Journal of Medicinal Chemistry

Article

Subscriber access provided by CORNELL UNIVERSITY LIBRARY

Design, Synthesis and Biological Evaluation of Novel Tetrahydroprotoberberine Derivatives (THPBs) as Selective #1A-Adrenoceptor Antagonists

Diliang Guo, Jing Li, Henry Lin, Yu Zhou, Ying Chen, Fei Zhao, Haifeng Sun, Dan Zhang, Honglin Li, Brian K. Shoichet, Lei Shan, Weidong Zhang, Xin Xie, Hualiang Jiang, and Hong Liu J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.6b01217 • Publication Date (Web): 06 Oct 2016 Downloaded from http://pubs.acs.org on October 8, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Design, Synthesis and Biological Evaluation of Novel Tetrahydroprotoberberine Derivatives (THPBs) as Selective α_{1A} -Adrenoceptor Antagonists

Diliang Guo,^{a,†} Jing Li,^{a,†} Henry Lin,^{b,†} Yu Zhou,^{a,†} Ying Chen,^a Fei Zhao,^a Haifeng Sun,^a Dan Zhang,^a Honglin Li,^c Brian K. Shoichet,^{b,d} Lei Shan,^e Weidong Zhang,^e Xin Xie,^{a,*} Hualiang Jiang,^{a,*} Hong Liu^{a,*}

^a CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

^b Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA.

^c State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.

^d Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.

^e Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.

Abstract

A novel series of tetrahydroprotoberberine derivatives (THPBs) were designed, synthesized and evaluated as selective α_{1A} -adrenergic receptors (AR) antagonists for the treatment of benign prostatic hyperplasia. Based on the pharmacophore model of the marketed drug silodosin, THPBs were modified by introducing an indole segment into their core scaffolds. In calcium assays, 7 out of 32 compounds displayed excellent antagonistic activities against α_{1A} -ARs, with IC_{50s} less than 250 nM. Among them, compound (S)-27 had the most potent biological activity; its IC50 toward α_{1A} -AR was 12.8 ± 2.2 nM, which is 781 and 20 times more selective than that toward α_{1B} - and α_{1D} -AR, respectively. In the functional assay using isolated rat tissues, compound (S)-27 inhibited norepinephrine-induced urethra smooth muscle contraction potently (IC₅₀ = 0.5 ± 0.3 nM), without inhibiting the aortic contraction $(IC_{50} > 1000 \text{ nM})$, displaying a better tissue selectivity than the marketed drug silodosin. Additional results of preliminary safety studies (acute toxicity and hERG inhibition) and pharmacokinetics studies indicated the potential druggability for compound (S)-27 which is a promising lead for the development of selective α_{1A} -AR antagonists for the treatment of BPH.

1. Introduction

Benign prostatic hyperplasia (BPH) is a benign increase in the size of the prostate that leads to urinary hesitancy, frequent urination, dysuria and increased risk of lower urinary tract symptoms (LUTS).^{1,2} An estimated 50% of men have histological evidence of BPH by the age of 50 years and that number increases to 75% by the age

of 80 years. As life expectancy rises, so does the occurrence of BPH.³ There are two components of BPH/LUTS, namely increased size and elevated muscle tone of the gland. Therefore, medications are also divided into two categories: those that decrease the gland size and those that relax the urethra smooth muscle.

Figure 1. Marketed α_{1A} -AR selective antagonists, tamsulosin and silodosin.

 α_1 -Adrenergic receptors (α_1 -adrenoceptors, α_1 -ARs) belong to the G protein-coupled receptor (GPCR) superfamily, and regulate the contraction of smooth muscle by activating phospholipase C, followed by the increase of intracellular calcium levels.^{4,5} α_1 -ARs are divided into three subtypes, α_{1A} , α_{1B} and α_{1D} -AR.⁶⁻⁸ The α_{1A} -AR, expressed mainly in the prostate, bladder and urethra, is considered to play a major role in regulating prostatic muscle contraction, while α_{1D} -AR has a minor contribution.^{4,9} On the other hand, α_{1B} -AR, expressed predominantly in the heart and vascular smooth muscle, is considered a drug target for treating hypertension.^{10,11} α_{1A} antagonists are used as anti-BPH agents; however, antagonism of the α_{1B} subtype will lead to cardiovascular side effects, such as hypotension. 12,13 The α_{1D} subtype is predominant and functional in human epicardial coronary arteries, and its inhibition might result in coronary vasodilation.¹⁴ In the last two decades, α_{1A} -AR selective antagonists, such as the marketed drugs tamsulosin (1) and silodosin (2), have been developed to treat BPH/LUTS (Figure 1). These agents have relatively high $\alpha_{1A}\text{-}AR$

subtype selectivity and effectively relieve the symptoms of BPH, with reduced side effects.¹⁵⁻¹⁸ However, the cardiovascular adverse effects can still be observed and impact blood pressure. Clinical trial results showed that tamsulosin treatment results in a significant decrease in mean systolic blood pressure.¹⁹ Marks et al reported the incidence of orthostatic hypotension caused by silodosin is 2.6%.²⁰ Recently, increasing efforts have been made to identify novel small molecule α_{1A} -AR selective antagonists based on the scaffolds of the molecules mentioned above.²¹⁻³²

 Table 1. The predicted target of THPB analogs by SEA, ChemMapper and calcium assay evaluation

Commit	Stranstorme	Predicted	E cuchus ^a	Similarity	Calcium Assay	
Compu.	Suuciure	Target	E-value	Score ^b	(IC ₅₀)	
3		α_{1A} -AR	3.75e-8	1.9	5.4 μΜ	
4		α_{1A} -AR	-	-	41.2% inhibition @ 10 μM	
5		α_{1A} -AR	-	-	7.6 µM	
6		α_{1A} -AR	-	-	462 nM	

^{*a*} SEA E-values against all 246 MDDR activity classes. ^{*b*} ChemMapper similarity score against the ChEMBL database.

As a rapid complementary approach to experimental methods, *in silico* target prediction methods had been approved to identify the pharmacological effects of a drug.^{33,34} Tetrahydroprotoberberines (THPBs) extracted from the Chinese herb Corydalis ambigua, are important and intriguing scaffolds. Herein, to find their potential targets, we have used the similarity ensemble approach (SEA)³⁵ and ChemMapper^{36,37} to predict their potential targets.^{33,34} Through comparison of the results derived from the above two methods, adrenergic receptor is an interesting unreported target for these compounds, which were therefore selected for further biological evaluation. The calcium assay results indicated that THPBs presented moderate antagonism against α_{1A} -AR, with sub-micromolar affinities (Table 1, compounds **3-6**).

Figure 2. THPB analogs and their binding affinities (pK_i) on α_1 -AR.

With the above results in mind, a literature research was carried out and evidence that some THPBs including tetrahydroberberines (THB, **7**), *l*-tetrahydropalmatine (*l*-THP, **4**), *l*- stepholidine (*l*-SPD, **8**) and *l*-chlorosoulerine (*l*-CSL, **9**), were observed to possess weak α_1 -AR binding affinity and to block phenylephrine-induced vasocontraction (Figure 2).³⁵

Based on these findings, we believed that THPB derivatives should be explored as a novel class of α_{1A} -AR antagonists for the treatment of BPH/LUTS. Therefore, we report the design and synthesis of a series of novel indole-containing THPB derivatives as selective α_{1A} -AR antagonists, as well as the detailed structure-activity relationship analysis, in vitro and in vivo biological evaluation, preliminary toxicity and pharmacokinetic studies.

2. Chemistry

2.1 Design of Target Compounds

In addition to a chemical similarity approach, pharmacophore models and quantitative structure–activity relationship (QSAR) studies have been used frequently to design novel α_{1A} -AR antagonists in recent years. Meaningful pharmacophore and QSAR models have been established, and several key components of pharmacophores were identified in various scaffolds, including the marketed drugs tamsulosin and silodosin. ³⁶⁻⁴⁰

To design our compounds, silodosin was treated as a model molecule. Interestingly, we found that THB has a pharmacophore similar to silodosin. The positive ionizable (PI) nitrogens in the center of both molecules are probably crucial for recognition between the compound and the receptor. In addition, the two aromatic ring segments (Ar) at both ends of the two compounds represent evidence of hydrophobic interaction. The alkoxy groups on the aromatic rings are potential hydrogen bond sites (HBS) that form interactions with α_1 -AR. Note that both molecules have an chiral carbon located next to the PI nitrogen. These common pharmacophore patterns of the two molecules provide a reasonable explanation for the interaction between THB and α_1 -AR (Figure 3).

Figure 3. Similar pharmacophore models of silodosin and THB.

Based on these findings, we hypothesized that THB could be modified into α_{1A} -AR antagonists with higher affinity and selectivity. In our previous studies, a class of indole-containing polycyclic compounds obtained by the gold catalyzed cascade reaction was identified as selective α_{1A} -AR blockers with moderate activities.⁴¹ Other indole-based scaffolds have also been reported to exhibit good bioactivities toward ARs.⁴²⁻⁴⁶ Thus, an indole fragment was introduced into THB on its D-ring, such that a series of indole-containing THB derivatives were designed and synthesized (Figure 4). All synthesized compounds (**13-44**) were further evaluated for their biological activities using calcium mobilization assays. In addition, chiral compounds (*S*)-18, (*S*)-27 and (*R*)-27 were also synthesized to explore the influence of the molecular configuration (Scheme 2).

Figure 4. The structural optimization for THB

2.2 Synthetic Procedures of Target Compounds

The designed compounds were synthesized via the procedures shown in Schemes 1-3. Condensation of commercially available phenylethanamines and indole-3-acetic acids generated amides **10a-u**, which were further cyclized under the presence of

phosphoryltrichloride (POCl₃) to give imines **11a-u** in excellent yields, according to the procedures of the Bischler–Napieralski reaction. Reduction of the resulting imines **11a-u** with sodium borohydride produced the key amine intermediates **12a-u**. Cyclization of amines **12a-u** via the Pictect–Spengler reaction with various aldehydes resulted in the target products **13-35** (Scheme 1). Further deprotection of groups of products **32**, **34** and **35** gave compounds **36-38**, respectively. Compounds **39-44** were synthesized by substitution reactions of **37** and **38** with different alkyl bromides (Scheme 2).

Additionally, chiral compounds (*S*)-18, (*S*)-27 and (*R*)-27 were prepared according to the procedure outlined in Scheme 3. Asymmetric hydrogenation of imines 11b and 11d, catalyzed by a chiral Ru-(II) complex (Noyori's catalyst)⁴⁷⁻⁴⁹ produced chiral amines (*S*)-12b, d and (*R*)-12d, followed by cyclization with formaldehyde to give (*S*)-18, (*S*)-27 and (*R*)-27. All target compounds were characterized by ¹H-NMR, ¹³C-NMR and MS (see Experimental Section).

 Scheme 1. Synthesis of compounds 13-35.^a

^aReagents and conditions: (a) EDCI, Et₃N, CH₂Cl₂, rt, 8 h; (b) POCl₃, CH₃CN, reflux; (c) NaBH₄, methanol, rt, 8 h; (d) HCOOH, R₇CHO, 25–90°C, 2 h.

Scheme 2. Synthesis of compounds 36-44.^a

^aReagents and conditions: (a) H₂, Pd/C, rt, 8h; (b) RBr, K₂CO₃, acetone, reflux, 2 h.

Scheme 3. Synthesis of compounds (S)-18, (S)-27 and (R)-27.^a

^aReagents and conditions: (g) (R,R)-Noyori's catalyst, HCOONa, AgSbF₆, La(OTf)₃, CTAB, H₂O, 40 °C, 12 h; (h) (S,S)-Noyori's catalyst, HCOONa, AgSbF₆, La(OTf)₃, CTAB, H₂O, 40 °C, 12 h; (i) HCOOH, 40% HCHO, 25–90 °C, 2 h.

Results and Discussion

3.1 Chemistry

On the basis of the structure features of THB, an indole fragment was introduced on its D-ring, and 32 new indole-containing compounds were designed and synthesized. Their synthetic routes and chemical structures (13-44) are shown in Scheme 1. In addition, chiral compounds (S)-18, (S)-27 and (R)-27 were also synthesized to explore the influence of their configuration (Scheme 2). The details of the synthetic procedures and structural characterizations are described in the Experimental Section.

