction. Reduction of the resulting imines 

11a-u with sodium borohydride produced the key amine intermediates 12a-u. 

Cyclization of amines 12a-u via the Pictect–Spengler reaction with various aldehydes 

resulted in the target products 13-35 (Scheme 1). Further deprotection of groups of 

products 32, 34 and 35 gave compounds 36-38, respectively. Compounds 39-44 were 

synthesized by substitution reactions of 37 and 38 with different alkyl bromides 

(Scheme 2). 

Additionally, chiral compounds (S)-18, (S)-27 and (R)-27 were prepared 

according to the procedure outlined in Scheme 3. Asymmetric hydrogenation of 

imines 11b and 11d, catalyzed by a chiral Ru-(II) complex (Noyori’s catalyst)
47-49

 

produced chiral amines (S)-12b, d and (R)-12d, followed by cyclization with 

formaldehyde to give (S)-18, (S)-27 and (R)-27. All target compounds were 

characterized by 
1
H-NMR, 

13
C-NMR and MS (see Experimental Section).
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Scheme 1. Synthesis of compounds 13-35.
a
 

 

a
Reagents and conditions: (a) EDCI, Et3N, CH2Cl2, rt, 8 h; (b) POCl3, CH3CN, reflux; (c) NaBH4, methanol, rt, 8 h; (d) HCOOH, R7CHO, 25–90°C, 2 h.  
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Scheme 2. Synthesis of compounds 36-44.
a
 

 

a
Reagents and conditions: (a) H2, Pd/C, rt, 8h; (b) RBr, K2CO3, acetone, reflux, 2 h. 

 

Scheme 3. Synthesis of compounds (S)-18, (S)-27 and (R)-27.
a 

 

a
Reagents and conditions: (g) (R,R)-Noyori’s catalyst, HCOONa, AgSbF6, La(OTf)3, 

CTAB, H2O, 40 °C, 12 h; (h) (S,S)-Noyori’s catalyst, HCOONa, AgSbF6, La(OTf)3, 

CTAB, H2O, 40 °C, 12 h; (i) HCOOH, 40% HCHO, 25–90 °C, 2 h. 
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3 Results and Discussion 

3.1  Chemistry 

On the basis of the structure features of THB, an indole fragment was introduced on its 

D-ring, and 32 new indole-containing compounds were designed and synthesized. Their 

synthetic routes and chemical structures (13-44) are shown in Scheme 1. In addition, chiral 

compounds (S)-18, (S)-27 and (R)-27 were also synthesized to explore the influence of 

their configuration (Scheme 2). The details of the synthetic procedures and structural 

characterizations are described in the Experimental Section.  

3.2  Structure-Activity Relationship for All Compounds 

All target compounds (13-44, (S)-18, (S)-27 and (R)-27) were evaluated for their 

biological activities toward α1-AR using calcium mobilization assays. The initial screening 

was carried out at a concentration of 10 µM for each compound, and compounds that 

displayed >80% inhibition were further evaluated for their IC50s. The results are 

summarized in Table 2, and the details of the bioassay procedures are described in the 

Experimental Section. As shown in Table 2, twenty compounds demonstrated good 

inhibitory activities, with >80% inhibition at a concentration of 10 uM for each compound. 

Further analysis showed that introducing substituents (alkyl or aryl groups) into the R7 

position was detrimental to the inhibitory potency when R1 and R2 were replaced by a 

methoxyl group (see compounds 13-17, as shown in Table 2 and Scheme 1), respectively. 

However, the introduction of a methylenedioxy group into the R1 and R2 position of the 

scaffold of compound 13 afforded the new compound 18, which displayed an excellent 
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inhibitory effect toward α1A-AR, its IC50 value was 125.0 ± 20.4 nM. Based on these 

positive results, several bulky alkyl and aryl substituents were introduced into R7 position 

of the scaffold of 18 to form compounds 19-22; unfortunately, the introduction of these 

bulky groups caused a substantial loss in inhibitory activity, which suggested that the 

bulky steric hindrance at R7 position might decrease their activity. Thereafter, we 

attempted to remove the R2 group (-OCH3) from the scaffold of compound 13 to prepare 

compound 23, and the bioassay showed a moderate inhibitory potency against α1A-AR, 

with an IC50 of 552.3 ± 67.9 nM. Based on this finding, we further substituted R7 position 

with methyl, cyclopropyl and 4-methoxyphenyl to form compounds 24-26, which have 

hardly any inhibitory potency against α1A-AR.  

Table 2. Inhibition ratio and IC50 values of all synthesized compounds for α1A-AR.
a 

Compd. 

IR
b 

(10 µM) 

IC50 ( Means ± SEM) on calcium assays, nM Selectivity 

α1A α1B α1D α1B/α1A α1D/α1A 

13 60% / / / / / 

14 72% / / / / / 

15 0% / / / / / 

16 0% / / / / / 

17 21% / / / / / 

18 100% 
125.0±20.4 

> 10000 > 10000 >80.0 >80.0 

19 82% > 10000 / / / / 

20 0% / / / / / 
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21 0% / / / / / 

22 0% / / / / / 

23 100% 552.3±67.9 / / / / 

24 90% 8669±625.6 / / / / 

25 31% / / / / / 

26 80% > 10000 / / / / 

27 99% 17.6±2.1 > 10000 4038±1725 >568.2 229.4 

28 100% 202.3±32.5 > 10000 > 10000 >19.4 >19.4 

29 100% 594.0±147.0 > 10000 > 10000 >16.8 >16.8 

30 100% 2057±183.0 / / / / 

31 100% 253.8±32.6 > 10000 8392±526.4 >39.4 33.1 

32 100% 2880±77.5 / / / / 

33 100% 1474±138.8 / / / / 

34 100% 124.7±7.1 7928±250.3 640.6±95.7 53.6 5.1 

35 97% > 10000 / / / / 

36 100% 402.9±53.6 9170±1133 1456±68.6 22.8 3.6 

37 56% / / / / / 

38 0% / / / / / 

39 75% / / / / / 

40 100% 225.3±35.2 > 10000 > 10000 >44.4 >44.4 

41 98% 2286±429.3 / / / / 
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42 17% / / / / / 

43 21% / / / / / 

44 63% / / / / / 

(S)-18 99% 57.4±10.2 > 10000 > 10000 >174.0 >174.0 

(S)-27 100% 12.8±2.2 > 10000 250.7±40.7 >780.6 19.6 

(R)-27 100% 3187±149.4 / / / / 

tamsulosin
c
 100% 2.2±0.3 4.8±0.9 1.4±0.2 2.2 0.6 

silodosin
c
 100% 1.8±0.1 116.0±12.5 6.3±1.0 66.0 3.6 

a
The initial screening was carried out at a concentration of 10 µM for each compound and IC50 were 

measured for compounds that displayed >80% inhibition of α1A-AR, and “/” means that no experiment 

was conducted. 
b
IR represents inhibition ratio. 

c
The reference drug. 

 

On the basis of above results, we held the methylenedioxy group at R1 and R2 

position on the molecular scaffold of compounds 19-22, and further explored the influence 

of different substituents on the indole ring on inhibitory potency of α1A-AR, namely that 

introducing different substituents into R3, R4, R5 and R6 position, respectively. The 

results demonstrated that introducing a methoxy group into the R4 position of the indole 

ring can produce the highest inhibitory activity against α1A-AR, with an IC50 of 17.6 ± 2.1 

nM (27). However, moving this methoxy group from R4 to R3 or R5 position of the indole 

ring brought about a decrease in inhibitory activity against α1A-AR (28 and 29). The 

introduction of a fluorine atom (30 and 31) and an electron-donating group (32 and 33) 

into R4, R5 or R6 position of the scaffold of the indole could not increase the inhibitory 
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potency. It follows that substituting R4 with a methoxy group was favorable to retain the 

inhibitory effects against α1A-AR. Therefore, in the subsequent structural modification, we 

kept a methoxy group on the R4 position of indole ring and further investigated the 

influences of different R1 and R2 substituents (34, 35, 37-44). The results displayed that a 

methoxy group in the R1 position is important to maintain the inhibitory potency of the 

compounds toward α1A-AR (34, 40). Removal of the methoxy group from the R1 position 

almost completely ablated their activities (38, 42-44). 

