J. Chem. Soc. (A), 1967

The Reactions of Some Silylamines with Carbon Dioxide and Related Molecules

By E. A. V. Ebsworth, G. Rocktäschel, and J. C. Thompson, University Chemical Laboratory, Lensfield Road, Cambridge

Trisilylamine and N-methyldisilylamine do not react with carbon dioxide, carbon disulphide, or carbon oxysulphide at up to 100° and pressures up to 30 atmospheres. NN-Dimethylsilylamine combines with carbon dioxide to give silyI NN-dimethylcarbamate, and with carbon disulphide to give silyI NN-dimethyldithiocarbamate; with carbon oxysulphide, a compound is produced, formulated as O-silyl NN-dimethylmonothiocarbamate, whose n.m.r. spectrum indicates that rotation about the Me₂N-C bond is restricted.

THE addition of amino-derivatives of non-metals or of metalloids to unsaturated systems has been widely studied. Breederveld¹ found that NN-diethyltrimethylsilvlamine forms 1:1 addition compounds with carbon dioxide and with carbon disulphide, and he formulated the products as derivatives of carbamic acid. Since then, the addition of amino-derivatives of germanium,² tin,³ boron,⁴ phosphorus,⁵ arsenic,⁶ and sulphur ⁷ to similar unsaturated systems has been reported. In all these investigations, organo-substituted derivatives of the elements concerned were used; we have studied the reactions between carbon dioxide, carbon disulphide, and carbon oxysulphide and three amines containing the SiH₃ group. The presence of this group has made it particularly convenient to study the systems by proton n.m.r. spectroscopy at room temperature and below, using changes in chemical shift and in ²⁹SiH coupling constants to indicate reaction; the sensitivity of the n.m.r. parameters of the silvlamines to changes in temperature and solvent will be reported elsewhere.⁸ From these and other physical and chemical data, we have made some deductions about the nature of the products.

We found no evidence that either trisilylamine or N-methyldisilylamine reacts with CO₂, CS₂, or COS, when sealed in n.m.r. tubes at pressures of at least 30 atm., either on prolonged standing at room temperature or on heating to 100° for short periods, except in one tube containing CO_2 and $MeN(SiH_3)_2$, and, since the experiment could not be repeated, we attribute the results to the presence of traces of impurity. In some of the systems containing MeN(SiH₃)₂, changes in the n.m.r. spectrum during prolonged standing at room temperature are consistent with the formation of Si-N polymers or ring compounds through SiH migration:

$$n(\text{SiH}_3)_2\text{NMe} = (\text{MeNSiH}_2)_n + n\text{SiH}_4$$

In contrast to this behaviour, NN-dimethylsilylamine gave equimolar addition compounds with CO_2 , CS_2 , and COS, reaction occurring most readily with CO₂. With CS_{2} , the product was a white solid, involatile at room temperature, which sublimed with some decomposition

in vacuo at 100°. When CO₂ and NN-dimethylsilylamine were allowed to react at room temperature, some monosilane was always recovered from among the volatile products; the residue was a colourless, viscous liquid, which deposited a white solid when allowed to stand at room temperature, with evolution of a total quantity of monosilane approximately corresponding to all the Si-H bonds present in the amine originally taken. Experiments with SiD₃·NMe₂ showed that all the monosilane was formed from SiH hydrogen. Reaction of the amine with CO_2 at -35° did not initially lead to the formation of monosilane, which was thus produced in the decomposition of the adduct, rather than by the decomposition of the reacting amine before reaction. The adduct of NN-dimethylsilylamine with COS was also unstable at room temperature, evolving monosilane, but small amounts appeared to sublime unchanged during 24 hr. in vacuo.

Though all the adducts are more-or-less unstable at room temperature in the absence of solvent, they are much more stable when dissolved in carbon tetrachloride. The ultraviolet, infrared, and n.m.r. spectra of the three compounds were obtained in this solvent; the solutions could be supercooled without difficulty to at least -30° , so that n.m.r. spectra could be obtained of systems 50° below room temperature.

The infrared, ultraviolet, and n.m.r. spectra of the adducts formed from CO₂ and CS₂ are all consistent with the formulation of these compounds as silvl NN-dimethylcarbamate (I; X = O) and silve NN-dimethyldithiocarbamate (I; X = S), respectively.

The infrared spectrum of the carbamate contains a strong peak in the region associated with C=O stretching, and the infrared spectrum of the dithiocarbamate is very like the spectra of NN-dialkyldithiocarbamates.⁹ The SiH chemical shifts and ²⁹SiH coupling constants are also in the range associated with SiH₃O systems (for the carbamate) and SiH₃S systems (for the dithio-

¹ H. Breederveld, *Rec. Trav. chim.*, 1962, **81**, 276. ² J. Satgé, M. Lesbre, and M. Baudet, *Compt. rend.*, 1964, **259**, 4773.