3.2 Structure-Activity Relationship for All Compounds

All target compounds (13-44, (*S*)-18, (*S*)-27 and (*R*)-27) were evaluated for their biological activities toward α_1 -AR using calcium mobilization assays. The initial screening was carried out at a concentration of 10 µM for each compound, and compounds that displayed >80% inhibition were further evaluated for their IC₅₀s. The results are summarized in Table 2, and the details of the bioassay procedures are described in the Experimental Section. As shown in Table 2, twenty compounds demonstrated good inhibitory activities, with >80% inhibition at a concentration of 10 uM for each compound. Further analysis showed that introducing substituents (alkyl or aryl groups) into the R7 position was detrimental to the inhibitory potency when R1 and R2 were replaced by a methoxyl group (*see* compounds 13-17, as shown in Table 2 and Scheme 1), respectively. However, the introduction of a methylenedioxy group into the R1 and R2 position of the scaffold of compound 13 afforded the new compound 18, which displayed an excellent

inhibitory effect toward α_{1A} -AR, its IC₅₀ value was 125.0 ± 20.4 nM. Based on these positive results, several bulky alkyl and aryl substituents were introduced into R7 position of the scaffold of **18** to form compounds **19-22**; unfortunately, the introduction of these bulky groups caused a substantial loss in inhibitory activity, which suggested that the bulky steric hindrance at R7 position might decrease their activity. Thereafter, we attempted to remove the R2 group (-OCH₃) from the scaffold of compound **13** to prepare compound **23**, and the bioassay showed a moderate inhibitory potency against α_{1A} -AR, with an IC₅₀ of 552.3 ± 67.9 nM. Based on this finding, we further substituted R7 position with methyl, cyclopropyl and 4-methoxyphenyl to form compounds **24-26**, which have hardly any inhibitory potency against α_{1A} -AR.

able 2. Inhibition ratio and IC ₅₀ values of all synthesized compounds for α_{1A} -AR. ^a
--

Comnd	IR^b	IC ₅₀ (Means \pm	Selectivity			
Compa.	(10 µM)	α_{1A}	α_{1B}	α_{1D}	α_{1B}/α_{1A}	α_{1D}/α_{1A}
13	60%	/	/	/	/	/
14	72%	/	/	/	/	/
15	0%	/	/	/	/	/
16	0%	/	/	/	/	/
17	21%	/	/	/	/	/
18	100%	125.0±20.4	> 10000	> 10000	>80.0	>80.0
19	82%	> 10000	/	/	/	/
20	0%	/	/	/	/	/

21	0%	/	/	/	/	/
22	0%	/	/	/	/	/
23	100%	552.3±67.9	/	/	/	/
24	90%	8669±625.6	/	/	/	/
25	31%	/	/	/	/	/
26	80%	> 10000	/	/	/	/
27	99%	17.6±2.1	> 10000	4038±1725	>568.2	229.4
28	100%	202.3±32.5	> 10000	> 10000	>19.4	>19.4
29	100%	594.0±147.0	> 10000	> 10000	>16.8	>16.8
30	100%	2057±183.0	/	/	/	/
31	100%	253.8±32.6	> 10000	8392±526.4	>39.4	33.1
32	100%	2880±77.5	/	/	/	/
33	100%	1474±138.8	/	/	/	/
34	100%	124.7±7.1	7928±250.3	640.6±95.7	53.6	5.1
35	97%	> 10000	/	/	/	/
36	100%	402.9±53.6	9170±1133	1456±68.6	22.8	3.6
37	56%	/	/	/	/	/
38	0%	/	/	/	/	/
39	75%	/	/	/	/	/
40	100%	225.3±35.2	> 10000	> 10000	>44.4	>44.4
41	98%	2286±429.3	/	/	/	/

42	17%	/	/	/	/	/
43	21%	/	/	/	/	/
44	63%	/	/	/	/	/
(<i>S</i>)-18	99%	57.4±10.2	> 10000	> 10000	>174.0	>174.0
(<i>S</i>)-27	100%	12.8±2.2	> 10000	250.7±40.7	>780.6	19.6
(R)-27	100%	3187±149.4	/	/	/	/
tamsulosin ^c	100%	2.2±0.3	4.8±0.9	1.4±0.2	2.2	0.6
silodosin ^c	100%	1.8±0.1	116.0±12.5	6.3±1.0	66.0	3.6

^aThe initial screening was carried out at a concentration of 10 μ M for each compound and IC₅₀ were measured for compounds that displayed >80% inhibition of α_{1A} -AR, and "/" means that no experiment was conducted. ^bIR represents inhibition ratio. ^cThe reference drug.

On the basis of above results, we held the methylenedioxy group at R1 and R2 position on the molecular scaffold of compounds **19-22**, and further explored the influence of different substituents on the indole ring on inhibitory potency of α_{1A} -AR, namely that introducing different substituents into R3, R4, R5 and R6 position, respectively. The results demonstrated that introducing a methoxy group into the R4 position of the indole ring can produce the highest inhibitory activity against α_{1A} -AR, with an IC₅₀ of 17.6 ± 2.1 nM (**27**). However, moving this methoxy group from R4 to R3 or R5 position of the indole ring brought about a decrease in inhibitory activity against α_{1A} -AR (**28** and **29**). The introduction of a fluorine atom (**30** and **31**) and an electron-donating group (**32** and **33**) into R4, R5 or R6 position of the scaffold of the indole could not increase the inhibitory

Journal of Medicinal Chemistry

potency. It follows that substituting R4 with a methoxy group was favorable to retain the inhibitory effects against α_{1A} -AR. Therefore, in the subsequent structural modification, we kept a methoxy group on the R4 position of indole ring and further investigated the influences of different R1 and R2 substituents (**34**, **35**, **37**-**44**). The results displayed that a methoxy group in the R1 position is important to maintain the inhibitory potency of the compounds toward α_{1A} -AR (**34**, **40**). Removal of the methoxy group from the R1 position almost completely ablated their activities (**38**, **42**-**44**).

For some natural products, such as *l*-SPD, the *R*-configuration exhibited worse α_{1A} -AR antagonistic activity compared to its *S*-configured counterparts.⁵⁰⁻⁵² Therefore, we also synthesized the chiral compounds (*S*)-18, (*S*)-27 and (*R*)-27, and further evaluated their biological activities toward α_{1A} -AR. The results showed that the *S*-configuration is an important determinant of the α_{1A} -AR inhibitory activity. As shown in Table 2, the *S*-configured enantiomer (*S*)-18 (IC₅₀ = 57.4 ± 10.2 nM) offered almost two-fold higher potency than the racemate 18 (IC₅₀ = 125.0 ± 20.4 nM). The *S*-configured enantiomer (*S*)-27 exhibited the most potent α_{1A} -AR antagonistic activity; its IC₅₀ reached 12.8 ± 2.2 nM, which was much more effective than its racemate (27, IC₅₀ = 17.6±2.1 nM) and *R*-configured compound ((*S*)-27, IC₅₀ = 3187±149.4 nM). These data demonstrated that the stereochemical configuration has an important influence on the α_{1A} -AR antagonistic activity of these compounds.

3.2 Evaluation of a₁-AR Subtype Selectivity for Selected Compounds

Previous studies indicated that the α_{1B} subtype is found widely in vascular smooth

muscle, and blocking it can cause orthostatic hypotension.⁵³ The α_{1D} subtype is predominant and functional in human epicardial coronary arteries, and its inhibition might mediate coronary vasodilation.⁵⁴ Therefore, to characterize α_1 -AR subtype selectivity. representative compounds (18, 27-29, 31, 33, 35, 40, (S)-18 and (S)-27) were selected to determine their selectivities using a calcium mobilization assay. The results are summarized in Table 2. In general, most of these compounds displayed moderate to high antagonist activity toward α_{1A} -AR. However, none of them displayed a significant inhibitory effect toward α_{1B} -AR. Only a few compounds had measurable antagonist activity on α_{1D} -AR. All compounds displayed much better α_{1A} -AR selectivity compared with the reference drug tamsulosin. Although compounds 27 and (S)-27 showed slightly less potent antagonistic activity than silodosin against α_{1A} -AR, both demonstrated much higher selectivities than silodosin and tamsulosin. (S)-27 showed higher selectivity for α_{1A} -AR (IC₅₀ = 12.8 nM) compared with α_{1B} -AR (IC₅₀>10 μ M, α_{1B}/α_{1A} > 780) and α_{1D} -AR (IC₅₀ = 250.7 nM, α_{1D}/α_{1A} = 19.6), which was much better than tamsulosin (α_{1B}/α_{1A} = 2.2, $\alpha_{1D}/\alpha_{1A} = 0.6$) and silodosin ($\alpha_{1B}/\alpha_{1A} = 66.0, \alpha_{1D}/\alpha_{1A} = 3.6$).

3.3 Functional Assay in Isolated Rat Tissues

It is desirable to develop α_1 -AR antagonists that can selectively suppress the tone of the lower urinary tract, without vascular effects, to treat urinary outlet obstruction problems in patients with BPH.⁵⁴ Therefore, we selected the most effective compounds, 27 and (*S*)-27, and evaluated their antagonist effect on smooth muscle contraction of rat urethras and aortas. As shown in Table 3, both 27 and (*S*)-27 showed strong

anti-contractile activity on urethra smooth muscle stimulated with norepinephrine. Compound (S)-27 (IC₅₀ = 0.5 ± 0.3 nM) was slightly more potent than the marketed drug silodosin (IC₅₀ = 0.8 ± 0.03 nM). Encouragingly, neither compound had a significant effect on norepinephrine-induced contraction of aortic smooth muscle (IC₅₀ >1000 nM), while the control compound silodosin potently inhibited aortic contraction (IC₅₀ = 90.1 ± 7.6 nM). The uroselectivity of compound (S)-27 was better than silodosin, indicating that (S)-27 might have fewer vascular side effects than silodosin.

 Table 3. Antagonist effect on smooth muscle contraction of rat urethra and aorta.

Comnd -	IC ₅₀	(nM)	Selectivity
Compa.	Urethra	Aorta	Urethra/ Aorta
27	45.4±8.8	>1000	>22.02
<i>(S)</i> -27	0.5±0.3	>1000	>2083
silodosin ^a	0.8±0.03	90.1±7.6	112.6

^a The reference drug.

3.4 Micturition Behavior in BPH Model Rats.

The BPH model rats have higher micturition frequency (Figure 5A) and lower mean voided volume (Figure 5B) than the sham rats. In our studies, we found that silodosin can dose-dependently reduce the urinary frequency and increase the voided volume (Figure 5A and 5B). Our compounds **27** and (*S*)-**27** can also offer improved effects in the micturition behavior of BHP rats. The minimal effective dose of reducing micturition frequency is 10 mg/kg and 3 mg/kg (Figure 5A), respectively; and the minimal effective dose of increasing

the mean voided volume is 3 mg/kg (Figure 5B). The most optimal dose of 27 and (S)-27 in this study is 10 mg/kg, which led the maximum the urinary frequency reduction and voided volume increase. Although compounds (*S*)-27 shows a slightly weaker activity in BPH rats than silodosin, it can effectively alleviate voiding symptoms of BPH rats, which is worthy of further investigation.

Figure 5. Effects of 27 and (*S*)-27 on the micturition parameters in BPH rats. (A) Micturition frequency and (B) mean voided volume were measured in a metabolic cage. ###P < 0.001, versus sham control. *P < 0.05, **P < 0.01, ***P < 0.001 versus vehicle control.

3.5 Safety Evaluation: Inhibitory Potency against hERG Potassium Ion Channel

In view of excellent biological activities of compound (S)-27, we further evaluated its hERG potassium ion channel inhibition profiles. As shown in Table 4, these results displayed that (S)-27 and its racemic compound 27 have lower hERG potassium ion channel inhibition than the marketed drug silodosin and dofetilide.