For some natural products, such as l-SPD, the R-configuration exhibited worse 

α1A-AR antagonistic activity compared to its S-configured counterparts.
50-52 

Therefore, we 

also synthesized the chiral compounds (S)-18, (S)-27 and (R)-27, and further evaluated 

their biological activities toward α1A-AR. The results showed that the S-configuration is an 

important determinant of the α1A-AR inhibitory activity. As shown in Table 2, the 

S-configured enantiomer (S)-18 (IC50 = 57.4 ± 10.2 nM) offered almost two-fold higher 

potency than the racemate 18 (IC50 = 125.0 ± 20.4 nM). The S-configured enantiomer 

(S)-27 exhibited the most potent α1A-AR antagonistic activity; its IC50 reached 12.8 ± 2.2 

nM, which was much more effective than its racemate (27, IC50 = 17.6±2.1 nM) and 

R-configured compound ((S)-27, IC50 = 3187±149.4 nM). These data demonstrated that the 

stereochemical configuration has an important influence on the α1A-AR antagonistic 

activity of these compounds. 

3.2 Evaluation of α1-AR Subtype Selectivity for Selected Compounds 

Previous studies indicated that the α1B subtype is found widely in vascular smooth 
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muscle, and blocking it can cause orthostatic hypotension.
53

 The α1D subtype is 

predominant and functional in human epicardial coronary arteries, and its inhibition might 

mediate coronary vasodilation.
54

 Therefore, to characterize α1-AR subtype selectivity, 

representative compounds (18, 27-29, 31, 33, 35, 40, (S)-18 and (S)-27) were selected to 

determine their selectivities using a calcium mobilization assay. The results are 

summarized in Table 2. In general, most of these compounds displayed moderate to high 

antagonist activity toward α1A-AR. However, none of them displayed a significant 

inhibitory effect toward α1B-AR. Only a few compounds had measurable antagonist 

activity on α1D-AR. All compounds displayed much better α1A-AR selectivity compared 

with the reference drug tamsulosin. Although compounds 27 and (S)-27 showed slightly 

less potent antagonistic activity than silodosin against α1A-AR, both demonstrated much 

higher selectivities than silodosin and tamsulosin. (S)-27 showed higher selectivity for 

α1A-AR (IC50 = 12.8 nM) compared with α1B-AR (IC50>10 µM, α1B/α1A> 780) and α1D-AR 

(IC50 = 250.7 nM, α1D/α1A =19.6), which was much better than tamsulosin (α1B/α1A = 2.2, 

α1D/α1A = 0.6) and silodosin (α1B/α1A = 66.0, α1D/α1A = 3.6). 

3.3 Functional Assay in Isolated Rat Tissues 

It is desirable to develop α1-AR antagonists that can selectively suppress the tone of 

the lower urinary tract, without vascular effects, to treat urinary outlet obstruction 

problems in patients with BPH.
54

 Therefore, we selected the most effective compounds, 27 

and (S)-27, and evaluated their antagonist effect on smooth muscle contraction of rat 

urethras and aortas. As shown in Table 3, both 27 and (S)-27 showed strong 
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anti-contractile activity on urethra smooth muscle stimulated with norepinephrine. 

Compound (S)-27 (IC50 = 0.5±0.3 nM) was slightly more potent than the marketed drug 

silodosin (IC50 = 0.8±0.03 nM). Encouragingly, neither compound had a significant effect 

on norepinephrine-induced contraction of aortic smooth muscle (IC50 >1000 nM), while 

the control compound silodosin potently inhibited aortic contraction (IC50 = 90.1±7.6 nM). 

The uroselectivity of compound (S)-27 was better than silodosin, indicating that (S)-27 

might have fewer vascular side effects than silodosin. 

Table 3. Antagonist effect on smooth muscle contraction of rat urethra and aorta. 

Compd. 

IC50 (nM) Selectivity 

Urethra Aorta Urethra/ Aorta 

27 45.4±8.8 >1000 >22.02 

(S)-27 0.5±0.3 >1000 >2083 

silodosin
a
 0.8±0.03 90.1±7.6 112.6 

a 
The reference drug. 

3.4 Micturition Behavior in BPH Model Rats. 

The BPH model rats have higher micturition frequency (Figure 5A) and lower mean 

voided volume (Figure 5B) than the sham rats. In our studies, we found that silodosin can 

dose-dependently reduce the urinary frequency and increase the voided volume (Figure 5A 

and 5B). Our compounds 27 and (S)-27 can also offer improved effects in the micturition 

behavior of BHP rats. The minimal effective dose of reducing micturition frequency is 10 

mg/kg and 3 mg/kg (Figure 5A), respectively; and the minimal effective dose of increasing 
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the mean voided volume is 3 mg/kg (Figure 5B). The most optimal dose of 27 and (S)-27 

in this study is 10 mg/kg, which led the maximum the urinary frequency reduction and 

voided volume increase. Although compounds (S)-27 shows a slightly weaker activity in 

BPH rats than silodosin, it can effectively alleviate voiding symptoms of BPH rats, which 

is worthy of further investigation. 

      

Figure 5. Effects of 27 and (S)-27 on the micturition parameters in BPH rats. (A) 

Micturition frequency and (B) mean voided volume were measured in a metabolic cage. 

###
P < 0.001, versus sham control. 

*
P < 0.05, 

**
P < 0.01,

 ***
P < 0.001 versus vehicle 

control. 

3.5 Safety Evaluation: Inhibitory Potency against hERG Potassium Ion Channel 

In view of excellent biological activities of compound (S)-27, we further evaluated its 

hERG potassium ion channel inhibition profiles. As shown in Table 4, these results 

displayed that (S)-27 and its racemic compound 27 have lower hERG potassium ion 

channel inhibition than the marketed drug silodosin and dofetilide. 
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Table 4. Inhibition assay of the hERG potassium ion channel 

Compound 
hERG inhibition 

IC50 (µM) 

27 
16.5 

(S)-27 
13.2 

silodosin
a
 

8.2 

dofetilide
a
 

0.2 

a 
The reference drug 

3.6 Safety Evaluation: Acute Toxicity for Compound (S)-27 

We performed acute toxicity tests in Kunming mice. Compound (S)-27 was given 

orally in a single-dosing experiment at 500 mg/kg. The animals were closely monitored, 

and no animal died within 7 days after treatment. Body weights were not affected and the 

animals had shining fur. In addition, the behavior of the mice was unaffected by the 

single-dose administration of (S)-27 at 500 mg/kg.  

3.7 Preliminary Pharmacokinetic Evaluation for Compound (S)-27. 

Compound (S)-27 was further evaluated for its preliminary pharmacokinetic profile in 

rat. The results showed that compound (S)-27 had a good pharmacokinetic profile, with 

60.9% oral bioavailability, an AUC0-t (area under the plasma concentration-time curve 

from zero (0) hours to time (t)) of 2274 ng/mL*h, and had a good half life (Table 5). We 

evaluated the plasma protein binding of this compound in rat. The results showed that 

compound (S)-27 present a high plasma protein binding, which is about 97%. 
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Table 5. Preliminary pharmacokinetic parameters for compound (S)-27. 

 

Dose 

mg/kg 

Tmax 

h 

Cmax 

ng/mL 

AUC0-t 

ng/mL*h 

AUC0-∞ 

ng/mL*h 

MRT 

h 

t1/2 

h 

CLz 

L/h/kg 

F 

% 

ig
a
 20 1.0 684 2274 2277 2.52 1.18 / 60.9 

iv
b
 10 0.25 855 1867 1877 1.79 0.98 5.79 / 

a
Intragastric administration (oral gavage). 

b
Intravenous injection. 

4. Conclusions 

A class of novel indole-containing THPB derivatives were designed and synthesized, 

and their antagonistic activities against α1A-ARs were evaluated using calcium 

mobilization assays. Among them, seven compounds displayed excellent antagonistic 

activities against α1A-ARs, with IC50s < 250 nM. Compound (S)-27 showed the best 

biological activity, with an IC50 of 12.8 nM. More importantly, (S)-27 showed less 

inhibition against α1B- and α1D-ARs and excellent selectivity towards α1A-AR, which is 

superior to silodosin. Compound (S)-27 potently inhibited norepinephrine-induced urethra 

smooth muscle contraction without inhibiting the aortic contraction, displaying better 

uroselectivity than the control drug silodosin. Additionally, compound (S)-27 has lower 

hERG potassium ion channel inhibition than the marketed drug silodosin and dofetilide. 

Preliminary pharmacokinetics studies in rats indicated that compound (S)-27 has a good 

pharmacokinetic profile. In summary, on the basis of the excellent antagonistic activities 

and selectivities against α1A-ARs, these novel indole-containing THPB derivatives, 

especially compound (S)-27, have promising potential as candidate selective α1A-AR 
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antagonist drugs for the treatment of BPH. 