K. Jones and M. F. Lappert, J. Chem. Soc., 1965, 2157.
 R. H. Cragg and M. F. Lappert, Adv. Chem., 1964, 42, 220.
 H. J. Vetter and H. Nöth, Chem. Ber., 1963, 96, 1308.

⁶ H. J. Vetter, H. Strametz, and H. Nöth, Angew. Chem. Internat. Edn., 1963, 2, 218.

⁷ E. S. Blake, J. Amer. Chem. Soc., 1946, 65, 1267.

⁸ E. A. V. Ebsworth, G. Rocktäschel, and J. C. Thompson, to be published. J. Chatt, L. A. Duncanson, and L. M. Venanzi, Suomen

Kem., 1956, 29, B, No. 2, 75.

carbamate) (see Table 1), in the spectra of samples prepared from 95%-labelled SiH₃¹⁵NMe₂; ¹⁵NSiH coupling was not observed in the SiH resonance. The CH resonance, identified by intensity, by ¹³CH satellites, and by ¹⁵NCH coupling, is found in the spectrum of the carbamate about 0.4 p.p.m. to low field of its position in the parent amine, and is still further to low field in the

TABLE 1

Proton chemical shifts in some compounds containing SiH₃O or SiH₃S groups

	$\tau(SiH_3)$		$\tau(SiH_3)$
Compound	(p.p.m.)	Compound	(p.p.m.)
(SiH ₃) ₂ O	5.39 ª	CH ₃ CO ₂ SiH ₃	5.53 °
SiH ₃ ·OCH ₃		CF ₃ CO ₂ SiH ₃	$5\cdot 32$ o
$(SiH_3O)_2SiH_2$	5.33^{b}		
(SiH _a O) _a SiH [•]	5·34 ^b	(SiH ₃) ₂ S	5·64 ª
HCO ₂ SiH ₃	5.45 °	SiH ₃ ·SCF ₃	5.58 d
^a Ref. 10.	^b Ref. 11.	^c Ref. 12. ^d Ref. 13.	

spectrum of the dithiocarbamate. In the spectra of the ¹⁴N adducts, the *N*-methyl protons give rise to single resonances, even at temperatures close to -40° . If rotation about the Me₂N-C bonds were substantially restricted, two methyl proton resonances would be expected, unless some other process or property led to equivalence of the N-methyl groups. In the n.m.r. spectrum of methyl NN-dimethylcarbamate dissolved in carbon tetrachloride, the N-methyl protons give rise to a single resonance at room temperature, but the N-methyl proton resonance of methyl NN-dimethyldithiocarbamate in the same solvent is very broad, and it splits just below room temperature into two peaks of equal intensity, showing that under these conditions rotation about the Me₂N-C bond is restricted.¹⁴ If, therefore, the methyl proton resonances of both silyl NN-dimethylcarbamate and silyl NN-dimethyldithiocarbamate are collapsed through rapid rotation even at -40° , the barriers to rotation about the Me₂N-C bond in the silvl and the methyl esters of NN-dimethyldithiocarbamic acid must be substantially different. If, on the other hand, the $-C(X)\cdot X\cdot SiH_3$ groups are in the planar *cis* configuration, as has been suggested for other silvl esters,¹⁵ the effective chemical shift between the two methyl groups might be very small; moreover, rapid intramolecular exchange of SiH₃ groups between the two X atoms could render the methyl groups equivalent. Such exchange is possible, but there is no other evidence to indicate that it occurs.

It is more difficult to establish the structure of the compound formed with COS. In principle, addition could take place across either the C=O or the C=S bonds. The single SiH resonance, taken with the single set of ²⁹SiH satellites, strongly suggests that the product is a single compound. In the infrared spectrum there is

only a weak band in the region associated with C=O stretching, but there is a very strong band near 1500 cm.⁻¹ (where a strong band, assigned to a stretching mode of the heavy-atom skeleton, is observed in the spectra of NN-dialkyldithiocarbamates 9). This implies that addition has occurred across the C=O bond, giving O-silvl NN-dimethylmonothiocarbamate, and this implication is supported by a consideration of the n.m.r. chemical shifts. The value of τ (SiH), though less than in the carbamate or the dithiocarbamate, is much closer to τ (SiH) in other SiH₃O compounds than to typical values of τ (SiH) in SiH₃S systems (see Table 1). Similarly, the methyl proton chemical shifts, likely to be sensitive to the nature of the C=X bond, are closer to those found for the dithiocarbamate than to those found for the carbamate. Moreover, rough calculations based on bond energies ¹⁶ suggest that the SiH₃O derivative is the more likely to be formed.