1	
2	
3	
4	
5	
6	
7	
8	
à	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
<u>4</u> 2	
Δ <i>Δ</i>	
- + ⊿5	
40	
40 47	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
~~~	

Compound	hERG inhibition
	IC ₅₀ (μM)
27	16.5
<i>(S</i> )-27	13.2
silodosin ^a	8.2
dofetilide ^a	0.2

**Table 4.** Inhibition assay of the hERG potassium ion channel

^a The reference drug

# 3.6 Safety Evaluation: Acute Toxicity for Compound (S)-27

We performed acute toxicity tests in Kunming mice. Compound (S)-27 was given orally in a single-dosing experiment at 500 mg/kg. The animals were closely monitored, and no animal died within 7 days after treatment. Body weights were not affected and the animals had shining fur. In addition, the behavior of the mice was unaffected by the single-dose administration of (S)-27 at 500 mg/kg.

# 3.7 Preliminary Pharmacokinetic Evaluation for Compound (S)-27.

Compound (*S*)-27 was further evaluated for its preliminary pharmacokinetic profile in rat. The results showed that compound (*S*)-27 had a good pharmacokinetic profile, with 60.9% oral bioavailability, an AUC_{0-t} (area under the plasma concentration-time curve from zero (0) hours to time (t)) of 2274 ng/mL*h, and had a good half life (Table 5). We evaluated the plasma protein binding of this compound in rat. The results showed that compound (*S*)-27 present a high plasma protein binding, which is about 97%.

	Dose	T _{max}	C _{max}	AUC _{0-t}	AUC _{0-∞}	MRT	t _{1/2}	CLz	F
	mg/kg	h	ng/mL	ng/mL*h	ng/mL*h	h	h	L/h/kg	%
ig ^a	20	1.0	684	2274	2277	2.52	1.18	/	60.9
iv ^b	10	0.25	855	1867	1877	1.79	0.98	5.79	/

Table 5. Preliminary pharmacokinetic parameters for compound (S)-27.

^aIntragastric administration (oral gavage). ^bIntravenous injection.

#### 4. Conclusions

A class of novel indole-containing THPB derivatives were designed and synthesized, and their antagonistic activities against  $\alpha_{1A}$ -ARs were evaluated using calcium mobilization assays. Among them, seven compounds displayed excellent antagonistic activities against  $\alpha_{1A}$ -ARs, with IC_{50s} < 250 nM. Compound (*S*)-27 showed the best biological activity, with an IC₅₀ of 12.8 nM. More importantly, (*S*)-27 showed less inhibition against  $\alpha_{1B}$ - and  $\alpha_{1D}$ -ARs and excellent selectivity towards  $\alpha_{1A}$ -AR, which is superior to silodosin. Compound (*S*)-27 potently inhibited norepinephrine-induced urethra smooth muscle contraction without inhibiting the aortic contraction, displaying better uroselectivity than the control drug silodosin. Additionally, compound (*S*)-27 has lower hERG potassium ion channel inhibition than the marketed drug silodosin and dofetilide. Preliminary pharmacokinetics studies in rats indicated that compound (*S*)-27 has a good pharmacokinetic profile. In summary, on the basis of the excellent antagonistic activities and selectivities against  $\alpha_{1A}$ -ARs, these novel indole-containing THPB derivatives, especially compound (*S*)-27, have promising potential as candidate selective  $\alpha_{1A}$ -AR

antagonist drugs for the treatment of BPH.

#### **5. Experimental Section**

**5.1 Chemistry.** Chemicals and solvents were purchased from commercial sources and used without further purification. Analytical thin layer chromatography (TLC) was HSGF 254 (0.15-0.2 mm thickness, YantaiHuiyou Company, China). Column chromatography was performed with CombiFlash® Companion system (Teledyne Isco, Inc.). All target products were characterized by ¹H NMR and LC-MS (ESI), and some products were also characterized by ¹³C NMR. ¹H NMR spectra were recorded on a Brucker AMX 300 or 400 MHz instrument (TMS as IS). ¹³C NMR spectra were recorded on a Brucker AMX 100 MHz instrument (TMS as IS). Chemical shifts were reported in parts per million (ppm). Proton coupling patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). In addition, the purity of all tested compound was determined in the system condition of CH₃OH/H₂O which CH₃OH gradient changed from 70%(v/v) to 85%(v/v) by Agilent 1260 with binary pump, photodiode array detector (DAD), Agilent Eclipse XDB-C18 (4.6×150mm, 5 µm particle size). The percentage of purity of all products were more than 96%.

# General Synthetic Procedures for the Target Compounds 13-32 and 34-36 (Compound 13 as the example)

2-(3,4-dimethoxyphenyl)ethan-1-amine (1.5 g, 8.562 mmol), 2-(1H-indol-3-yl)acetic acid (1.5 g, 8.276 mmol, 1 equiv) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (2.8 g, 14.583 mmol, 1.7 equiv) were dissolved in 30 mL of

dichloromethane. Triethylamine (2.36 mL, 17 mmol, 2 equiv) was added dropwise to the solution and the mixture was stirred for 12 h at rt. The reaction mixture diluted with water. The organic layer was separated and washed with water (30 mL), dried ( $Na_2SO_4$ ). The combined organic phase was evaporated under reduced pressure to get the crude product (**10a**) and used for the next step without further purification. ESI-MS m/z: 339 [M+H]⁺.

N-(3,4-dimethoxyphenethyl)-2-(1H-indol-3-yl)acetamide (**10a**) (2.1 g, 6.206 mmol) was dissolved in 30 mL of acetonitrile and added POCl₃ (2.1 mL, 13.2 mmol, 2 equiv). The solution was heated to reflux under argon for 1.5 h. The solvents were evaporated under reduced pressure. The pH of the mixture was adjusted to alkalinity with the addition of saturated NaHCO₃. The organic layer was separated and washed with water. The combined organic phase was evaporated under reduced pressure to get the crude product (**11a**) and used for the next step without further purification. ESI-MS m/z: 321 [M+H]⁺.

The intermediate **11a** was dissolved in 20 mL of methanol, and NaBH₄ (2.5 g, 66 mmol, 10 equiv) was added in batches at 0 °C. The mixture was stirred for 10 h at rt. The reaction mixture was quenched with water and extracted with ethylacetate. The organic layer was washed with satd brine, and the combined organic phase was evaporated under reduced pressure to get the crude product, which was purified by flash chromatography on silica gel to get key intermediate **12a** (1.5 g, 4.658 mmol, 80% over two steps). ¹H NMR (CDCl₃, 400 MHz):  $\delta$  8.66 (br, 1H), 7.69-7.67 (m, 1H), 7.34-7.26 (m, 1H), 7.23-7.11 (m, 2H), 7.17-7.12 (m, 1H), 7.00-6.99 (m, 1H), 6.80 (s, 1H), 6.62 (s, 1H), 4.32-4.28 (m, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.45-3.39 (m, 2H), 3.23-3.19 (m, 1H), 3.13-3.05 (m, 1H),

#### **Journal of Medicinal Chemistry**

2.91-2.85 (m, 1H), 2.79-2.73 (m, 1H), 2.23 (br, 1H). ESI-MS m/z: 323 [M+H]⁺.

The key intermediate **12a** (1.5g, 4.658 mmol), 5 mL of formaldehyde and 1 mL of formic acid was dissolved in 30 mL of acetonitrile. The mixture was stirred for 2 h at 80–90 °C. The pH of the mixture was adjusted to alkalinity with the addition of satd NaHCO₃. The organic layer was separated and washed with water. The combined organic phase was evaporated under reduced pressure and then chromatographed on silica gel to give the target product **13** (1.28 g, 82%). ¹H NMR (CD₃OD, 400 MHz):  $\delta$  7.47-7.41 (m, 2H), 7.16-7.10 (m, 1H), 7.07-7.02 (m, 1H), 6.90-6.88 (m, 1H), 6.69 (s, 1H), 5.45 (m, 1H), 4.20-4.15 (m, 1H), 3.97-3.90 (m, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.67-3.63 (m, 1H), 3.43-3.37 (m, 1H), 3.22-3.19 (m, 1H), 3.07-2.96 (m, 1H), 2.82-2.62 (m, 2H). ¹³C NMR (125 MHz, CDCl₃)  $\delta$  147.68, 147.65, 136.48, 133.65, 130.67, 127.34, 126.83, 121.06, 119.46, 118.11, 112.11, 110.20, 110.16, 108.24, 65.75, 59.77, 56.25, 55.87, 51.70, 51.58, 29.58, 29.47. ESI-MS m/z: 335 [M+H]⁺. EI-HRMS m/z calcd C₂₁H₂₂N₂O₂ (M⁺) 334.1681, found 334.1674.

**2,3-Dimethoxy-8-isobutyl-5,8,14,14a-tetrahydro-6***H***-benzo[***a***]indolo[2,3-***g***]quinolizine (14). This compound was prepared by replacement of formaldehyde with 3-methylbutanal using a similar synthetic procedure of product <b>13**. ¹H NMR (CDCl₃, 400 MHz): δ 7.81 (br, 1H), 7.50-7.48 (m, 1H), 7.36-7.32 (m, 1H), 7.20-7.08 (m, 2H), 6.72 (s, 1H), 6.66 (s, 1H), 4.30-4.25 (m, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 3.86-3.84 (m, 1H), 3.24-3.10 (m, 2H), 2.92-2.88 (m, 2H), 2.82-2.70 (m, 2H), 1.93-1.83 (m, 1H), 1.55-1.46 (m, 1H), 1.30-1.26 (m, 1H), 1.02-0.98 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 147.18, 146.73, 135.52, 126.61,

**ACS Paragon Plus Environment** 

121.07, 118.92, 117.51, 111.22, 110.24, 109.18, 68.56, 55.57, 55.44, 51.13, 46.26, 43.78, 29.15, 25.77, 24.71, 22.65, 21.91. ESI-MS m/z: 391  $[M+H]^+$ . EI-HRMS m/z calcd  $C_{25}H_{30}N_2O_2$  (M⁺) 390.2307, found 390.2296.

#### 2,3-Dimethoxy-8-phenyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinolizine

(15). This compound was prepared by replacement of formaldehyde with benzaldehyde using a similar synthetic procedure of product 13. ¹H NMR (CDCl₃, 400 MHz):  $\delta$  7.61-7.57 (m, 1H), 7.48-7.44 (m, 2H), 7.41-7.34 (m, 3H), 7.25-7.15 (m, 2H), 7.13-7.07 (m, 2H), 6.92 (s, 1H), 6.60 (s, 1H), 4.61 (s, 1H), 4.15-4.08 (m, 1H), 3.94 (s, 3H), 3.86 (s, 3H), 3.51-3.45 (m, 1H), 3.07-3.02 (m, 1H), 2.95-2.86 (m, 2H), 2.54-2.42 (m, 2H). ¹³C NMR (125 MHz, CDCl₃)  $\delta$  146.46, 140.44, 136.31, 134.04, 129.48, 127.95, 127.86, 127.20, 126.34, 126.11, 120.50, 118.38, 117.21, 110.16, 109.84, 107.99, 107.38, 66.20, 59.34, 55.16, 54.84, 47.43, 28.80, 28.72. ESI-MS m/z: 411 [M+H]⁺. EI-HRMS calcd C₂₇H₂₆N₂O₂(M⁺) 410.1994, found 410.1989.