5. Experimental Section 

5.1 Chemistry. Chemicals and solvents were purchased from commercial sources and 

used without further purification. Analytical thin layer chromatography (TLC) was HSGF 

254 (0.15-0.2 mm thickness, YantaiHuiyou Company, China). Column chromatography 

was performed with CombiFlash® Companion system (Teledyne Isco, Inc.). All target 

products were characterized by 
1
H NMR and LC-MS (ESI), and some products were also 

characterized by 
13

C NMR. 
1
H NMR spectra were recorded on a Brucker AMX 300 or 400 

MHz instrument (TMS as IS). 
13

C NMR spectra were recorded on a Brucker AMX 100 

MHz instrument (TMS as IS). Chemical shifts were reported in parts per million (ppm). 

Proton coupling patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), 

multiplet (m), and broad (br). In addition, the purity of all tested compound was 

determined in the system condition of CH3OH/H2O which CH3OH gradient changed from 

70%(v/v) to 85%(v/v) by Agilent 1260 with binary pump, photodiode array detector 

(DAD), Agilent Eclipse XDB-C18 (4.6×150mm, 5 µm particle size). The percentage of 

purity of all products were more than 96%. 

General Synthetic Procedures for the Target Compounds 13-32 and 34-36 

(Compound 13 as the example) 

2-(3,4-dimethoxyphenyl)ethan-1-amine (1.5 g, 8.562 mmol), 2-(1H-indol-3-yl)acetic 

acid (1.5 g, 8.276 mmol, 1 equiv) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (2.8 g, 14.583 mmol, 1.7 equiv) were dissolved in 30 mL of 
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dichloromethane. Triethylamine (2.36 mL, 17 mmol, 2 equiv) was added dropwise to the 

solution and the mixture was stirred for 12 h at rt. The reaction mixture diluted with water. 

The organic layer was separated and washed with water (30 mL), dried (Na2SO4). The 

combined organic phase was evaporated under reduced pressure to get the crude product 

(10a) and used for the next step without further purification. ESI-MS m/z: 339 [M+H]
+
.  

N-(3,4-dimethoxyphenethyl)-2-(1H-indol-3-yl)acetamide (10a) (2.1 g, 6.206 mmol) 

was dissolved in 30 mL of acetonitrile and added POCl3 (2.1 mL, 13.2 mmol, 2 equiv). 

The solution was heated to reflux under argon for 1.5 h. The solvents were evaporated 

under reduced pressure. The pH of the mixture was adjusted to alkalinity with the addition 

of saturated NaHCO3. The organic layer was separated and washed with water. The 

combined organic phase was evaporated under reduced pressure to get the crude product 

(11a) and used for the next step without further purification. ESI-MS m/z: 321 [M+H]
+
. 

The intermediate 11a was dissolved in 20 mL of methanol, and NaBH4 (2.5 g, 66 

mmol, 10 equiv) was added in batches at 0 °C. The mixture was stirred for 10 h at rt. The 

reaction mixture was quenched with water and extracted with ethylacetate. The organic 

layer was washed with satd brine, and the combined organic phase was evaporated under 

reduced pressure to get the crude product, which was purified by flash chromatography on 

silica gel to get key intermediate 12a (1.5 g, 4.658 mmol, 80% over two steps). 
1
H NMR 

(CDCl3, 400 MHz): δ 8.66 (br, 1H), 7.69-7.67 (m, 1H), 7.34-7.26 (m, 1H), 7.23-7.11 (m, 

2H), 7.17-7.12 (m, 1H), 7.00-6.99 (m, 1H), 6.80 (s, 1H), 6.62 (s, 1H), 4.32-4.28 (m, 1H), 

3.87 (s, 3H), 3.85 (s, 3H), 3.45-3.39 (m, 2H), 3.23-3.19 (m, 1H), 3.13-3.05 (m, 1H), 
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2.91-2.85 (m, 1H), 2.79-2.73 (m, 1H), 2.23 (br, 1H). ESI-MS m/z: 323 [M+H]
+
. 

The key intermediate 12a (1.5g, 4.658 mmol), 5 mL of formaldehyde and 1 mL of 

formic acid was dissolved in 30 mL of acetonitrile. The mixture was stirred for 2 h at 

80~90 °C. The pH of the mixture was adjusted to alkalinity with the addition of satd 

NaHCO3. The organic layer was separated and washed with water. The combined organic 

phase was evaporated under reduced pressure and then chromatographed on silica gel to 

give the target product 13 (1.28 g, 82%). 
1
H NMR (CD3OD, 400 MHz): δ 7.47-7.41 (m, 

2H), 7.16-7.10 (m, 1H), 7.07-7.02 (m, 1H), 6.90-6.88 (m, 1H), 6.69 (s, 1H), 5.45 (m, 1H), 

4.20-4.15 (m, 1H), 3.97-3.90 (m, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.67-3.63 (m, 1H), 

3.43-3.37 (m, 1H), 3.22-3.19 (m, 1H), 3.07-2.96 (m, 1H), 2.82-2.62 (m, 2H). 
13

C NMR 

(125 MHz, CDCl3) δ 147.68, 147.65, 136.48, 133.65, 130.67, 127.34, 126.83, 121.06, 

119.46, 118.11, 112.11, 110.20, 110.16, 108.24, 65.75, 59.77, 56.25, 55.87, 51.70, 51.58, 

29.58, 29.47. ESI-MS m/z: 335 [M+H]
+
. EI-HRMS m/z calcd C21H22N2O2 (M

+
) 334.1681, 

found 334.1674. 

2,3-Dimethoxy-8-isobutyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinolizine 

(14). This compound was prepared by replacement of formaldehyde with 3-methylbutanal 

using a similar synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 7.81 (br, 

1H), 7.50-7.48 (m, 1H), 7.36-7.32 (m, 1H), 7.20-7.08 (m, 2H), 6.72 (s, 1H), 6.66 (s, 1H), 

4.30-4.25 (m, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 3.86-3.84 (m, 1H), 3.24-3.10 (m, 2H), 

2.92-2.88 (m, 2H), 2.82-2.70 (m, 2H), 1.93-1.83 (m, 1H), 1.55-1.46 (m, 1H), 1.30-1.26 (m, 

1H), 1.02-0.98 (m, 6H). 
13

C NMR (125 MHz, CDCl3) δ 147.18, 146.73, 135.52, 126.61, 
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121.07, 118.92, 117.51, 111.22, 110.24, 109.18, 68.56, 55.57, 55.44, 51.13, 46.26, 43.78, 

29.15, 25.77, 24.71, 22.65, 21.91. ESI-MS m/z: 391 [M+H]
+
. EI-HRMS m/z calcd 

C25H30N2O2 (M
+
) 390.2307, found 390.2296. 

2,3-Dimethoxy-8-phenyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinolizine 

(15). This compound was prepared by replacement of formaldehyde with benzaldehyde 

using a similar synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 

7.61-7.57 (m, 1H), 7.48-7.44 (m, 2H), 7.41-7.34 (m, 3H), 7.25-7.15 (m, 2H), 7.13-7.07 (m, 

2H), 6.92 (s, 1H), 6.60 (s, 1H), 4.61 (s, 1H), 4.15-4.08 (m, 1H), 3.94 (s, 3H), 3.86 (s, 3H), 

3.51-3.45 (m, 1H), 3.07-3.02 (m, 1H), 2.95-2.86 (m, 2H), 2.54-2.42 (m, 2H). 
13

C NMR 

(125 MHz, CDCl3) δ 146.46, 140.44, 136.31, 134.04, 129.48, 127.95, 127.86, 127.20, 

126.34, 126.11, 120.50, 118.38, 117.21, 110.16, 109.84, 107.99, 107.38, 66.20, 59.34, 

55.16, 54.84, 47.43, 28.80, 28.72. ESI-MS m/z: 411 [M+H]
+
. EI-HRMS calcd 

C27H26N2O2(M
+
) 410.1994, found 410.1989. 

2,3-Dimethoxy-8-(4-fluorophenyl)-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]qui

nolizine (16). This compound was prepared by replacement of formaldehyde with 

4-fluorobenzaldehyde using a similar synthetic procedure of product 13. 
1
H NMR (CDCl3, 

400 MHz): δ 7.61-7.58 (m, 1H), 7.45-7.40 (m, 1H), 7.25-7.18 (m, 2H), 7.15-7.03 (m, 4H), 

6.91 (s, 1H), 6.60 (s, 1H), 4.61 (s, 1H), 4.02-3.98 (m, 1H), 3.94 (s, 3H), 3.86 (s, 3H), 

3.50-3.44 (m, 1H), 3.04-2.98 (m, 1H), 2.94-2.85 (m, 2H), 2.56-2.41 (m, 2H). 
13

C NMR 

(125 MHz, CDCl3) δ 162.84, 160.91, 147.54, 147.48, 137.29, 136.75, 133.51, 131.82, 

131.24, 131.18, 126.95, 126.09, 121.31, 118.81, 118.32, 115.09, 114.92, 112.80, 111.52, 
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110.57, 108.14, 62.59, 56.04, 55.89, 51.11, 46.85, 29.83, 27.99. ESI-MS m/z: 429 [M+H]
+
. 