The only surprising feature of the spectrum is that the *N*-methyl resonance is split into two components of equal intensity, separated by 0.12 p.p.m.; both components must be due to N-methyl protons, for both show approximately equal splitting by ¹⁵N in the spectrum of a sample prepared from SiH₃.¹⁵NMe₂. The splitting of the main resonance could arise directly from restriction of rotation about the Me₂N-C bond; indeed, without restriction of rotation it is hard to see how any such non-equivalence could arise. There was, however, no sign of collapse in the splitting even at $ca. +60^{\circ}$, whereas in the spectra of the other two compounds no splitting was detected at $ca. -40^{\circ}$. Perhaps the barrier to rotation is much greater in the derivative of COS than in the carbamate or the dithiocarbamate. If, on the other hand, exchange of SiH₃ groups is responsible for the equivalence of the methyl groups in the two lastnamed compounds, it is easy to see why the splitting is observed in the spectrum of the adduct of COS; such exchange could not lead to equivalence of the methyl groups in that compound unless rotation about the Me₂N-C bond were rapid.

EXPERIMENTAL

Reactions of Trisilylamine.-Trisilylamine was sealed in 5 mm. o.d. Pyrex n.m.r. tubing with enough CO_2 to give a pressure of at least 30 atm. at room temperature. No change in the n.m.r. parameters of the amine was observed after the tube had been kept at room temperature for several days, or after heating it to 100° (3 hr.). There was no sign of reaction when trisilylamine was treated similarly with COS, or when the amine was heated with an excess of CS₂.

Reactions of N-Methyldisilylamine.-Many tubes were

¹³ A. J. Downs and E. A. V. Ebsworth, J. Chem. Soc., 1960, 3516.

¹⁰ E. A. V. Ebsworth and J. J. Turner, J. Phys. Chem., 1963,

<sup>67, 805.
&</sup>lt;sup>11</sup> H. J. Campbell-Ferguson, E. A. V. Ebsworth, A. G. MacDiarmid, and T. Yoshioka, *J. Phys. Chem.*, in the press.
¹² E. A. V. Ebsworth and J. C. Thompson, *J. Chem. Soc.* (.4), 1007–100.

^{1967, 69.}

¹⁴ E. A. V. Ebsworth, J. C. Thompson, G. Rocktäschel, and (Mrs) J. Potter, to be published.

¹⁵ A. G. Robiette and J. C. Thompson, Spectrochim. Acta, 1965, **21**, 2023.

¹⁶ T. L. Cottrell, "The Strengths of Chemical Bonds," Butterworths, 2nd. edn., 1958.

made up containing CO₂, CS₂, or COS mixed with N-methyldisilylamine in varying proportions. In one tube containing the amine and CO₂, changes in the n.m.r. spectrum were observed that were consistent with reaction. Since all attempts to repeat this reaction failed, we conclude that the additional peaks in the n.m.r. spectrum may have arisen from the presence of traces of water in the sample of CO_2 . Even after standing at room temperature for several days, the spectra of the material in the other tubes corresponded with that of the starting amine; no change was observed when the tubes were heated to 100° for short periods, or when traces of SiH3. NMe2 or MeNH2 were included. Tubes containing the amine and COS or CS2 after standing at room temperature for six weeks showed a strong resonance at $\tau = 6.78$, assigned to SiH₄,¹⁰ with other peaks at $\tau = ca$. 7.4 (MeN) and ca. 5.6 (HSiN), whose areas were in approximate ratio 3:2. These can be assigned to the CH and SiH resonances of polymeric $(CH_3 \cdot N \cdot SiH_2)_n$.

Reactions of NN-Dimethylsilylamine. (i) CO_2 (2.70 mmoles) was kept with SiH_3 ·NMe₂ (1.07 mmoles) at room temperature

mmoles) spectroscopically, a white solid remained (Found: SiH, 1.97. $C_3H_9NS_2Si$ requires SiH, 1.99%). The combining ratio is 1.03:1. In a similar experiment, CS_2 (0.94 mmole) and SiH₃NMe₂ (2.94 mmoles) gave SiH₄ (0.41 mmole; identified spectroscopically) and SiH₃NMe₂ (2.01 mmoles) (Found: M, 77.3. Calc. for C_2H_9NSi : M, 75.1) as volatile products (combining ratio 0.99:1). The n.m.r. spectra of solutions of SiH₃NMe₂ in excess of CS₂ gave only peaks at the positions indicated in Table 2, even at -40° , but the spectra of mixtures of CS₂ and SiH₃·NMe₂ in CCl₄ at -20° corresponded initially with that of the starting amine; after standing at room temperature (2 days), the tube gave the spectrum of the products.