**2,3-Dimethoxy-8-(4-fluorophenyl)-5,8,14,14a-tetrahydro-6***H***-benzo[***a***]indolo[2,3-***g***]qui nolizine (16). This compound was prepared by replacement of formaldehyde with 4-fluorobenzaldehyde using a similar synthetic procedure of product 13. ¹H NMR (CDCl₃, 400 MHz): δ 7.61-7.58 (m, 1H), 7.45-7.40 (m, 1H), 7.25-7.18 (m, 2H), 7.15-7.03 (m, 4H), 6.91 (s, 1H), 6.60 (s, 1H), 4.61 (s, 1H), 4.02-3.98 (m, 1H), 3.94 (s, 3H), 3.86 (s, 3H), 3.50-3.44 (m, 1H), 3.04-2.98 (m, 1H), 2.94-2.85 (m, 2H), 2.56-2.41 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.84, 160.91, 147.54, 147.48, 137.29, 136.75, 133.51, 131.82, 131.24, 131.18, 126.95, 126.09, 121.31, 118.81, 118.32, 115.09, 114.92, 112.80, 111.52,** 

#### **Journal of Medicinal Chemistry**

110.57, 108.14, 62.59, 56.04, 55.89, 51.11, 46.85, 29.83, 27.99. ESI-MS m/z: 429 [M+H]⁺. EI-HRMS calcd C₂₇H₂₅FN₂O₂(M⁺) 428.1900, found 428.1897.

#### 2,3-Dimethoxy-8-(4-methoxyphenyl)-5,8,14,14a-tetrahydro-6*H*-benzo[*a*]indolo[2,3-*g*]

**quinolizine (17).** This compound was prepared by replacement of formaldehyde with 4-methoxybenzaldehyde using a similar synthetic procedure of product **13**. ¹H NMR (CDCl₃, 400 MHz):  $\delta$  7.62-7.59 (m, 1H), 7.38-7.36 (m, 1H), 7.28-7.25 (m, 1H), 7.21-7.18 (m, 1H), 7.15-7.10 (m, 2H), 6.93-6.90 (m, 3H), 6.61 (s, 1H), 4.57 (s, 1H), 4.01-3.98 (m, 1H), 3.96 (s, 3H), 3.88 (s, 3H), 3.84 (s, 3H), 3.51-3.45 (m, 1H), 3.10-3.06 (m, 1H), 2.96-2.86 (m, 2H), 2.56-2.40 (m, 2H). ¹³C NMR (125 MHz, CDCl₃)  $\delta$  159.08, 147.01, 135.80, 129.67, 126.69, 121.01, 118.91, 117.73, 113.70, 110.70, 110.35, 108.52, 107.89, 66.06, 59.99, 55.70, 55.38, 54.82, 47.69, 29.24. ESI-MS m/z: 441 [M+H]⁺. EI-HRMS calcd C₂₈H₂₈N₂O₃(M⁺) 440.2100, found 453.2451.

**2,3-Methylenedioxy-5,8,14,14a-tetrahydro-***6H***-benzo**[*a*]**indolo**[**2,3-***g*]**quinolizine** (**18**). This compound was prepared by replacement of 2-(3,4-dimethoxyphenyl)ethan-1-amine with 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine using a similar synthetic procedure of product **13**. ¹H NMR (CD₃OD, 400 MHz):  $\delta$ 7.42-7.39 (m, 1H), 7.27-7.17 (m, 2H), 7.08-7.00 (m, 1H), 6.83 (s, 1H), 6.57 (s, 1H), 5.89 (s, 2H), 5.45 (s, 1H), 4.20-4.03 (m, 2H), 3.74-3.64 (m, 2H), 3.22-3.04 (m, 2H), 2.77-2.62 (m, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆)  $\delta$  145.72, 145.44, 136.00, 133.07, 131.40, 127.47, 126.84, 120.62, 119.02, 117.59, 109.70, 108.03, 107.65, 105.99, 100.54, 65.26, 59.48, 54.89, 51.10, 50.84, 29.38, 29.17. ESI-MS m/z: 319 [M+H]⁺. EI-HRMS calcd C₂₀H₁₈N₂O₂(M⁺) 318.1368, found 318.1366.

(S)-2,3-Methylenedioxy-5,8,14,14a-tetrahydro-6*H*-benzo[*a*]indolo[2,3-*g*]quinolizine

(S-18). This compound was prepared by replacement of 2-(3,4-dimethoxyphenyl)ethan-1-amine with 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine using a similar synthetic procedure of product 13. ¹H NMR (CD₃OD, 400 MHz):  $\delta$ 7.60-7.57 (m, 1H), 7.42-7.39 (m, 1H), 7.15-7.12 (m, 1H), 7.08-7.03 (m, 1H), 6.87 (s, 1H), 6.60 (s, 1H), 5.90 (s, 2H), 5.48 (s, 1H), 4.30-4.25 (m, 2H), 3.82-3.72 (m, 2H), 3.42-3.29 (m, 2H), 2.80-2.66 (m, 2H). ESI-MS m/z: 319 [M+H]⁺. ¹³C NMR (125 MHz, DMSO-*d*₆)  $\delta$  145.72, 145.44, 136.00, 133.07, 131.40, 127.47, 126.84, 120.62, 119.02, 117.59, 109.70, 108.03, 107.65, 105.99, 100.54, 65.26, 59.48, 54.89, 51.10, 50.84, 29.38, 29.17. ESI-MS m/z: 319 [M+H]⁺. EI-HRMS calcd C₂₀H₁₈N₂O₂(M⁺) 318.1368, found 318.1360.

#### 2,3-Methylenedioxy-8-ethyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinolizi

(19). This compound was prepared by replacement with ne 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and propionaldehyde using a similar synthetic procedure of product **13**. ¹H NMR (CDCl₃, 400 MHz): δ 7.88 (br, 1H), 7.49-7.45 (m, 1H), 7.34-7.31 (m, 1H), 7.19-7.07 (m, 2H), 6.68 (s, 1H), 6.62 (s, 1H), 5.93 (s, 2H), 4.28-4.23 (m, 1H), 3.70-3.65 (m, 1H), 3.21-3.07 (m, 2H), 2.95-2.70 (m, 4H), 1.93-1.75 (m, 2H), 1.19-1.12 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 145.55, 145.12, 135.10, 136.00, 132.50, 126.55, 121.01, 118.85, 117.52, 110.19, 108.22, 106.71, 106.18, 100.17, 62.24, 51.73, 46.15, 29.68, 27.51, 26.03, 17.92, 11.42. ESI-MS m/z: 347 [M+H]⁺. EI-HRMS calcd  $C_{22}H_{22}N_2O_2(M^+)$  346.1681, found 346.1672.

# 2,3-Methylenedioxy-8-isobutyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinol

izine (20). This compound replacement with was prepared by 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 3-methylbutanal using a similar synthetic procedure of product **13**. ¹H NMR (CDCl₃, 400 MHz): δ 7.85 (br, 1H), 7.49-7.46 (m, 1H), 7.34-7.31 (m, 1H), 7.20-7.08 (m, 2H), 6.69 (s, 1H), 6.63 (s, 1H), 5.93 (s, 2H), 4.23-4.14 (m, 1H), 3.87-3.82 (m, 1H), 3.21-3.09 (m, 2H), 2.89-2.85 (m, 2H), 2.78-2.69 (m, 2H), 1.83-1.75 (m, 1H), 1.31-1.22 (m, 2H), 1.07-1.03 (m, 6H). ¹³C NMR (125 MHz, DMSO-d₆) 8 145.49, 145.04, 136.41, 136.00, 133.37, 126.68, 120.36, 118.12, 117.44, 110.85, 108.35, 106.86, 105.10, 100.40, 58.30, 51.04, 45.78, 43.86, 29.92, 25.34, 24.74, 23.56, 21.83. ESI-MS m/z: 375 [M+H]⁺. EI-HRMS calcd C₂₄H₂₆N₂O₂(M⁺) 374.1994, found 374.1992.

2,3-Methylenedioxy-8-(4-fluorophenyl)-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-

g|quinolizine (21). This compound was prepared by replacement with 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 4-fluorobenzaldehyde using a similar synthetic procedure of product 13. ¹H NMR (CDCl₃, 400 MHz):  $\delta$ 7.72 (br. 1H), 7.58-7.55 (m, 1H), 7.30-7.27 (m, 1H), 7.22-7.14 (m, 4H), 7.01-6.94 (m, 2H), 6.69 (s, 1H), 6.56 (s, 1H), 5.89 (s, 2H), 5.20-5.18 (m, 1H), 4.16-4.11 (m, 1H), 3.27-3.21 (m, 2H), 2.97-3.85 (m, 3H), 2.72-2.65 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 145.51, 145.42, 135.89, 131.96, 131.45, 126.60, 126.46, 121.49, 119.07, 117.80, 114.62, 114.45, 110.45, 109.14, 108.01, 105.83, 100.22, 62.53, 51.35, 46.84, 29.37, 27.88. ESI-MS m/z: 413 [M+H]⁺. EI-HRMS calcd  $C_{26}H_{21}FN_2O_2$  (M⁺) 412.1587, found 412.1581.

2,3-Methylenedioxy-8-(4-methoxyphenyl)-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinolizine (22). This compound was prepared by replacement with

2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 4-methoxybenzaldehyde using a similar synthetic procedure of product **13**. ¹H NMR (CDCl₃, 400 MHz):  $\delta$  7.78 (br, 1H), 7.58-7.55 (m, 1H), 7.26-7.24 (m, 1H), 7.19-7.10 (m, 4H), 6.83-6.80 (m, 2H), 6.69 (s, 1H), 6.56 (s, 1H), 5.89 (s, 2H), 5.06 (s, 1H), 4.16-4.09 (m, 1H), 3.76 (s, 3H), 3.26-3.13 (m, 2H), 2.97-2.88 (m, 1H), 2.85-2.78 (m, 2H), 2.67-2.61 (m, 1H). ¹³C NMR (125 MHz, CDCl₃)  $\delta$  158.81, 145.39, 135.88, 132.64, 130.12, 126.79, 126.53, 121.27, 118.91, 117.70, 113.02, 110.41, 108.94, 107.95, 105.82, 100.18, 62.71, 54.79, 51.48, 47.00, 29.43, 28.30.ESI-MS m/z: 425 [M+H]⁺. EI-HRMS calcd C₂₇H₂₄N₂O₃ (M⁺) 424.1787, found 424.1777.

**3-Methoxy-5,8,14,14a- tetrahydro-6***H***-benzo[***a***]indolo[2,3-***g***]quinolizine (23). This compound was prepared by replacement of 2-(3,4-dimethoxyphenyl)ethan-1-amine with 2-(4-methoxyphenyl)ethan-1-amine using a similar synthetic procedure of product <b>13**. ¹H NMR (CDCl₃, 400 MHz):  $\delta$ 7.49-7.46 (m, 1H), 7.42-7.39 (m, 1H), 7.29-7.13 (m, 3H), 6.84-6.80 (m, 1H), 6.70 (s, 1H), 5.48-5.38 (m, 1H), 3.97-3.88 (m, 1H), 3.83 (s, 3H), 3.72-3.61 (m, 1H), 3.37-3.19 (m, 2H), 3.05-3.01 (m, 1H), 2.79-2.68 (m, 3H). ¹³C NMR (125 MHz, CDCl₃)  $\delta$  157.44, 135.83, 134.94, 131.57, 129.48, 126.89, 121.06, 119.34, 117.56, 112.58, 112.19, 108.68, 108.59, 66.14, 59.08, 54.77, 51.13, 50.86, 29.22, 28.65. ESI-MS m/z: 305 [M+H]⁺. EI-HRMS calcd C₂₀H₂₀N₂O(M⁺) 304.1576, found 304.1571.

**3-Methoxy-8-methyl-5,8,14,14a-tetrahydro-6***H***-benzo**[*a*]**indolo**[**2,3-***g*]**quinolizine** (**24**). This compound was prepared by replacement with 2-(4-methoxyphenyl)ethan-1-amine and acetaldehyde using a similar synthetic procedure of product **13**. ¹H NMR (CDCl₃, 400 MHz): δ 7.50-7.47 (m, 1H), 7.37-7.28 (m, 1H), 7.18-7.04 (m, 3H), 6.80-6.78 (m, 1H), 6.66

(s, 1H), 3.96-3.90 (m, 1H), 3.89-3.85 (m, 1H), 3.80 (s, 3H), 3.20-3.12 (m, 3H), 2.85-2.63 (m, 3H), 1.30-1.25 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ157.87, 136.06, 135.44, 131.67, 127.54, 121.50, 119.36, 118.07, 113.37, 112.22, 110.72 108.24, 107.28, 60.08, 55.54, 55.24, 53.43, 51.44, 46.78, 30.36, 28.27. ESI-MS m/z: 319 [M+H]⁺. ESI-HRMS calcd C₂₁H₂₂N₂O (M+H⁺) 319.1805, found 319.1804.

3-Methoxy-8-cyclopropyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinolizine

(25). This compound prepared replacement with was bv 2-(4-methoxyphenyl)ethan-1-amine and cyclopropanecarbaldehyde using a similar synthetic procedure of product 13. ¹H NMR (CDCl₃, 400 MHz):  $\delta$  8.21 (br, 1H), 7.52-7.47 (m, 1H), 7.38-7.32 (m, 1H), 7.26-7.23 (m, 1H), 7.19-7.09 (m, 2H), 6.82-6.79 (m, 1H), 6.69 (s, 1H), 3.92-3.85 (m, 2H), 3.82 (s, 3H), 3.46-3.38 (m, 1H), 3.21-3.12 (m, 1H), 3.07-2.98 (m, 1H), 2.83-2.61 (m, 3H), 1.27-1.13 (m, 1H), 0.95-0.92 (m, 2H), 0.67-0.63 (m, 2H).NMR (125 MHz, CDCl₃)  $\delta$  157.71, 136.42, 135.95, 127.92, 126.88, 120.93, 118.61, 118.01, 113.33, 112.60, 111.41, 106.42, 64.33, 55.43, 52.62, 47.29, 30.67, 28.99, 13.63, 5.16, 2.05. ESI-MS m/z: 345  $[M+H]^+$ . EI-HRMS calcd C₂₃H₂₄N₂O (M⁺) 344.1889, found 344.1871.