EI-HRMS calcd C27H25FN2O2(M
+
) 428.1900, found 428.1897. 

2,3-Dimethoxy-8-(4-methoxyphenyl)-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]

quinolizine (17). This compound was prepared by replacement of formaldehyde with 

4-methoxybenzaldehyde using a similar synthetic procedure of product 13. 
1
H NMR 

(CDCl3, 400 MHz): δ 7.62-7.59 (m, 1H), 7.38-7.36 (m, 1H), 7.28-7.25 (m, 1H), 7.21-7.18 

(m, 1H), 7.15-7.10 (m, 2H), 6.93-6.90 (m, 3H), 6.61 (s, 1H), 4.57 (s, 1H), 4.01-3.98 (m, 

1H), 3.96 (s, 3H), 3.88 (s, 3H), 3.84 (s, 3H), 3.51-3.45 (m, 1H), 3.10-3.06 (m, 1H), 

2.96-2.86 (m, 2H), 2.56-2.40 (m, 2H). 
13

C NMR (125 MHz, CDCl3) δ 159.08, 147.01, 

135.80, 129.67, 126.69, 121.01, 118.91, 117.73, 113.70, 110.70, 110.35, 108.52, 107.89, 

66.06, 59.99, 55.70, 55.38, 54.82, 47.69, 29.24. ESI-MS m/z: 441 [M+H]
+
. EI-HRMS 

calcd C28H28N2O3(M
+
) 440.2100, found 453.2451. 

2,3-Methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinolizine (18). 

This compound was prepared by replacement of 2-(3,4-dimethoxyphenyl)ethan-1-amine 

with 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine using a similar synthetic procedure of 

product 13. 
1
H NMR (CD3OD, 400 MHz): δ7.42-7.39 (m, 1H), 7.27-7.17 (m, 2H), 

7.08-7.00 (m, 1H), 6.83 (s, 1H), 6.57 (s, 1H), 5.89 (s, 2H), 5.45 (s, 1H), 4.20-4.03 (m, 2H), 

3.74-3.64 (m, 2H), 3.22-3.04 (m, 2H), 2.77-2.62 (m, 2H). 
13

C NMR (125 MHz, DMSO-d6) 

δ 145.72, 145.44, 136.00, 133.07, 131.40, 127.47, 126.84, 120.62, 119.02, 117.59, 109.70, 

108.03, 107.65, 105.99, 100.54, 65.26, 59.48, 54.89, 51.10, 50.84, 29.38, 29.17. ESI-MS 

m/z: 319 [M+H]
+
. EI-HRMS calcd C20H18N2O2(M

+
) 318.1368, found 318.1366. 
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(S)-2,3-Methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinolizine 

(S-18). This compound was prepared by replacement of 2-(3,4-dimethoxyphenyl)ethan- 

1-amine with 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine using a similar synthetic 

procedure of product 13. 
1
H NMR (CD3OD, 400 MHz): δ7.60-7.57 (m, 1H), 7.42-7.39 (m, 

1H), 7.15-7.12 (m, 1H), 7.08-7.03 (m, 1H), 6.87 (s, 1H), 6.60 (s, 1H), 5.90 (s, 2H), 5.48 (s, 

1H), 4.30-4.25 (m, 2H), 3.82-3.72 (m, 2H), 3.42-3.29 (m, 2H), 2.80-2.66 (m, 2H). ESI-MS 

m/z: 319 [M+H]
+
.
 13

C NMR (125 MHz, DMSO-d6) δ 145.72, 145.44, 136.00, 133.07, 

131.40, 127.47, 126.84, 120.62, 119.02, 117.59, 109.70, 108.03, 107.65, 105.99, 100.54, 

65.26, 59.48, 54.89, 51.10, 50.84, 29.38, 29.17. ESI-MS m/z: 319 [M+H]
+
. EI-HRMS 

calcd C20H18N2O2(M
+
) 318.1368, found 318.1360. 

2,3-Methylenedioxy-8-ethyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinolizi

ne (19). This compound was prepared by replacement with 

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and propionaldehyde using a similar synthetic 

procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 7.88 (br, 1H), 7.49-7.45 (m, 1H), 

7.34-7.31 (m, 1H), 7.19-7.07 (m, 2H), 6.68 (s, 1H), 6.62 (s, 1H), 5.93 (s, 2H), 4.28-4.23 

(m, 1H), 3.70-3.65 (m, 1H), 3.21-3.07 (m, 2H), 2.95-2.70 (m, 4H), 1.93-1.75 (m, 2H), 

1.19-1.12 (m, 3H). 
13

C NMR (125 MHz, CDCl3) δ 145.55, 145.12, 135.10, 136.00, 132.50, 

126.55, 121.01, 118.85, 117.52, 110.19, 108.22, 106.71, 106.18, 100.17, 62.24, 51.73, 

46.15, 29.68, 27.51, 26.03, 17.92, 11.42. ESI-MS m/z: 347 [M+H]
+
. EI-HRMS calcd 

C22H22N2O2(M
+
) 346.1681, found 346.1672. 

2,3-Methylenedioxy-8-isobutyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinol
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izine (20). This compound was prepared by replacement with 

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 3-methylbutanal using a similar synthetic 

procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 7.85 (br, 1H), 7.49-7.46 (m, 1H), 

7.34-7.31 (m, 1H), 7.20-7.08 (m, 2H), 6.69 (s, 1H), 6.63 (s, 1H), 5.93 (s, 2H), 4.23-4.14 

(m, 1H), 3.87-3.82 (m, 1H), 3.21-3.09 (m, 2H), 2.89-2.85 (m, 2H), 2.78-2.69 (m, 2H), 

1.83-1.75 (m, 1H), 1.31-1.22 (m, 2H), 1.07-1.03 (m, 6H). 
13

C NMR (125 MHz, DMSO-d6) 

δ 145.49, 145.04, 136.41, 136.00, 133.37, 126.68, 120.36, 118.12, 117.44, 110.85, 108.35, 

106.86, 105.10, 100.40, 58.30, 51.04, 45.78, 43.86, 29.92, 25.34, 24.74, 23.56, 21.83. 

ESI-MS m/z: 375 [M+H]
+
. EI-HRMS calcd C24H26N2O2(M

+
) 374.1994, found 374.1992. 

2,3-Methylenedioxy-8-(4-fluorophenyl)-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-

g]quinolizine (21). This compound was prepared by replacement with 

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 4-fluorobenzaldehyde using a similar 

synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ7.72 (br, 1H), 7.58-7.55 

(m, 1H), 7.30-7.27 (m, 1H), 7.22-7.14 (m, 4H), 7.01-6.94 (m, 2H), 6.69 (s, 1H), 6.56 (s, 

1H), 5.89 (s, 2H), 5.20-5.18 (m, 1H), 4.16-4.11 (m, 1H), 3.27-3.21 (m, 2H), 2.97-3.85 (m, 

3H), 2.72-2.65 (m, 1H).
 13

C NMR (125 MHz, CDCl3) δ 145.51, 145.42, 135.89, 131.96, 

131.45, 126.60, 126.46, 121.49, 119.07, 117.80, 114.62, 114.45, 110.45, 109.14, 108.01, 

105.83, 100.22, 62.53, 51.35, 46.84, 29.37, 27.88. ESI-MS m/z: 413 [M+H]
+
. EI-HRMS 

calcd C26H21FN2O2 (M
+
) 412.1587, found 412.1581. 

2,3-Methylenedioxy-8-(4-methoxyphenyl)-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2

,3-g]quinolizine (22). This compound was prepared by replacement with 
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2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 4-methoxybenzaldehyde using a similar 

synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 7.78 (br, 1H), 7.58-7.55 

(m, 1H), 7.26-7.24 (m, 1H), 7.19-7.10 (m, 4H), 6.83-6.80 (m, 2H), 6.69 (s, 1H), 6.56 (s, 

1H), 5.89 (s, 2H), 5.06 (s, 1H), 4.16-4.09 (m, 1H), 3.76 (s, 3H), 3.26-3.13 (m, 2H), 

2.97-2.88 (m, 1H), 2.85-2.78 (m, 2H), 2.67-2.61 (m, 1H). 
13

C NMR (125 MHz, CDCl3) δ 

158.81, 145.39, 135.88, 132.64, 130.12, 126.79, 126.53, 121.27, 118.91, 117.70, 113.02, 

110.41, 108.94, 107.95, 105.82, 100.18, 62.71, 54.79, 51.48, 47.00, 29.43, 28.30.ESI-MS 

m/z: 425 [M+H]
+
. EI-HRMS calcd C27H24N2O3 (M

+
) 424.1787, found 424.1777. 