**3-Methoxy-8-(4-methoxyphenyl)-5,8,14,14a-tetrahydro-6***H***-benzo[***a***]indolo[2,3-***g***]quin olizine (26). This compound was prepared by replacement with 2-(4-methoxyphenyl)ethan-1-amine and 4-methoxybenzaldehyde using a similar synthetic procedure of product 13. ¹H NMR (CDCl₃, 400 MHz): δ 7.80 (br, 1H), 7.57-7.54 (m, 1H), 7.37-7.35 (m, 1H), 7.27-7.23 (m, 1H), 7.18-7.09 (m, 4H), 6.83-6.78 (m, 2H), 6.76-6.72 (m,** 

1H), 6.65-6.62 (m, 1H), 5.10 (s, 1H), 4.26-4.21 (m, 1H), 3.82-3.80 (m, 2H), 3.77 (s, 3H), 3.75 (s, 3H), 3.22-3.05 (m, 1H), 2.93-2.83 (m, 2H), 2.67-2.60 (m, 1H). ¹³C NMR (125 MHz, CDCl₃)  $\delta$ 158.73, 157.22, 135.88, 135.05, 132.87, 131.04, 130.74, 130.10, 126.82, 121.17, 118.84, 117.70, 112.96, 112.76, 111.72, 110.42, 109.06, 62.70, 54.79, 54.75, 50.91, 46.92, 29.79, 28.31. ESI-MS m/z: 411 [M+H]⁺. EI-HRMS calcd C₂₇H₂₆N₂O₂ (M⁺) 410.1994, found 410.1989.

2,3-Methylenedioxy-12-methoxy-5,8,14,14a-tetrahydro-6*H*-benzo[*a*]indolo[2,3-*g*]quin olizine (27). This replacement compound prepared by with was 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (CDCl₃, 400 MHz):  $\delta$ 7.27-7.24 (m, 1H), 6.88-6.87 (m, 1H), 6.83-6.77 (m, 2H), 6.60 (s, 1H), 5.93 (s, 2H), 5.37-5.34 (m, 1H), 3.83 (s, 3H), 3.70-3.63 (m, 2H), 3.23-3.08 (m, 2H), 2.72-2.61 (m, 4H).  13 C NMR (125 MHz, CDCl₃) δ 154.35, 146.32, 146.14, 132.60, 131.38, 130.60, 127.81, 127.36, 111.14, 109.85, 108.84, 108.40, 105.77, 100.86, 100.46, 67.04, 59.97, 55.83, 51.65, 51.32, 29.49, 29.31. ESI-MS m/z: 349  $[M+H]^+$ . EI-HRMS calcd  $C_{21}H_{20}N_2O_3$  (M⁺) 348.1474, found 348.1480.

(S)-2,3-Methylenedioxy-12-methoxy-5,8,14,14a-tetrahydro-6*H*-benzo[*a*]indolo[2,3-*g*]q uinolizine (S-27). This compound was prepared by replacement with 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (CDCl₃, 400 MHz):  $\delta$  7.27-7.24 (m, 1H), 6.91-6.87 (m, 1H), 6.83-6.79 (m, 2H), 6.60 (s, 1H), 5.93 (s, 2H),

5.38-5.34 (m, 1H), 3.83 (s, 3H), 3.70-3.63 (m, 2H), 3.23-3.08 (m, 2H), 2.72-2.61 (m, 4H). ¹³C NMR (125 MHz, CDCl₃)  $\delta$  154.32, 146.27, 146.12, 132.49, 131.31, 130.73, 127.78, 127.34, 111.08, 109.61, 108.75, 108.40, 105.78, 100.86, 100.41, 66.68, 59.82, 55.78, 51.65, 51.20, 29.40, 29.23. ESI-MS m/z: 349 [M+H]⁺. EI-HRMS calcd C₂₁H₂₀N₂O₃ (M⁺) 348.1474, found 348.1468.

(R)-2,3-Methylenedioxy-12-methoxy-5,8,14,14a-tetrahydro-6*H*-benzo[*a*]indolo[2,3-*g*]

**quinolizine** (*R*-27). This compound was prepared by replacement with 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product **13**. ¹H NMR (CDCl₃, 400 MHz):  $\delta$  8.12 (br, 1H), 7.22-7.30 (m, 1H), 6.87-6.83 (m, 2H), 6.74 (s, 1H), 6.58 (s, 1H), 5.95 (s, 2H), 5.41 (s, 1H), 4.52-4.48 (m, 1H), 4.12-4.07 (m, 2H), 3.95-3.92 (m, 1H), 3.82 (s, 3H), 3.34-3.25 (m, 2H), 2.91-2.79 (m, 2H). ¹³C NMR (125 MHz, CDCl₃)  $\delta$  154.35, 146.33, 146.20, 132.26, 131.37, 130.43, 127.72, 127.21, 111.15, 109.79, 108.62, 108.40, 105.74, 100.89, 100.39, 66.64, 59.88, 55.79, 51.60, 51.19, 29.50, 29.28.. ESI-MS m/z: 349 [M+H]⁺. EI-HRMS calcd C₂₁H₂₀N₂O₃ (M⁺) 348.1474, found 348.1471.

**2,3-Methylenedioxy-13-methoxy-5,8,14,14a-tetrahydro-***6H***-benzo**[*a*]**indolo**[**2,3-***g*]**quin olizine** (**28**). This compound was prepared by replacement with 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(4-methoxy-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product **13**. ¹H NMR (CDCl₃, 400 MHz):  $\delta$  7.30-7.25 (m, 1H), 6.88-6.78 (m, 2H), 6.71-6.68 (m, 1H), 6.63 (s, 1H), 5.91 (s, 2H), 5.38 (s, 1H), 3.85 (s, 3H), 3.74-3.65 (m, 2H), 3.33-3.20 (m, 2H), 2.75-2.62 (m, 4H). ¹³C NMR

(125 MHz, CDCl₃)  $\delta$  154.30, 146.25, 146.22, 132.39, 131.35, 130.55, 127.83, 127.30, 111.38, 109.71, 109.37, 108.41, 105.70, 100.97, 100.51, 66.71, 59.81, 55.77, 51.65, 51.20, 29.41, 29.24. ESI-MS m/z: 349 [M+H]⁺. EI-HRMS calcd C₂₁H₂₀N₂O₃ (M⁺) 348.1474, found 348.1481.

2,3-Methylenedioxy-11-methoxy-5,8,14,14a-tetrahydro-6*H*-benzo[*a*]indolo[2,3-*g*]quin olizine (29). This compound prepared by replacement with was 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(6-methoxy-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (CDCl₃, 400 MHz):  $\delta$ 7.31-7.28 (m, 1H), 6.93-6.92 (m, 1H), 6.78-6.75 (m, 2H), 6.60 (s, 1H), 5.94 (s, 2H), 5.44-5.43 (m, 1H), 3.85 (s, 3H), 3.82-3.76 (m, 1H), 3.66-3.63 (m, 1H), 3.48-3.46 (m, 1H), 3.27-3.23 (m, 2H), 2.80-2.64 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 154.31, 146.38, 146.35, 146.27, 132.18, 131.43, 130.25, 127.59, 127.08, 111.60, 111.17, 110.11, 108.38, 105.76, 100.91, 100.38, 66.80, 59.86, 55.85, 55.81, 51.55, 51.15, 29.72, 29.15, ESI-MS m/z: 349  $[M+H]^+$ . EI-HRMS calcd  $C_{21}H_{20}N_2O_3$  (M⁺) 348.1474, found 348.1475.

**2,3-Methylenedioxy-11-fluoro-5,8,14,14a-tetrahydro-6***H***-benzo[***a***]indolo[2,3-***g***]quinoli zine (30). This compound was prepared by replacement with 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(6-fluoro-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product <b>13**. ¹H NMR (CDCl₃, 400 MHz): δ 8.13 (br, 1H), 7.37-7.34 (m, 1H), 6.97-6.87 (m, 2H), 6.85-6.79 (m, 1H), 6.61-6.60 (m, 1H), 5.94 (s, 2H), 4.13-4.00 (m, 1H), 3.81-3.76 (m, 2H), 3.28-3.10 (m, 3H), 2.74-2.71 (m, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ159.60, 157.74, 145.75, 145.48, 136.12, 133.71, 131.34,

#### **Journal of Medicinal Chemistry**

127.50, 123.62, 118.40, 111.17, 108.07, 107.85, 107.16, 106.97, 106.03, 100.58, 96.74, 96.53, 65.53, 59.42, 51.06, 50.81, 29.40, 29.09. ESI-MS m/z: 337  $[M+H]^+$ . EI-HRMS calcd C₂₀H₁₇FN₂O₂ (M⁺) 336.1274, found 336.1269.

2,3-Methylenedioxy-12-fluoro-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinoli zine This (31). compound prepared by replacement with was 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(5-fluoro-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (CDCl₃, 400 MHz):  $\delta$ 7.22-7.18 (m, 1H), 7.13-7.12 (m, 1H), 6.88-6.83 (m, 1H), 6.79 (s, 1H), 6.60 (s, 1H), 5.94 (s, 2H), 4.13-4.06 (m, 1H), 3.88-3.78 (m, 2H), 3.27-3.07 (m, 3H), 2.81-2.68 (m, 3H). ¹³C NMR (125 MHz, DMSO- $d_6$ )  $\delta$  158.53, 156.69, 146.20, 145.94, 135.65, 133.10, 131.75, 127.94, 127.68, 111.17, 108.82, 108.52, 108.37, 106.44, 103.23, 103.04, 101.04, 65.95, 59.87, 51.56, 51.26, 29.82, 29.53.ESI-MS m/z: 337 [M+H]⁺. EI-HRMS calcd  $C_{20}H_{17}FN_2O_2$  (M⁺) 336.1274, found 336.1272.

2,3-Methylenedioxy-12-benzyloxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]qui nolizine (32). This compound was prepared by replacement with 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(5-(benzyloxy)-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$ 7.49-7.47 (m, 2H), 7.41-7.32 (m, 3H), 7.09 (s, 1H), 7.00 (s, 1H), 6.83-6.81 (m, 1H), 6.69 (s, 1H), 6.25-6.22 (m, 1H), 5.97 (s, 2H), 5.38-5.36 (m, 2H), 5.13-5.06 (m, 2H), 4.18-4.15 (m, 1H), 3.66-3.57 (m, 1H), 3.14-3.10 (m, 1H), 2.93-2.90 (m, 1H), 2.68-2.60 (m, 2H), 2.44-2.38 (m, 1H). ¹³C NMR (125 MHz, DMSO-d₆) δ 152.07, 145.16, 145.08, 136.48,

130.97, 130.70, 129.09, 126.78, 126.36, 126.09, 126.02, 125.63, 110.18, 108.38, 106.79, 106.52, 104.12, 100.65, 99.47, 76.48, 69.39, 64.10, 58.62, 49.92, 27.46. ESI-MS m/z: 425  $[M+H]^+$ . EI-HRMS calcd C₂₇H₂₄N₂O₃ (M⁺) 424.1787, found 424.1780.

**2,3-Methylenedioxy-12-hydroxyl-5,8,14,14a-tetrahydro-6***H***-benzo[***a***]indolo[2,3-***g***]quin olizine (33). This compound was prepared by reduction of compound 32 catalyzed by 10% Pd/C under hydrogen atmosphere for 8 h. ¹H NMR (DMSO-***d***₆, 400 MHz): δ 8.70 (br, 1H), 7.23-7.21 (m, 1H), 6.99 (s, 1H), 7.72-7.66 (m, 2H), 6.59-6.56 (m, 1H), 6.15 (br, 1H), 5.95-5.93 (m, 2H), 5.31-5.30 (m, 2H), 4.13-4.09 (m, 1H), 3.64-3.53 (m, 1H), 3.22-3.07 (m, 1H), 2.90-2.87 (m, 1H), 2.65-2.57 (m, 2H), 2.38-2.32 (m, 1H). ¹³C NMR (125 MHz, DMSO-***d***₆) δ 151.28, 145.17, 145.86, 133.86, 131.94, 130.92, 128.02, 127.93, 110.70, 110.46, 108.48, 107.28, 106.50, 102.64, 100.99, 65.72, 60.08, 51.67, 51.32, 29.82. ESI-MS m/z: 335 [M+H]⁺. EI-HRMS calcd C₂₀H₁₈N₂O₃ (M⁺) 334.1317, found 334.1311.** 

2,3-Methylenedioxy-9-methyl-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinoli zine (34). This compound prepared by replacement with was 2-(benzo[d][1,3]dioxol-5-yl)ethan-1-amine and 2-(1-methyl-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (CDCl₃, 400 MHz):  $\delta$ 7.52-7.50 (m, 1H), 7.30-7.26 (m, 1H), 7.21-7.17 (m, 1H), 7.12-7.09 (m, 1H), 6.83 (s, 1H), 6.65 (s, 1H), 5.94 (s, 2H), 4.14-4.10 (m, 1H), 3.80-3.71 (m, 2H), 3.64 (s, 3H), 3.35-3.31 (m. 1H). 3.24-3.11 (m. 2H), 2.82-2.71 (m. 3H).¹³C NMR (125 MHz, CDCl₃) δ 146.22, 146.01, 137.18, 132.92, 131.31, 127.62, 126.81, 120.94, 118.98, 117.95, 108.72, 108.37, 107.47, 105.92, 100.82, 60.10, 52.17, 51.51, 29.90, 29.34. ESI-MS m/z: 333  $[M+H]^+$ .

**ACS Paragon Plus Environment** 

EI-HRMS calcd  $C_{21}H_{20}N_2O_2$  (M⁺) 332.1525, found 332.1527.

# 2-Benzyloxy-3,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]qui nolizine (35). This compound was prepared by replacement with 2-(4-(benzyloxy)-3-methoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (400 MHz, CDCl₃) $\delta$ 7.48 -7.31 (m, 5H), 6.86 - 6.84 (m, 2H), 6.74 (s, 1H), 6.62 (s, 1H), 5.40 (q, J = 11.7 Hz, 1H), 5.24 - 5.10 (m, 2H), 4.37 (d, J = 15.1 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.81 - 3.71 (m, 1H), 3.30 – 2.96 (m, 3H), 2.87 – 2.79 (m, 1H), 2.61 – 2.55 (m, 1H), 2.17 (s, 2H). ¹³C NMR (125 MHz, DMSO-d₆) & 153.74, 148.15, 147.61, 137.09, 132.44, 128.48, 128.32, 128.16, 112.87, 112.44, 110.44, 110.36, 105.68, 102.70, 71.43, 61.92, 56.79, 56.04, 52.57, 51.14, 28.32, 28.28. ESI-MS m/z: 441 $[M+H]^+$ . EI-HRMS calcd $C_{28}H_{28}N_2O_3$ (M⁺) 440.2100, found 440.2101.

3-Benzyloxy-2,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]qui compound nolizine (36). This was prepared by replacement with 2-(3-(benzyloxy)-4-methoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.53 -7.23 (m, 5H), 6.88 - 6.81 (m, 2H), 6.77(s, 1H), 6.62 (s, 1H), 5.40 (q, J = 11.7 Hz, 1H), 5.24 - 5.10 (m, 2H), 4.37 (d, J = 15.1 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.81 - 3.71 (m, 1H), 3.30 – 2.96 (m, 3H), 2.87 – 2.79 (m, 1H), 2.61 – 2.55 (m, 1H), 2.17 (s, 2H). ¹³C NMR (125 MHz, DMSO-d₆) 8153.57, 147.62, 146.07, 137.47, 133.77, 131.11, 130.17, 128.37, 127.95, 127.77, 127.24, 126.93, 111.88, 110.44, 110.09, 107.53, 99.87, 70.37, 65.39, 59.62, 55.38, 51.22, 29.10, 20.77, 14.10. ESI-MS m/z: 441 [M+H]⁺. EI-HRMS calcd C₂₈H₂₈N₂O₃ (M⁺) 440.2100, found 440.2101.

**2-Hydroxyl-3,12-methylenedioxy-5,8,14,14a-tetrahydro-6***H***-benzo**[*a*]**indolo**[**2,3-***g*]**quin olizine (37).** This compound was prepared by reduction of compound **35** catalyzed by 10% Pd/C under hydrogen atmosphere. ¹H NMR (400 MHz, MeOD)  $\delta$  7.35 (d, *J* = 8.9 Hz, 1H), 6.98 (d, *J* = 2.4 Hz, 1H), 6.84 (s, 1H), 6.80 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.69 (s, 1H), 4.69 – 4.58 (m, 2H), 4.21 (d, *J* = 14.8 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.78 (d, *J* = 15.1 Hz, 1H), 3.70 (d, *J* = 7.1 Hz, 1H), 3.41 – 3.33 (m, 1H), 3.25 (dd, *J* = 15.3, 7.1 Hz, 1H), 3.12 (d, *J* = 11.4 Hz, 1H), 2.79 (dt, *J* = 25.4, 10.0 Hz, 2H), 2.67 – 2.60 (m, 1H).¹³C NMR (125 MHz, DMSO-*d*₆)  $\delta$  153.74, 146.28, 145.81, 133.42, 132.44, 128.61, 128.30, 125.75, 112.16, 111.65, 110.36, 105.68, 102.70, 61.92, 56.79, 56.04, 52.57, 51.14, 28.32, 28.28. ESI-MS m/z: 351 [M+H]⁺. EI-HRMS calcd C₂₁H₂₂N₂O₃ (M⁺) 350.1630, found 350.1628.

**3-Hydroxyl-2,12-methylenedioxy-5,8,14,14a-tetrahydro-***6H***-benzo**[*a*]**indolo**[**2,3***-g*]**quin olizine (38).** This compound was prepared by reduction of compound **36** catalyzed by 10% Pd/C under hydrogen atmosphere. ¹H NMR (400 MHz, MeOD)  $\delta$  7.47 (t, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.34 (d, *J* = 7.1 Hz, 1H), 7.13 (d, *J* = 5.3 Hz, 1H), 6.94 – 6.91 (m, 1H), 5.61 – 5.56 (m, 2H), 5.17 (s, 2H), 3.95 (s, 3H), 3.86 (s, 3H), 3.76 – 3.58 (m, 1H), 3.37 (s, 1H), 3.20 – 2.93 (m, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆)  $\delta$  153.93, 147.43, 136.96, 131.53, 128.48, 127.96, 127.87, 126.30, 113.09, 111.69, 110.99, 109.63, 100.39, 69.91, 65.67, 60.25, 56.15, 55.47, 26.23, 25.37. ESI-MS m/z: 351 [M+H]⁺. EI-HRMS calcd C₂₁H₂₂N₂O₃ (M⁺) 350.1630, found 350.1628.

2-Ethoxy-3.12-methylenedioxy-5.8,14,14a-tetrahydro-6H-benzo[a]indolo[2.3-g]quinol izine (39). This compound was prepared by reaction of compound 35 with bromoethane under K₂CO₃ as the base in acetone. ¹H NMR (400 MHz, CD₃OD)  $\delta$  7.17 (d, J = 8.7 Hz, 1H), 7.00 - 6.95 (m, 2H), 6.71 (dd, J = 8.8, 2.4 Hz, 2H), 4.13 - 4.03 (m, 2H), 3.82 (S, 6H), 3.76 (dd, *J* = 13.6, 8.8 Hz, 2H), 3.45 (dd, *J* = 15.1, 3.0 Hz, 1H), 3.30 (q, 7.0 Hz, 2H), 3.28 -3.01 (m, 2H), 2.77 - 2.64 (m, 2H), 1.42 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, cdcl₃)  $\delta$ 153.96, 147.89, 146.72, 132.19, 131.16, 129.95, 127.60, 126.53, 111.47, 111.41, 111.03, 110.60, 108.35, 100.15, 64.67, 59.76, 55.86, 52.96, 51.30, 29.66, 29.41, 29.26, 14.90. ESI-MS m/z: 379 [M+H]⁺. EI-HRMS calcd C₂₃H₂₆N₂O₃ (M⁺) 378.1943, found 378.1943. 2-propoxy-3.12-methylenedioxy-5.8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quino lizine (40). This compound prepared by replacement with was 2-(3-methoxy-4-propoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (400 MHz, CD₃OD)  $\delta$ 7.17 (d, J = 8.7 Hz, 1H), 7.02 – 6.94 (m, 2H), 6.75 – 6.67 (m, 2H), 4.06 – 3.96 (m, 2H), 3.82 (d, J = 2.0 Hz, 6H), 3.77 (d, J = 16.7 Hz, 2H), 3.46 (dd, J = 14.6, 3.5 Hz, 1H), 3.30 (q, 7.4 Hz, 2H), 3.26 - 3.07 (m, 2H), 2.78 - 2.63 (m, 2H), 1.90 - 1.76 (m, 2H), 1.07 (t, J = 7.4Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.54, 147.63, 146.60, 131.67, 130.77, 129.47, 127.17, 126.03, 111.26, 111.03, 110.61, 110.40, 107.86, 99.78, 70.48, 59.33, 55.53, 55.46,

C₂₄H₂₈N₂O₃ (M⁺) 392.2100, found 392.2106.

2-Butoxy-3,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinol

52.46, 50.81, 31.47, 29.25, 22.24, 22.17. ESI-MS m/z: 393 [M+H]⁺. EI-HRMS calcd

1

izine (41). This replacement with compound was prepared by 2-(4-butoxy-3-methoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (400 MHz, CD₃OD)  $\delta$  7.17 (d, J = 8.7 Hz, 1H), 7.02 - 6.92 (m, 2H), 6.75 - 6.69 (m, 2H), 4.01 (dd, J = 11.4, 4.8 Hz, 2H), 3.82 (d, J = 1.3 Hz, 6H), 3.77 (d, J = 16.6 Hz, 2H), 3.51 - 3.39 (m, 1H), 3.30 (q, 7.4 Hz, 2H), 3.26 - 3.06 (m, 2H), 2.77 - 2.63 (m, 2H), 1.85 - 1.72 (m, 2H), 1.55 (m, 2H), 1.01 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃)  $\delta$  154.01, 148.14, 147.13, 132.13, 131.26, 129.92, 127.63, 126.47, 111.76, 111.53, 111.07, 110.88, 108.29, 100.26, 69.17, 59.82, 56.01, 55.92, 52.94, 51.28, 31.94, 31.40, 29.71, 22.71, 19.29. ESI-MS m/z: 407 [M+H]⁺. EI-HRMS calcd  $C_{25}H_{30}N_2O_3$  (M⁺) 406.2256, found 406.2258.

#### 3-Ethoxy-2,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinol

izine (42). This compound was prepared by replacement with 2-(3-ethoxy-4-methoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.99 (s, 1H), 7.14 (d, J = 8.8 Hz, 1H), 6.95 (s, 1H), 6.80 (s, 1H), 6.77 (d, J = 8.6 Hz, 1H), 6.61 (s, 1H), 4.07 (dd, J = 13.5, 6.5 Hz, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 3.74 (d, J = 15.1 Hz, 2H), 3.29 (d, J = 14.5 Hz, 1H), 3.11 (t, J = 12.1 Hz, 2H), 2.73 - 2.67 (m, 2H), 2.01 - 1.80 (m, 2H), 2.01 (m, 2H), 2.2H), 1.45 (t, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃)  $\delta$  153.98, 147.80, 132.13, 131.99, 131.28, 131.14, 129.93, 127.62, 112.74, 111.49, 111.44, 111.11, 108.26, 108.21, 100.23, 64.31, 59.84, 56.25, 55.93, 52.95, 51.30, 49.94, 49.76, 29.70. ESI-MS m/z: 379  $[M+H]^+$ . EI-HRMS calcd C₂₃H₂₆N₂O₃ (M⁺) 378.1943, found 378.1942.

3-Propoxy-2,12-methylenedioxy-5,8,14,14a-tetrahydro-6*H*-benzo[*a*]indolo[2,3-g]quin olizine (43). This compound was prepared by replacement with 2-(4-methoxy-3-propoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.99 (s, 1H), 7.14 (d, J = 8.0 Hz, 1H), 6.95 (s, 1H), 6.79 (d, J = 11.2 Hz, 2H), 6.62 (s, 1H), 3.95(s, 4H), 3.89 (s, 4H), 3.84 (s, 2H), 3.73 (d, J = 12.1 Hz, 2H), 3.28 (d, J = 13.7 Hz, 1H), 3.10 (s, 2H), 2.71 (s, 2H), 1.86 (q, J = 6.8 Hz, 2H), 1.03 (t, J = 6.8 Hz, 3H). ¹³C NMR (125) MHz, CDCl₃) δ 153.98, 147.87, 147.17, 132.26, 131.22, 129.94, 127.62, 126.49, 112.86, 111.59, 111.09, 109.40, 108.29, 100.14, 70.48, 59.89, 56.37, 55.92, 52.94, 51.37, 22.74, 22.52, 14.19, 10.52. ESI-MS m/z: 393  $[M+H]^+$ . EI-HRMS calcd  $C_{24}H_{28}N_2O_3$  (M⁺) 392.2100, found 392.2108.

3-Butoxy-2,12-methylenedioxy-5,8,14,14a-tetrahydro-6H-benzo[a]indolo[2,3-g]quinol izine (44). This compound replacement with was prepared by 2-(3-butoxy-4-methoxyphenyl)ethan-1-amine and 2-(5-methoxy-1H-indol-3-yl)acetic acid using a similar synthetic procedure of product 13. ¹H NMR (400 MHz, CDCl₃)  $\delta$  8.02 (s, 1H), 7.13 (d, J = 8.6 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 6.81 (s, 1H), 6.77 (dd, J = 8.6, 2.2 Hz, 1H), 6.62 (s, 1H), 4.00 (t, J = 6.8 Hz, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 3.69 (d, J = 15.2Hz, 2H), 3.32 - 3.24 (m, 1H), 3.10 (t, J = 12.0 Hz, 2H), 2.70 (s, 3H), 1.86 - 1.78 (m, 2H), 1.49 (dq, J = 14.8, 7.5 Hz, 2H), 0.97 (t, J = 7.4 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃)  $\delta$ 154.01, 147.90, 147.23, 132.38, 131.23, 130.08, 127.69, 126.60, 112.91, 111.50, 111.07, 109.52, 108.43, 100.21, 68.72, 59.89, 56.41, 55.92, 53.01, 51.42, 31.95, 31.29, 29.72,

22.72, 19.27. ESI-MS m/z: 407  $[M+H]^+$ . EI-HRMS calcd  $C_{25}H_{30}N_2O_3$  (M⁺) 406.2256, found 406.2260.

#### **5.2 Bioassay**

**5.2.1 Chemicals and Reagents.** Silodosin and tamsulosin were purchased from J&K chemical (Shanghai, China), and phenylephrine was purchased from Tokoyokasei. Mammalian expression vectors encoding G $\alpha$ 16,  $\alpha_{1A}$ -AR,  $\alpha_{1B}$ -AR and  $\alpha_{1D}$ -AR were purchased from the UMR cDNA Resource Center. Full-length cDNAs encoding human  $\alpha_{1A}$ -AR,  $\alpha_{1B}$ -AR or  $\alpha_{1D}$ -AR were cloned into the pSNAP vector (Cisbio Bioassays) in-frame with SNAP-tag attached at the N terminus. The Tag-lite labeling medium, the Tb derivative of O6-benzylguanine (commercialized as SNAP-Lumi4-Tb) and the  $\Box \alpha_1$ -AR antagonist (Prazosin) labeled with a d2 fluorescent probe was obtained from Cisbio Bioassays.

**5.2.2 Cells Culture and Transfection.** HEK293 cells obtained from American Type Culture Collection were maintained in Dulbecco's Modified Eagle's Medium(DMEM) supplemented with 10% fetal bovine serum(FBS), 100 mg/L penicillin, and 100 mg/L streptomycin at 37°C in a humidified atmosphere of 5% CO₂. HEK293 cells were cotransfected with plasmids encoding various  $\alpha_1$ -ARs and G $\alpha_1$ 6 by electroporation. To generate stable cell lines, transfected cells were seeded onto 10-cm dishes and 1 mg/mL G418 and 40µg/mL blasticidin were added to the culture medium 24 h later. The selection medium was changed every 3 days until colonies formed. A single colony was isolated,

expanded, and tested with a calcium mobilization assay to confirm the expression and proper function of the transfected genes.