3-Methoxy-5,8,14,14a- tetrahydro-6H-benzo[a]indolo[2,3-g]quinolizine (23). This 

compound was prepared by replacement of 2-(3,4-dimethoxyphenyl)ethan-1-amine with 

2-(4-methoxyphenyl)ethan-1-amine using a similar synthetic procedure of product 13. 
1
H 

NMR (CDCl3, 400 MHz): δ7.49-7.46 (m, 1H), 7.42-7.39 (m, 1H), 7.29-7.13 (m, 3H), 

6.84-6.80 (m, 1H), 6.70 (s, 1H), 5.48-5.38 (m, 1H), 3.97-3.88 (m, 1H), 3.83 (s, 3H), 

3.72-3.61 (m, 1H), 3.37-3.19 (m, 2H), 3.05-3.01 (m, 1H), 2.79-2.68 (m, 3H). 
13

C NMR 

(125 MHz, CDCl3) δ 157.44, 135.83, 134.94, 131.57, 129.48, 126.89, 121.06, 119.34, 

117.56, 112.58, 112.19, 108.68, 108.59, 66.14, 59.08, 54.77, 51.13, 50.86, 29.22, 28.65. 

ESI-MS m/z: 305 [M+H]
+
. EI-HRMS calcd C20H20N2O(M

+
) 304.1576, found 304.1571. 

3-Methoxy-8-methyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinolizine (24). 

This compound was prepared by replacement with 2-(4-methoxyphenyl)ethan-1-amine and 

acetaldehyde using a similar synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 

MHz): δ 7.50-7.47 (m, 1H), 7.37-7.28 (m, 1H), 7.18-7.04 (m, 3H), 6.80-6.78 (m, 1H), 6.66 
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(s, 1H), 3.96-3.90 (m, 1H), 3.89-3.85 (m, 1H), 3.80 (s, 3H), 3.20-3.12 (m, 3H), 2.85-2.63 

(m, 3H), 1.30-1.25 (m, 3H).
 13

C NMR (125 MHz, CDCl3) δ157.87, 136.06, 135.44, 131.67, 

127.54, 121.50, 119.36, 118.07, 113.37, 112.22, 110.72 108.24, 107.28, 60.08, 55.54, 

55.24, 53.43, 51.44, 46.78, 30.36, 28.27. ESI-MS m/z: 319 [M+H]
+
. ESI-HRMS calcd 

C21H22N2O (M+H
+
) 319.1805, found 319.1804.  

3-Methoxy-8-cyclopropyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinolizine 

(25). This compound was prepared by replacement with 

2-(4-methoxyphenyl)ethan-1-amine and cyclopropanecarbaldehyde using a similar 

synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 8.21 (br, 1H), 7.52-7.47 

(m, 1H), 7.38-7.32 (m, 1H), 7.26-7.23 (m, 1H), 7.19-7.09 (m, 2H), 6.82-6.79 (m, 1H), 6.69 

(s, 1H), 3.92-3.85 (m, 2H), 3.82 (s, 3H), 3.46-3.38 (m, 1H),3.21-3.12 (m, 1H), 3.07-2.98 

(m, 1H), 2.83-2.61 (m, 3H), 1.27-1.13 (m, 1H), 0.95-0.92 (m, 2H), 0.67-0.63 (m, 2H). 
13

C 

NMR (125 MHz, CDCl3) δ 157.71, 136.42, 135.95, 127.92, 126.88, 120.93, 118.61, 

118.01, 113.33, 112.60, 111.41, 106.42, 64.33, 55.43, 52.62, 47.29, 30.67, 28.99,13.63, 

5.16, 2.05. ESI-MS m/z: 345 [M+H]
+
. EI-HRMS calcd C23H24N2O (M

+
) 344.1889, found 

344.1871. 

3-Methoxy-8-(4-methoxyphenyl)-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quin

olizine (26). This compound was prepared by replacement with 

2-(4-methoxyphenyl)ethan-1-amine and 4-methoxybenzaldehyde using a similar synthetic 

procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 7.80 (br, 1H), 7.57-7.54 (m, 1H), 

7.37-7.35 (m, 1H), 7.27-7.23 (m, 1H), 7.18-7.09 (m, 4H), 6.83-6.78 (m, 2H), 6.76-6.72 (m, 
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1H), 6.65-6.62 (m, 1H), 5.10 (s, 1H), 4.26-4.21 (m, 1H), 3.82-3.80 (m, 2H), 3.77 (s, 3H), 

3.75 (s, 3H), 3.22-3.05 (m, 1H), 2.93-2.83 (m, 2H), 2.67-2.60 (m, 1H). 
13

C NMR (125 

MHz, CDCl3) δ158.73, 157.22, 135.88, 135.05, 132.87, 131.04, 130.74, 130.10, 126.82, 

121.17, 118.84, 117.70, 112.96, 112.76, 111.72, 110.42, 109.06, 62.70, 54.79, 54.75, 50.91, 

46.92, 29.79, 28.31. ESI-MS m/z: 411 [M+H]
+
. EI-HRMS calcd C27H26N2O2 (M

+
) 

410.1994, found 410.1989.   

2,3-Methylenedioxy-12-methoxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quin

olizine (27). This compound was prepared by replacement with 

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid 

using a similar synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 

7.27-7.24 (m, 1H), 6.88-6.87 (m, 1H), 6.83-6.77 (m, 2H), 6.60 (s, 1H), 5.93 (s, 2H), 

5.37-5.34 (m, 1H), 3.83 (s, 3H), 3.70-3.63 (m, 2H), 3.23-3.08 (m, 2H), 2.72-2.61 (m, 4H). 

13
C NMR (125 MHz, CDCl3) δ 154.35, 146.32, 146.14, 132.60, 131.38, 130.60, 127.81, 

127.36, 111.14, 109.85, 108.84, 108.40, 105.77, 100.86, 100.46, 67.04, 59.97, 55.83, 51.65, 

51.32, 29.49, 29.31. ESI-MS m/z: 349 [M+H]
+
. EI-HRMS calcd C21H20N2O3 (M

+
) 

348.1474, found 348.1480. 

(S)-2,3-Methylenedioxy-12-methoxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]q

uinolizine (S-27). This compound was prepared by replacement with 

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid 

using a similar synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 

7.27-7.24 (m, 1H), 6.91-6.87 (m, 1H), 6.83-6.79 (m, 2H), 6.60 (s, 1H), 5.93 (s, 2H), 
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5.38-5.34 (m, 1H), 3.83 (s, 3H), 3.70-3.63 (m, 2H), 3.23-3.08 (m, 2H), 2.72-2.61 (m, 4H). 

13
C NMR (125 MHz, CDCl3) δ 154.32, 146.27, 146.12, 132.49, 131.31, 130.73, 127.78, 

127.34, 111.08, 109.61, 108.75, 108.40, 105.78, 100.86, 100.41, 66.68, 59.82, 55.78, 51.65, 

51.20, 29.40, 29.23. ESI-MS m/z: 349 [M+H]
+
. EI-HRMS calcd C21H20N2O3 (M

+
) 

348.1474, found 348.1468. 

(R)-2,3-Methylenedioxy-12-methoxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]

quinolizine (R-27). This compound was prepared by replacement with 

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid 

using a similar synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 8.12 (br, 

1H), 7.22-7.30 (m, 1H), 6.87-6.83 (m, 2H), 6.74 (s, 1H), 6.58 (s, 1H), 5.95 (s, 2H), 5.41 (s, 

1H), 4.52-4.48 (m, 1H), 4.12-4.07 (m, 2H), 3.95-3.92 (m, 1H), 3.82 (s, 3H), 3.34-3.25 (m, 

2H), 2.91-2.79 (m, 2H). 
13

C NMR (125 MHz, CDCl3) δ 154.35, 146.33, 146.20, 132.26, 

131.37, 130.43, 127.72, 127.21, 111.15, 109.79, 108.62, 108.40, 105.74, 100.89, 100.39, 

66.64, 59.88, 55.79, 51.60, 51.19, 29.50, 29.28.. ESI-MS m/z: 349 [M+H]
+
. EI-HRMS 

calcd C21H20N2O3 (M
+
) 348.1474, found 348.1471. 