**5.2.3 Calcium Mobilization Assay.** Cells were seeded onto 96-well plates at a density of  $3 \times 10^4$  cells/well and cultured overnight. Cells were then incubated with 2 µM Fluo-4 AM in HBSS (5.4 mM KCl, 0.3 mM Na₂HPO₄, 0.4 mM KH₂PO₄, 4.2 mM NaHCO₃, 1.3 mM CaCl₂, 0.5 mM MgCl₂, 0.6 mM MgSO₄, 137 mM NaCl, 5.6 mM D-glucose and 250 µM sulfinpyrazone, pH 7.4) at 37 °C for 45 min. After a thorough washing, 50 µL of HBSS containing either antagonists or 1% DMSO (negative control) were added. After incubation at room temperature for 10 min, 25µL of agonist were dispensed into the well using a FlexStation microplate reader (Molecular Devices), and intracellular calcium change was recorded at an excitation wavelength of 485 nm and an emission wavelength of 525 nm.

**5.2.4 Rat isolated tissue functional assays.** Freshly isolated male SD rat urethra or aorta were cleaned of adherent connective tissue and cut helically, and the endoethelium was removed by gentle rubbing. The tissue strips were then mounted vertically inan organ bath containing 20 mL of Krebs-Henseleit solution of the following composition (mM): NaCl, 118; KCl 4.7; CaCl₂, 2.5; MgSO₄, 1.2; NaHCO₃, 25; KH₂PO₄, 1.2, glucose 11.1. These tissues were then mounted in the buffer maintained at 37 °C and aerated with carbogen (95% oxygen and 5% carbon dioxide) during the entire length of experiment. Resting tension applied was 1 g for rat urethraor aorta, and the responses were recorded isometrically

through force-displacement transducers. The tissue strips noradrenaline cumulative concentration response curve was obtained in the absence or presence of compounds with different concentrations incubated for 20 min.

**5.2.5 Data Analysis.** Data were analyzed with GraphPad Prism software (GraphPad). Nonlinear regression analysis was performed to generate dose-response curves and calculate concentrations for 50% inhibition (IC₅₀) values. Means  $\pm$  SEM were calculated using this software. The analyses were assessed by a Student *t* test. A *p* value < 0.05 was considered statistically significant.

# **Corresponding Author**

**Xin Xie** Email: <u>xxie@simm.ac.cn</u>; Tel: +86-21-50801313;

Hualiang Jiang Email: <u>hljiang@simm.ac.cn</u>; Tel: +86-21-50806600;

Hong Liu Email: <u>hliu@simm.ac.cn;</u> Tel: +86-21-50807042.

# **Author Contributions**

[†]These authors contributed equally.

#### Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (21372235, 21632008, 21672232, 81620108027 and 81220108025) the Major Project of Chinese National Programs for Fundamental Research and Development (2015CB910304), and National S&T Major Projects (2014ZX09507002-001).

# Abbreviations

THPBs, Tetrahydroprotoberberine derivatives; AR,  $\alpha_{1A}$ -Adrenergic receptors; BPH, Benign prostatic hyperplasia; LUTS, Lower urinary tract symptoms; SEA, Similarity ensemble approach; PI, Positive ionizable.

# References

(1) Rosini, M.; Bolognesi, M. L.; Giardina, D.; Minarini, A.; Tumiatti, V.; Melchiorre, C. Recent advances in alpha1-adrenoreceptor antagonists as pharmacological tools and therapeutic agents. *Curr. Top. Med. Chem.* **2007**, *7*, 147-162.

(2) Schwinn, D. A.; Michelotti, G. A. alpha(1)-Adrenergic receptors in the lower urinary tract and vascular bed: potential role for the alpha(1d) subtype in filling symptoms and effects of ageing on vascular expression. *BJU Int.* **2000**, *85*, 6-11.

(3) Thorpe, A.; Neal, D. Benign prostatic hyperplasia. *Lancet* 2003, *361*, 1359-1367.

(4) Schwinn, D. A. The role of alpha(1)-adrenergic receptor subtypes in lower urinary tract symptoms. *BJU Int.* **2001**, *88*, 27-34.

(5) Forray, C.; Bard, J. A.; Wetzel, J. M.; Chiu, G.; Shapiro, E.; Tang, R.; Lepor, H.; Hartig, P. R.; Weinshank, R. L.; Branchek, T. A.; et al. The alpha 1-adrenergic receptor that mediates smooth muscle contraction in human prostate has the pharmacological properties of the cloned human alpha 1c subtype. *Mol. Pharmacol.* **1994**, *45*, 703-708.

(6) Michelotti, G. A.; Bauman, M. J.; Smith, M. P.; Schwinn, D. A. Cloning and characterization of the rat alpha 1a-adrenergic receptor gene promoter. Demonstration of cell specificity and regulation by hypoxia. *J. Biol. Chem.* **2003**, *278*, 8693-8705.

(7) Gao, B.; Chen, J.; Johnson, C.; Kunos, G. Both the cyclic AMP response element and

the activator protein 2 binding site mediate basal and cyclic AMP-induced transcription from the dominant promoter of the rat alpha 1B-adrenergic receptor gene in DDT1MF-2 cells. *Mol. Pharmacol.* **1997**, *52*, 1019-1026.

(8) Hirasawa, A.; Horie, K.; Tanaka, T.; Takagaki, K.; Murai, M.; Yano, J.; Tsujimoto, G. Cloning, functional expression and tissue distribution of human cDNA for the alpha 1C-adrenergic receptor. *Biochem. Biophys. Res. Commun.* **1993**, *195*, 902-909.

(9) Price, D. T.; Schwinn, D. A.; Lomasney, J. W.; Allen, L. F.; Caron, M. G.; Lefkowitz,

R. J. Identification, Quantification, and Localization of Messenger-Rna for 3 DistinctAlpha1 Adrenergic-Receptor Subtypes in Human Prostate. J. Urology 1993, 150, 546-551.

(10) Leech, C. J.; Faber, J. E. Different alpha-adrenoceptor subtypes mediate constriction of arterioles and venules. *Am. J. Physiol.* **1996**, *270*, H710-722.

(11) Piascik, M. T.; Guarino, R. D.; Smith, M. S.; Soltis, E. E.; Saussy, D. L., Jr.; Perez,

D. M. The specific contribution of the novel alpha-1D adrenoceptor to the contraction of vascular smooth muscle. *J. Pharmacol. Exp. Ther.* **1995**, *275*, 1583-1589.

(12) Lowe, F. C. Role of the newer alpha, -adrenergic-receptor antagonists in the treatment of benign prostatic hyperplasia-related lower urinary tract symptoms. *Clin. Ther.* **2004**, *26*, 1701-1713.

(13) Muramatsu, I.; Suzuki, F.; Tanaka, T.; Yamamoto, H.; Morishima, S. Alpha1-adrenoceptor subtypes and alpha1-adrenoceptor antagonists. *Journal of the Pharmaceutical Society of Japan* **2006**, *126*, 187-198.

(14) Schwinn, D. A.; Roehrborn, C. G. alpha(1)-adrenoceptor subtypes and lower

#### **Journal of Medicinal Chemistry**

urinary tract symptoms. Int. J. Urol. 2008, 15, 193-199.

(15) Cantrell, M. A.; Bream-Rouwenhorst, H. R.; Hemerson, P.; Magera, J. S.
 Silodosin for Benign Prostatic Hyperplasia. *Ann. Pharmacother.* 2010, 44, 302-310.

(16) Rossi, M.; Roumeguere, T. Silodosin in the treatment of benign prostatic hyperplasia. *Drug Des. Dev. Ther.* **2010**, *4*, 291-297.

(17) Wilt, T. J.; MacDonald, R.; Nelson, D. Tamsulosin for treating lower urinary tract symptoms compatible with benign prostatic obstruction: A systematic review of efficacy and adverse effects. *J. Urol.* **2002**, *167*, 177-183.

(18) Shibata, K.; Foglar, R.; Horie, K.; Obika, K.; Sakamoto, A.; Ogawa, S.; Tsujimoto,
G. Kmd-3213, a Novel, Potent, Alpha(1a)-Adrenoceptor-Selective Antagonist Characterization Using Recombinant Human Alpha(1)-Adrenoceptors and Native Tissues. *Mol. Pharmacol.* 1995, 48, 250-258.

(19) Yu, H. J.; Lin, A. T.; Yang, S. S.; Tsui, K. H.; Wu, H. C.; Cheng, C. L.; Cheng, H. L.; Wu, T. T.; Chiang, P. H. Non-inferiority of silodosin to tamsulosin in treating patients with lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH). *BJU Int.* 2011, *108*, 1843-1848.

Marks, L. S.; Gittelman, M. C.; Hill, L. A.; Volinn, W.; Hoel, G. Rapid efficacy of the highly selective alpha1A-adrenoceptor antagonist silodosin in men with signs and symptoms of benign prostatic hyperplasia: pooled results of 2 phase 3 studies. *J. Urol.* 2009, *181*, 2634-2640.

(21) Dhar, T. G. M.; Nagarathnam, D.; Marzabadi, M. R.; Lagu, B.; Wong, W. C.; Chiu,

G.; Tyagarajan, S.; Miao, S. W.; Zhang, F. Q.; Sun, W. Y.; Tian, D.; Shen, Q. R.; Zhang, J.;
Wetzel, J. M.; Forray, C.; Chang, R. S. L.; Broten, T. P.; Schorn, T. W.; Chen, T. B.;
O'Malley, S.; Ransom, R.; Schneck, K.; Bendesky, R.; Harrell, C. M.; Vyas, K. P.; Zhang,
K. Y.; Gilbert, J.; Pettibone, D. J.; Patane, M. A.; Bock, M. G.; Freidinger, R. M.;
Gluchowski, C. Design and synthesis of novel alpha(1a) adrenoceptor-selective
antagonists. 2. Approaches to eliminate opioid agonist metabolites via modification of
linker and 4-methoxycarbonyl-4-phenylpiperidine moiety. *J. Med. Chem.* 1999, *42*,
4778-4793.

(22) Lagu, B.; Tian, D.; Nagarathnam, D.; Marzabadi, M. R.; Wong, W. C.; Miao, S. W.; Zhang, F. Q.; Sun, W. Y.; Chiu, G.; Fang, J.; Forray, C.; Chang, R. S. L.; Ransom, R. W.; Chen, T. B.; O'Malley, S.; Zhang, K. Y.; Vyas, K. P.; Gluchowski, C. Design and synthesis of novel alpha(1a) adrenoceptor-selective antagonists. 3. Approaches to eliminate opioid agonist metabolites by using substituted phenylpiperazine side chains. *J. Med. Chem.* 1999, *42*, 4794-4803.

(23) Nagarathnam, D.; Miao, S. W.; Lagu, B.; Chiu, G.; Fang, J.; Dhar, T. G. M.;
Zhang, J.; Tyagarajan, S.; Marzabadi, M. R.; Zhang, F. Q.; Wong, W. C.; Sun, W. Y.; Tian,
D.; Wetzel, J. M.; Forray, C.; Chang, R. S. L.; Broten, T. P.; Ransom, R. W.; Schorn, T. W.;