2,3-Methylenedioxy-13-methoxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quin

olizine (28). This compound was prepared by replacement with 

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(4-methoxy-1H-indol-3-yl)acetic acid 

using a similar synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 

7.30-7.25 (m, 1H), 6.88-6.78 (m, 2H), 6.71-6.68 (m, 1H), 6.63 (s, 1H), 5.91 (s, 2H), 5.38 

(s, 1H), 3.85 (s, 3H), 3.74-3.65 (m, 2H), 3.33-3.20 (m, 2H), 2.75-2.62 (m, 4H). 
13

C NMR 
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(125 MHz, CDCl3) δ 154.30, 146.25, 146.22, 132.39, 131.35, 130.55, 127.83, 127.30, 

111.38, 109.71, 109.37, 108.41, 105.70, 100.97, 100.51, 66.71, 59.81, 55.77, 51.65, 51.20, 

29.41, 29.24. ESI-MS m/z: 349 [M+H]
+
. EI-HRMS calcd C21H20N2O3 (M

+
) 348.1474, 

found 348.1481. 

2,3-Methylenedioxy-11-methoxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quin

olizine (29). This compound was prepared by replacement with 

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(6-methoxy-1H-indol-3-yl)acetic acid 

using a similar synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 

7.31-7.28 (m, 1H), 6.93-6.92 (m, 1H), 6.78-6.75 (m, 2H), 6.60 (s, 1H), 5.94 (s, 2H), 

5.44-5.43 (m, 1H), 3.85 (s, 3H), 3.82-3.76 (m, 1H), 3.66-3.63 (m, 1H), 3.48-3.46 (m, 1H), 

3.27-3.23 (m, 2H), 2.80-2.64 (m, 3H). 
13

C NMR (125 MHz, CDCl3) δ 154.31, 146.38, 

146.35, 146.27, 132.18, 131.43, 130.25, 127.59, 127.08, 111.60, 111.17, 110.11, 108.38, 

105.76, 100.91, 100.38, 66.80, 59.86, 55.85, 55.81, 51.55, 51.15, 29.72, 29.15. ESI-MS 

m/z: 349 [M+H]
+
. EI-HRMS calcd C21H20N2O3 (M

+
) 348.1474, found 348.1475. 

2,3-Methylenedioxy-11-fluoro-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinoli

zine (30). This compound was prepared by replacement with 

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(6-fluoro-1H-indol-3-yl)acetic acid 

using a similar synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 8.13 (br, 

1H), 7.37-7.34 (m, 1H), 6.97-6.87 (m, 2H), 6.85-6.79 (m, 1H), 6.61-6.60 (m, 1H), 5.94 (s, 

2H), 4.13-4.00 (m, 1H), 3.81-3.76 (m, 2H), 3.28-3.10 (m, 3H), 2.74-2.71 (m, 3H). 
13

C 

NMR (125 MHz, DMSO-d6) δ159.60, 157.74, 145.75, 145.48, 136.12, 133.71, 131.34, 
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127.50, 123.62, 118.40, 111.17, 108.07, 107.85, 107.16, 106.97, 106.03, 100.58, 96.74, 

96.53, 65.53, 59.42, 51.06, 50.81, 29.40, 29.09. ESI-MS m/z: 337 [M+H]
+
. EI-HRMS 

calcd C20H17FN2O2 (M
+
) 336.1274, found 336.1269. 

2,3-Methylenedioxy-12-fluoro-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinoli

zine (31). This compound was prepared by replacement with 

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(5-fluoro-1H-indol-3-yl)acetic acid 

using a similar synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 

7.22-7.18 (m, 1H), 7.13-7.12 (m, 1H), 6.88-6.83 (m, 1H), 6.79 (s, 1H), 6.60 (s, 1H), 5.94 

(s, 2H), 4.13-4.06 (m, 1H), 3.88-3.78 (m, 2H), 3.27-3.07 (m, 3H), 2.81-2.68 (m, 3H). 
13

C 

NMR (125 MHz, DMSO-d6) δ 158.53, 156.69, 146.20, 145.94, 135.65, 133.10, 131.75, 

127.94, 127.68, 111.17, 108.82, 108.52, 108.37, 106.44, 103.23, 103.04, 101.04, 65.95, 

59.87, 51.56, 51.26, 29.82, 29.53.ESI-MS m/z: 337 [M+H]
+
. EI-HRMS calcd 

C20H17FN2O2 (M
+
) 336.1274, found 336.1272. 

2,3-Methylenedioxy-12-benzyloxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]qui

nolizine (32). This compound was prepared by replacement with 

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(5-(benzyloxy)-1H-indol-3-yl)acetic acid 

using a similar synthetic procedure of product 13. 
1
H NMR (DMSO-d6, 400 MHz): δ 

7.49-7.47 (m, 2H), 7.41-7.32 (m, 3H), 7.09 (s, 1H), 7.00 (s, 1H), 6.83-6.81 (m, 1H), 6.69 

(s, 1H), 6.25-6.22 (m, 1H), 5.97 (s, 2H), 5.38-5.36 (m, 2H), 5.13-5.06 (m, 2H), 4.18-4.15 

(m, 1H), 3.66-3.57 (m, 1H), 3.14-3.10 (m, 1H), 2.93-2.90 (m, 1H), 2.68-2.60 (m, 2H), 

2.44-2.38 (m, 1H). 
13

C NMR (125 MHz, DMSO-d6) δ 152.07, 145.16, 145.08, 136.48, 
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130.97, 130.70, 129.09, 126.78, 126.36, 126.09, 126.02, 125.63, 110.18, 108.38, 106.79, 

106.52, 104.12, 100.65, 99.47, 76.48, 69.39, 64.10, 58.62, 49.92, 27.46. ESI-MS m/z: 425 

[M+H]
+
. EI-HRMS calcd C27H24N2O3 (M

+
) 424.1787, found 424.1780. 

2,3-Methylenedioxy-12-hydroxyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quin

olizine (33). This compound was prepared by reduction of compound 32 catalyzed by 10% 

Pd/C under hydrogen atmosphere for 8 h. 
1
H NMR (DMSO-d6, 400 MHz): δ 8.70 (br, 1H), 

7.23-7.21 (m, 1H), 6.99 (s, 1H), 7.72-7.66 (m, 2H), 6.59-6.56 (m, 1H), 6.15 (br, 1H), 

5.95-5.93 (m, 2H), 5.31-5.30 (m, 2H), 4.13-4.09 (m, 1H), 3.64-3.53 (m, 1H), 3.22-3.07 (m, 

1H), 2.90-2.87 (m, 1H), 2.65-2.57 (m, 2H), 2.38-2.32 (m, 1H). 
13

C NMR (125 MHz, 

DMSO-d6) δ 151.28, 145.17, 145.86, 133.86, 131.94, 130.92, 128.02, 127.93, 110.70, 

110.46, 108.48, 107.28, 106.50, 102.64, 100.99, 65.72, 60.08, 51.67, 51.32, 29.82. ESI-MS 

m/z: 335 [M+H]
+
. EI-HRMS calcd C20H18N2O3 (M

+
) 334.1317, found 334.1311. 

2,3-Methylenedioxy-9-methyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinoli

zine (34). This compound was prepared by replacement with 

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(1-methyl-1H-indol-3-yl)acetic acid 

using a similar synthetic procedure of product 13. 
1
H NMR (CDCl3, 400 MHz): δ 

7.52-7.50 (m, 1H), 7.30-7.26 (m, 1H), 7.21-7.17 (m, 1H), 7.12-7.09 (m, 1H), 6.83 (s, 1H), 

6.65 (s, 1H), 5.94 (s, 2H), 4.14-4.10 (m, 1H), 3.80-3.71 (m, 2H), 3.64 (s, 3H), 3.35-3.31 

(m, 1H), 3.24-3.11 (m, 2H), 2.82-2.71 (m, 3H).
13

C NMR (125 MHz, CDCl3) δ 146.22, 

146.01, 137.18, 132.92, 131.31, 127.62, 126.81, 120.94, 118.98, 117.95, 108.72, 108.37, 

107.47, 105.92, 100.82, 60.10, 52.17, 51.51, 29.90, 29.34. ESI-MS m/z: 333 [M+H]
+
. 
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EI-HRMS calcd C21H20N2O2 (M
+
) 332.1525, found 332.1527. 