Chen, T. B.; O'Malley, S.; Kling, P.; Schneck, K.; Bendesky, R.; Harrell, C. M.; Vyas, K. P.;
Gluchowski, C. Design and synthesis of novel alpha(1a) adrenoceptor-selective
antagonists. 1. Structure-activity relationship in dihydropyrimidinones. *J. Med. Chem.* **1999**, *42*, 4764-4777.

#### **Journal of Medicinal Chemistry**

(24) Kuo, G. H.; Prouty, C.; Murray, W. V.; Pulito, V.; Jolliffe, L.; Cheung, P.; Varga, S.; Evangelisto, M.; Shaw, C. Design, synthesis and biological evaluation of pyridine-phenylpiperazines: A novel series of potent and selective alpha(1a)-adrenergic receptor antagonist. *Bioorg. Med. Chem.* **2000**, *8*, 2263-2275.

(25) Kuo, G. H.; Prouty, C.; Murray, W. V.; Pulito, V.; Jolliffe, L.; Cheung, P.; Varga, S.; Evangelisto, M.; Wang, J. Design, synthesis, and structure-activity relationships of phthalimide-phenylpiperazines: a novel series of potent and selective alpha(1)(a)-adrenergic receptor antagonists. *J. Med. Chem.* **2000**, *43*, 2183-2195.

(26) Lagu, B.; Tian, D.; Jeon, Y.; Li, C.; Wetzel, J. M.; Nagarathnam, D.; Shen, Q.; Forray, C.; Chang, R. S.; Broten, T. P.; Ransom, R. W.; Chan, T. B.; O'Malley, S. S.; Schorn, T. W.; Rodrigues, A. D.; Kassahun, K.; Pettibone, D. J.; Freidinger, R. O.; Gluchowski, C. De novo design of a novel oxazolidinone analogue as a potent and selective alpha1A adrenergic receptor antagonist with high oral bioavailability. *J. Med. Chem.* 2000, , 2775-2778.

(27) Chiu, G.; Li, S. J.; Cai, H.; Connolly, P. J.; Peng, S.; Stauber, K.; Pulito, V.; Liu, J. C.; Middleton, S. A. Aminocyclohexylsulfonamides: Discovery of metabolically stable alpha(1a/1d)-selective adrenergic receptor antagonists for the treatment of benign prostatic hyperplasia/lower urinary tract symptoms (BPH/LUTS). *Bioorg. Med. Chem. Lett.* **2007**, *17*, 6123-6128.

(28) Chiu, G.; Li, S. J.; Connolly, P. J.; Pulito, V.; Liu, J. C.; Middleton, S. A. (Phenylpiperidinyl)cyclohexylsulfonamides: Development of alpha(1a/1d)-selective

adrenergic receptor antagonists for the treatment of benign prostatic hyperplasia/lower urinary tract symptoms (BPH/LUTS). *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3930-3934.

(29) Chiu, G.; Li, S. J.; Connolly, P. J.; Pulito, V.; Liu, J. C.; Middleton, S. A. (Arylpiperazinyl)cyclohexylsufonamides: Discovery of alpha(1a/1d)-selective adrenergic receptor antagonists for the treatment of Benign Prostatic Hyperplasia/Lower Urinary Tract Symptoms (BPH/LUTS). *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3292-3297.

(30) Chiu, G.; Connolly, P. J.; Middleton, S. A.; Li, S. J.; Pulito, V.; Liu, J. C.; Baxter,
E. W.; Reitz, A. B. alpha(1a/1d)-selective adrenergic receptor antagonists for the treatment
of benign prostatic hyperplasia/lower urinary tract symptoms. *Expert Opin. Ther. Pat.*2008, *18*, 1351-1360.

(31) Chiu, G.; Li, S.; Connolly, P. J.; Pulito, V.; Liu, J.; Middleton, S. A. (Phenylpiperazinyl)cyclohexylureas: Discovery of α1a/1d-selective adrenergic receptor antagonists for the treatment of benign prostatic hyperplasia/lower urinary tract symptoms (BPH/LUTS). *Bioorg. Med. Chem. Lett.* **2008**, *18*, 640-644.

(32) Stoddart, E. S.; Senadheera, S.; MacDougall, I. J. A.; Griffith, R.; Finch, A. M. A Novel Structural Framework for alpha(1A/D)-Adrenoceptor Selective Antagonists Identified Using Subtype Selective Pharmacophores. *PLoS One* **2011**, *6*.

Jeong, C. H.; Bode, A. M.; Pugliese, A.; Cho, Y. Y.; Kim, H. G.; Shim, J. H.; Jeon,
Y. J.; Li, H.; Jiang, H.; Dong, Z. [6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase. *Cancer Res.* 2009, *69*, 5584-5591.

(34) Cai, J.; Han, C.; Hu, T.; Zhang, J.; Wu, D.; Wang, F.; Liu, Y.; Ding, J.; Chen, K.;

#### **Journal of Medicinal Chemistry**

Yue, J.; Shen, X.; Jiang, H. Peptide deformylase is a potential target for anti-Helicobacter pylori drugs: reverse docking, enzymatic assay, and X-ray crystallography validation. *Protein Sci.* **2006**, *15*, 2071-2081.

(35) Han, C. D.; Lu, Z. Z.; Wei, X.; Jin, G. Z. Tetrahydroprotoberberine analogs antagonize alpha(1)-adrenoceptors and inhibit mobilization of intracellular calcium. *Drug Dev. Res.* **1996**, *39*, 191-196.

(36) Bremner, J. B.; Coban, B.; Griffith, R.; Groenewoud, K. M.; Yates, B. F. Ligand design for alpha(1) adrenoceptor subtype selective antagonists. *Bioorg. Med. Chem.* 2000, *8*, 201-214.

(37) Betti, L.; Botta, M.; Corelli, F.; Floridi, M.; Fossa, P.; Giannaccini, G.; Manetti, F.; Strappaghetti, G.; Corsano, S. alpha(1)-Adrenoceptor antagonists. Rational design, synthesis and biological evaluation of new trazodone-like compounds. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 437-440.

(38) Fumagalli, L.; Bolchi, C.; Colleoni, S.; Gobbi, M.; Moroni, B.; Pallavicini, M.; Pedretti, A.; Villa, L.; Vistoli, G.; Valoti, E. QSAR study for a novel series of ortho monosubstituted phenoxy analogues of alpha1-adrenoceptor antagonist WB4101. *Bioorg. Med. Chem.* **2005**, *13*, 2547-2559.

(39) MacDougall, I. J. A.; Griffith, R. Selective pharmacophore design for alpha(1)-adrenoceptor subtypes. *J. Mol. Graph. Model.* **2006**, *25*, 146-157.

(40) Pallavicini, M.; Fumagalli, L.; Gobbi, M.; Bolchi, C.; Colleoni, S.; Moroni, B.; Pedretti, A.; Rusconi, C.; Vistoli, G.; Valoti, E. QSAR study for a novel series of ortho disubstituted phenoxy analogues of alpha1-adrenoceptor antagonist WB4101. *Eur. J. Med. Chem.* **2006**, *41*, 1025-1040.

(41) Li, Z.; Li, J.; Yang, N.; Chen, Y.; Zhou, Y.; Ji, X.; Zhang, L.; Wang, J. F.; Xie, X.;
Liu, H. Gold(I)-Catalyzed Cascade Approach for the Synthesis of Tryptamine-Based
Polycyclic Privileged Scaffolds as alpha(1)-Adrenergic Receptor Antagonists. *J. Org. Chem.* 2013, 78, 10802-10811.

(42) Witt, T.; Hock, F. J.; Lehmann, J. 7-methyl-6,7,8,9,14,15-hexahydro-5H-benz[d] indolo[2,3-g]azecine: A new heterocyclic system and a new lead compound for dopamine receptor antagonists. *J. Med. Chem.* **2000**, *43*, 2079-2081.

(43) Shepperson, N. B.; Duval, N.; Massingham, R.; Langer, S. Z. Pre- and postsynaptic alpha adrenoceptor selectivity studies with yohimbine and its two diastereoisomers rauwolscine and corynanthine in the anesthetized dog. *J. Pharmacol. Exp. Ther.* **1981**, *219*, 540-546.

(44) Balle, T.; Perregaard, J.; Larsen, A. K.; Ramirez, M. T.; Soby, K. K.; Liljefors, T.; Andersen, K. Synthesis and structure-affinity relationship investigations of 5-aminomethyl and 5-carbamoyl analogues of the antipsychotic sertindole. A new class of selective alpha(1) adrenoceptor antagonists. *Bioorg. Med. Chem.* **2003**, *11*, 1065-1078.

(45) Balle, T.; Perregaard, J.; Ramirez, M. T.; Larsen, A. K.; Soby, K. K.; Liljefors, T.;
Andersen, K. Synthesis and structure-affinity relationship investigations of
5-heteroaryl-substituted analogues of the antipsychotic sertindole. A new class of highly
selective alpha(1) adrenoceptor antagonists. *J. Med. Chem.* 2003, *46*, 265-283.

#### **Journal of Medicinal Chemistry**

Ford, A. P.; Arredondo, N. F.; Blue, D. R., Jr.; Bonhaus, D. W.; Jasper, J.; Kava, M. (46) S.; Lesnick, J.; Pfister, J. R.; Shieh, I. A.; Vimont, R. L.; Williams, T. J.; McNeal, J. E.; Stamey, T. A.; Clarke, D. E. RS-17053 (N-[2-(2-cyclopropylmethoxyphenoxy)ethyl]-5-chloro-alpha, alpha-dimethyl-1H-indole-3-ethanamine hydrochloride), selective alpha а 1A-adrenoceptor antagonist, displays low affinity for functional alpha 1-adrenoceptors in human prostate: implications for adrenoceptor classification. Mol. Pharmacol. 1996, 49, 209-215.

(47) Fellay, C.; Dyson, P. J.; Laurenczy, G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. *Angew. Chem. Int. Ed. Engl.* **2008**, *47*, 3966-3968.

(48) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. Asymmetric Transfer Hydrogenation of Imines. *J. Am. Chem. Soc.* **1996**, *118*, 4916-4917.

(49) Cheng, J. J.; Yang, Y. S. Enantioselective total synthesis of (-)-(S)-stepholidine. J.*Org. Chem.* 2009, 74, 9225-9228.

(50) Qian, W.; Lu, W.; Sun, H.; Li, Z.; Zhu, L.; Zhao, R.; Zhang, L.; Zhou, S.; Zhou, Y.; Jiang, H.; Zhen, X.; Liu, H. Design, synthesis, and pharmacological evaluation of novel tetrahydroprotoberberine derivatives: selective inhibitors of dopamine D(1) receptor. *Bioorg. Med. Chem.* **2012**, *20*, 4862-4871.

(51) Sun, H.; Zhu, L.; Yang, H.; Qian, W.; Guo, L.; Zhou, S.; Gao, B.; Li, Z.; Zhou, Y.; Jiang, H.; Chen, K.; Zhen, X.; Liu, H. Asymmetric total synthesis and identification of

tetrahydroprotoberberine derivatives as new antipsychotic agents possessing a dopamine D(1), D(2) and serotonin 5-HT(1A) multi-action profile. *Bioorg. Med. Chem.* 2013, *21*, 856-868.

(52) Fu, W.; Shen, J.; Luo, X.; Zhu, W.; Cheng, J.; Yu, K.; Briggs, J. M.; Jin, G.; Chen,
K.; Jiang, H. Dopamine D1 receptor agonist and D2 receptor antagonist effects of the natural product (-)-stepholidine: molecular modeling and dynamics simulations. *Biophys J* 2007, *93*, 1431-1441.

(53) Roehrborn, C. G.; Schwinn, D. A. Alpha1-adrenergic receptors and their inhibitors in lower urinary tract symptoms and benign prostatic hyperplasia. *J. Urol.* **2004**, *171*, 1029-1035.

(54) Schwinn, D. A.; Roehrborn, C. G. Alpha1-adrenoceptor subtypes and lower urinary tract symptoms. *Int. J. Urol.* **2008**, *15*, 193-199.





# **Table of Contents graphic**