2-Benzyloxy-3,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]qui

nolizine (35). This compound was prepared by replacement with 

2-(4-(benzyloxy)-3-methoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic 

acid using a similar synthetic procedure of product 13. 
1
H NMR (400 MHz, CDCl3) δ 7.48 

– 7.31 (m, 5H), 6.86 – 6.84 (m, 2H), 6.74 (s, 1H), 6.62 (s, 1H), 5.40 (q, J = 11.7 Hz, 1H), 

5.24 – 5.10 (m, 2H), 4.37 (d, J = 15.1 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.81 – 3.71 (m, 

1H), 3.30 – 2.96 (m, 3H), 2.87 – 2.79 (m, 1H), 2.61 – 2.55 (m, 1H), 2.17 (s, 2H). 
13

C NMR 

(125 MHz, DMSO-d6) δ 153.74, 148.15, 147.61, 137.09, 132.44, 128.48, 128.32, 128.16, 

112.87, 112.44, 110.44, 110.36, 105.68, 102.70, 71.43, 61.92, 56.79, 56.04, 52.57, 51.14, 

28.32, 28.28. ESI-MS m/z: 441 [M+H]
+
. EI-HRMS calcd C28H28N2O3 (M

+
) 440.2100, 

found 440.2101. 

3-Benzyloxy-2,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]qui

nolizine (36). This compound was prepared by replacement with 

2-(3-(benzyloxy)-4-methoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic 

acid using a similar synthetic procedure of product 13. 
1
H NMR (400 MHz, CDCl3) δ 7.53 

– 7.23 (m, 5H), 6.88 – 6.81 (m, 2H), 6.77(s, 1H), 6.62 (s, 1H), 5.40 (q, J = 11.7 Hz, 1H), 

5.24 – 5.10 (m, 2H), 4.37 (d, J = 15.1 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.81 – 3.71 (m, 

1H), 3.30 – 2.96 (m, 3H), 2.87 – 2.79 (m, 1H), 2.61 – 2.55 (m, 1H), 2.17 (s, 2H). 
13

C NMR 

(125 MHz, DMSO-d6) δ153.57, 147.62, 146.07, 137.47, 133.77, 131.11, 130.17, 128.37, 

127.95, 127.77, 127.24, 126.93, 111.88, 110.44, 110.09, 107.53, 99.87, 70.37, 65.39, 59.62, 
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55.38, 51.22, 29.10, 20.77, 14.10. ESI-MS m/z: 441 [M+H]
+
. EI-HRMS calcd C28H28N2O3 

(M
+
) 440.2100, found 440.2101. 

2-Hydroxyl-3,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quin

olizine (37). This compound was prepared by reduction of compound 35 catalyzed by 10% 

Pd/C under hydrogen atmosphere. 
1
H NMR (400 MHz, MeOD) δ 7.35 (d, J = 8.9 Hz, 1H), 

6.98 (d, J = 2.4 Hz, 1H), 6.84 (s, 1H), 6.80 (dd, J = 8.8, 2.5 Hz, 1H), 6.69 (s, 1H), 4.69 – 

4.58 (m, 2H), 4.21 (d, J = 14.8 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.78 (d, J = 15.1 Hz, 

1H), 3.70 (d, J = 7.1 Hz, 1H), 3.41 – 3.33 (m, 1H), 3.25 (dd, J = 15.3, 7.1 Hz, 1H), 3.12 (d, 

J = 11.4 Hz, 1H), 2.79 (dt, J = 25.4, 10.0 Hz, 2H), 2.67 – 2.60 (m, 1H).
13

C NMR (125 

MHz, DMSO-d6) δ 153.74, 146.28, 145.81, 133.42, 132.44, 128.61, 128.30, 125.75, 

112.16, 111.65, 110.36, 105.68, 102.70, 61.92, 56.79, 56.04, 52.57, 51.14, 28.32, 28.28. 

ESI-MS m/z: 351 [M+H]
+
. EI-HRMS calcd C21H22N2O3 (M

+
) 350.1630, found 350.1628. 

3-Hydroxyl-2,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quin

olizine (38). This compound was prepared by reduction of compound 36 catalyzed by 10% 

Pd/C under hydrogen atmosphere. 
1
H NMR (400 MHz, MeOD) δ 7.47 (t, J = 8.0 Hz, 2H), 

7.39 (t, J = 7.2 Hz, 1H), 7.34 (d, J = 7.1 Hz, 1H), 7.13 (d, J = 5.3 Hz, 1H), 6.94 – 6.91 (m, 

1H), 5.61 – 5.56 (m, 2H), 5.17 (s, 2H), 3.95 (s, 3H), 3.86 (s, 3H), 3.76 – 3.58 (m, 1H), 3.37 

(s, 1H), 3.20 – 2.93 (m, 2H). 
13

C NMR (125 MHz, DMSO-d6) δ 153.93, 147.43, 136.96, 

131.53, 128.48, 127.96, 127.87, 126.30, 113.09, 111.69, 110.99, 109.63, 100.39, 69.91, 

65.67, 60.25, 56.15, 55.47, 26.23, 25.37. ESI-MS m/z: 351 [M+H]
+
. EI-HRMS calcd 

C21H22N2O3 (M
+
) 350.1630, found 350.1628. 
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2-Ethoxy-3,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinol

izine (39). This compound was prepared by reaction of compound 35 with bromoethane 

under K2CO3 as the base in acetone. 
1
H NMR (400 MHz, CD3OD) δ 7.17 (d, J = 8.7 Hz, 

1H), 7.00 – 6.95 (m, 2H), 6.71 (dd, J = 8.8, 2.4 Hz, 2H), 4.13 – 4.03 (m, 2H), 3.82 (S, 6H), 

3.76 (dd, J = 13.6, 8.8 Hz, 2H), 3.45 (dd, J = 15.1, 3.0 Hz, 1H), 3.30 (q, 7.0 Hz, 2H), 3.28 

– 3.01 (m, 2H), 2.77 – 2.64 (m, 2H), 1.42 (t, J = 7.0 Hz, 3H). 
13

C NMR (101 MHz, cdcl3) δ 

153.96, 147.89, 146.72, 132.19, 131.16, 129.95, 127.60, 126.53, 111.47, 111.41, 111.03, 

110.60, 108.35, 100.15, 64.67, 59.76, 55.86, 52.96, 51.30, 29.66, 29.41, 29.26, 14.90. 

ESI-MS m/z: 379 [M+H]
+
. EI-HRMS calcd C23H26N2O3 (M

+
) 378.1943, found 378.1943. 

2-propoxy-3,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quino

lizine (40). This compound was prepared by replacement with 

2-(3-methoxy-4-propoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic 

acid using a similar synthetic procedure of product 13. 
1
H NMR (400 MHz, CD3OD) δ 

7.17 (d, J = 8.7 Hz, 1H), 7.02 – 6.94 (m, 2H), 6.75 – 6.67 (m, 2H), 4.06 – 3.96 (m, 2H), 

3.82 (d, J = 2.0 Hz, 6H), 3.77 (d, J = 16.7 Hz, 2H), 3.46 (dd, J = 14.6, 3.5 Hz, 1H), 3.30 (q, 

7.4 Hz, 2H), 3.26 – 3.07 (m, 2H), 2.78 – 2.63 (m, 2H), 1.90 – 1.76 (m, 2H), 1.07 (t, J = 7.4 

Hz, 3H). 
13

C NMR (101 MHz, CDCl3) δ 153.54, 147.63, 146.60, 131.67, 130.77, 129.47, 

127.17, 126.03, 111.26, 111.03, 110.61, 110.40, 107.86, 99.78, 70.48, 59.33, 55.53, 55.46, 

52.46, 50.81, 31.47, 29.25, 22.24, 22.17. ESI-MS m/z: 393 [M+H]
+
. EI-HRMS calcd 

C24H28N2O3 (M
+
) 392.2100, found 392.2106. 

2-Butoxy-3,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinol
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izine (41). This compound was prepared by replacement with 

2-(4-butoxy-3-methoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid 

using a similar synthetic procedure of product 13. 
1
H NMR (400 MHz, CD3OD) δ 7.17 (d, 

J = 8.7 Hz, 1H), 7.02 – 6.92 (m, 2H), 6.75 – 6.69 (m, 2H), 4.01 (dd, J = 11.4, 4.8 Hz, 2H), 

3.82 (d, J = 1.3 Hz, 6H), 3.77 (d, J = 16.6 Hz, 2H), 3.51 – 3.39 (m, 1H), 3.30 (q, 7.4 Hz, 

2H), 3.26 – 3.06 (m, 2H), 2.77 – 2.63 (m, 2H), 1.85 – 1.72 (m, 2H), 1.55 (m, 2H), 1.01 (t, 

J = 7.4 Hz, 3H). 
13

C NMR (125 MHz, CDCl3) δ 154.01, 148.14, 147.13, 132.13, 131.26, 

129.92, 127.63, 126.47, 111.76, 111.53, 111.07, 110.88, 108.29, 100.26, 69.17, 59.82, 

56.01, 55.92, 52.94, 51.28, 31.94, 31.40, 29.71, 22.71, 19.29. ESI-MS m/z: 407 [M+H]
+
. 

EI-HRMS calcd C25H30N2O3 (M
+
) 406.2256, found 406.2258. 

3-Ethoxy-2,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinol

izine (42). This compound was prepared by replacement with 

2-(3-ethoxy-4-methoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid 

using a similar synthetic procedure of product 13. 
1
H NMR (400 MHz, CDCl3) δ 7.99 (s, 

1H), 7.14 (d, J = 8.8 Hz, 1H), 6.95 (s, 1H), 6.80 (s, 1H), 6.77 (d, J = 8.6 Hz, 1H), 6.61 (s, 

1H), 4.07 (dd, J = 13.5, 6.5 Hz, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 3.74 (d, J = 15.1 Hz, 2H), 

3.29 (d, J = 14.5 Hz, 1H), 3.11 (t, J = 12.1 Hz, 2H), 2.73 – 2.67 (m, 2H), 2.01 – 1,80 (m, 

2H), 1.45 (t, J = 6.9 Hz, 3H). 
13

C NMR (125 MHz, CDCl3) δ 153.98, 147.80, 132.13, 

131.99, 131.28, 131.14, 129.93, 127.62, 112.74, 111.49, 111.44, 111.11, 108.26, 108.21, 

100.23, 64.31, 59.84, 56.25, 55.93, 52.95, 51.30, 49.94, 49.76, 29.70. ESI-MS m/z: 379 

[M+H]
+
. EI-HRMS calcd C23H26N2O3 (M

+
) 378.1943, found 378.1942. 
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3-Propoxy-2,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quin

olizine (43). This compound was prepared by replacement with 

2-(4-methoxy-3-propoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic 

acid using a similar synthetic procedure of product 13. 
1
H NMR (400 MHz, CDCl3) δ 7.99 

(s, 1H), 7.14 (d, J = 8.0 Hz, 1H), 6.95 (s, 1H), 6.79 (d, J = 11.2 Hz, 2H), 6.62 (s, 1H), 3.95 

(s, 4H), 3.89 (s, 4H), 3.84 (s, 2H), 3.73 (d, J = 12.1 Hz, 2H), 3.28 (d, J = 13.7 Hz, 1H), 

3.10 (s, 2H), 2.71 (s, 2H), 1.86 (q, J = 6.8 Hz, 2H), 1.03 (t, J = 6.8 Hz, 3H).
 13

C NMR (125 

MHz, CDCl3) δ 153.98, 147.87, 147.17, 132.26, 131.22, 129.94, 127.62, 126.49, 112.86, 

111.59, 111.09, 109.40, 108.29, 100.14, 70.48, 59.89, 56.37, 55.92, 52.94, 51.37, 22.74, 

22.52, 14.19, 10.52. ESI-MS m/z: 393 [M+H]
+
. EI-HRMS calcd C24H28N2O3 (M

+
) 

392.2100, found 392.2108. 

3-Butoxy-2,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinol

izine (44). This compound was prepared by replacement with 

2-(3-butoxy-4-methoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid 

using a similar synthetic procedure of product 13. 
1
H NMR (400 MHz, CDCl3) δ 8.02 (s, 

1H), 7.13 (d, J = 8.6 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 6.81 (s, 1H), 6.77 (dd, J = 8.6, 2.2 

Hz, 1H), 6.62 (s, 1H), 4.00 (t, J = 6.8 Hz, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 3.69 (d, J = 15.2 

Hz, 2H), 3.32 – 3.24 (m, 1H), 3.10 (t, J = 12.0 Hz, 2H), 2.70 (s, 3H), 1.86 – 1.78 (m, 2H), 

1.49 (dq, J = 14.8, 7.5 Hz, 2H), 0.97 (t, J = 7.4 Hz, 4H). 
13

C NMR (125 MHz, CDCl3) δ 

154.01, 147.90, 147.23, 132.38, 131.23, 130.08, 127.69, 126.60, 112.91, 111.50, 111.07, 

109.52, 108.43, 100.21, 68.72, 59.89, 56.41, 55.92, 53.01, 51.42, 31.95, 31.29, 29.72, 
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22.72, 19.27. ESI-MS m/z: 407 [M+H]
+
. EI-HRMS calcd C25H30N2O3 (M

+
) 406.2256, 

found 406.2260. 

 

5.2 Bioassay 

5.2.1 Chemicals and Reagents. Silodosin and tamsulosin were purchased from J&K 

chemical (Shanghai, China), and phenylephrine was purchased from Tokoyokasei. 

Mammalian expression vectors encoding Gα16, α1A-AR, α1B-AR and α1D-AR were 

purchased from the UMR cDNA Resource Center. Full-length cDNAs encoding human 

α1A-AR, α1B-AR or α1D-AR were cloned into the pSNAP vector (Cisbio Bioassays) 

in-frame with SNAP-tag attached at the N terminus. The Tag-lite labeling medium, the Tb 

derivative of O6-benzylguanine (commercialized as SNAP-Lumi4-Tb) and the α1-AR 

antagonist (Prazosin) labeled with a d2 fluorescent probe was obtained from Cisbio 

Bioassays.  

5.2.2 Cells Culture and Transfection. HEK293 cells obtained from American Type 

Culture Collection were maintained in Dulbecco’s Modified Eagle’s Medium(DMEM) 

supplemented with 10% fetal bovine serum(FBS), 100 mg/L penicillin, and 100 mg/L 

streptomycin at 37°C in a humidified atmosphere of 5% CO2. HEK293 cells were 

cotransfected with plasmids encoding various α1-ARs and Gα16 by electroporation. To 

generate stable cell lines, transfected cells were seeded onto 10-cm dishes and 1 mg/mL 

G418 and 40µg/mL blasticidin were added to the culture medium 24 h later. The selection 

medium was changed every 3 days until colonies formed. A single colony was isolated, 
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expanded, and tested with a calcium mobilization assay to confirm the expression and 

proper function of the transfected genes. 

 

5.2.3 Calcium Mobilization Assay. Cells were seeded onto 96-well plates at a density of 

3×10
4
 cells/well and cultured overnight. Cells were then incubated with 2 µM Fluo-4 AM 

in HBSS (5.4 mM KCl, 0.3 mM Na2HPO4, 0.4 mM KH2PO4, 4.2 mM NaHCO3, 1.3 mM 

CaCl2, 0.5 mM MgCl2, 0.6 mM MgSO4, 137 mM NaCl, 5.6 mM D-glucose and 250 µM 

sulfinpyrazone, pH 7.4) at 37 °C for 45 min. After a thorough washing, 50 µL of HBSS 

containing either antagonists or 1% DMSO (negative control) were added. After 

incubation at room temperature for 10 min, 25µL of agonist were dispensed into the well 

using a FlexStation microplate reader (Molecular Devices), and intracellular calcium 

change was recorded at an excitation wavelength of 485 nm and an emission wavelength 

of 525 nm. 

5.2.4 Rat isolated tissue functional assays. Freshly isolated male SD rat urethra or aorta 

were cleaned of adherent connective tissue and cut helically, and the endoethelium was 

removed by gentle rubbing. The tissue strips were then mounted vertically inan organ bath 

containing 20 mL of Krebs-Henseleit solution of the following composition (mM): NaCl, 

118; KCl 4.7; CaCl2, 2.5; MgSO4, 1.2; NaHCO3, 25; KH2PO4, 1.2, glucose 11.1. These 

tissues were then mounted in the buffer maintained at 37 °C and aerated with carbogen (95% 

oxygen and 5% carbon dioxide) during the entire length of experiment. Resting tension 

applied was 1 g for rat urethraor aorta, and the responses were recorded isometrically 
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through force-displacement transducers. The tissue strips noradrenaline cumulative 

concentration response curve was obtained in the absence or presence of compounds with 

different concentrations incubated for 20 min. 

5.2.5 Data Analysis. Data were analyzed with GraphPad Prism software (GraphPad). 

Nonlinear regression analysis was performed to generate dose-response curves and 

calculate concentrations for 50% inhibition (IC50) values. Means ± SEM were calculated 

using this software. The analyses were assessed by a Student t test. A p value < 0.05 was 

considered statistically significant. 
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