(iii) COS (2·11 mmoles) and SiH₃·NMe₂ (0·95 mmole) were allowed to react as described above; a white solid formed. The volatile products consisted of SiH₄ (0·41 mmole; identified spectroscopically) and COS (1·15 mmoles) (Found: M, 58.7. Calc. for COS: M, 60.1); the combining ratio was 0.99:1. In a similar experiment, COS (0.93 mmole) and SiH₃·NMe₂ (2·03 mmoles) gave SiH₄ (0·49 mmole;

TABLE 2	
-----------	--

Proton resonance results for adducts between NN-dimethylsilylamine and carbon oxides and sulphides

		τ (CH)	/(¹³ CH)	$J(^{15}NCH)$	$\tau(SiH)$	J(29SiH)
Reactants	Solvent/standard	± 0.03 p.p.m.	± 0.5 c./sec.	± 0.06 c./sec.	± 0.03 p.p.m.	± 0.5 c./sec.
SiH ₃ NMe ₂	TMS/TMS	7.51	134.6	≤0·2 ª	5.64	205.7
	CCl_{4}/TMS	7.61	135.7	n .o.	5.69	$205 \cdot 1$
SiH ₃ NMe ₂ /CO ₂	CO_{2}/TMS^{b}	7.09	138.6	n .m.	5.55	$233 \cdot 6$
• •	CCl ₄ /TMS ^b	7.07	n.m.	1.07	5.54	$232 \cdot 8$
SiH ₃ NMe ₂ /CS ₂	CS ₂ /TMS ^b	6.59	140.1	n.m.	5.63	$234 \cdot 3$
· · ·	CCl ₄ /TMS °	6.52	n.m.	1.41	5.65	n.m.
SiH ₃ NMe ₂ /COS	CCl ₄ /TMS °	6·78 d	n.m.	1.34	5.39	235.9
		6.66 d		1.42		

• In (tetramethylsilane), $J({}^{15}NSiH)$ is 5.08 ± 0.06 c./sec.; in CCl₄ (lines broad) $J({}^{15}NSiH)$ not observed.⁸ b Measurements over the range -35 to $+20^{\circ}$ fall within the stated limits. • Measured only at room temperature; spectrum qualitatively unchanged in the range -30 to $+20^{\circ}$. d No collapse on heating to $+60^{\circ}$. n.m. = Not measured. n.o. = Not observed.

(15 hr.). A viscous liquid formed, which slowly became a white solid. Non-condensable gas (0.3 mmole) was formed; the other volatile products recovered were SiH_4 (0.74 mmole) (Found: M, 33·1. Calc. for SiH₄: M, 32·1), identification confirmed spectroscopically, and CO₂ (1.68 mmoles) (Found: M, 43.2. Calc. for CO₂: M, 44.0), identification confirmed spectroscopically. The combining ratio (amine to CO_2) is 1.05:1. In another experiment, CO₂ (0.98 mmole) and SiH_3NMe_2 (3.03 mmoles) were allowed to react as above. No non-condensable gas was detected; the volatile products consisted of SiH_4 (0.35 mmole; identified spectroscopically) and SiH₃NMe₂ (1.96 mmoles) (Found: M, 73.8. Calc. for $C_2H_9NSi: M, 75\cdot 1$). The involatile liquid residue slowly liberated more SiH_4 on standing (total $SiH_4 = 0.76$ mmole); the combining ratio is 1.09:1. When equimolar quantities of the reactants were taken initially, only SiH_4 (67% of the original silicon) was recovered; in a reaction between SiD_3NMe_2 and CO_2 , only SiD_4 was evolved, and no SiD_3H could be detected spectroscopically. The n.m.r. spectra of mixtures of CO₂ and SiH₃NMe₂ in CCl₄ or in excess of CO₂ did not show peaks corresponding to the resonances of the amine itself, even immediately after first melting at -30to -40° . In addition to the resonances set out in Table 2, a peak at $\tau = 6.78$, not present in the spectra of freshlymelted samples, grew in intensity with time and was assigned to SiH₄.

(ii) CS_2 (2.86 mmoles) and SiH_3NMe_2 (0.97 mmole) were allowed to react as above; a yellow liquid formed, and on removing the volatile material, identified as CS_2 (1.95

identified spectroscopically) and SiH₃NMe₂ (0.95 mmole) (Found: M, 74.5). The combining ratio is 1.16:1. Satisfactory n.m.r. spectra of mixtures of SiH₃NMe₂ and COS in excess of COS could not be obtained, because of the irreversible formation of solid even at low temperatures; when mixtures of the two reactants in CCl₄ were first melted, a broadened spectrum roughly corresponding to that of the starting amine was obtained at -30° , but after standing at room temperature (3 hr.) the tube gave the spectrum of the products.

Infrared Spectra.—Roughly 10% solutions of the three adducts were made up by distilling the reactants in appropriate quantities into CCl₄; the solutions were transferred to standard liquid cells inside a dry-bag filled with N₂. The following bands were observed:

(i) For $Me_2N \cdot C(O)OSiH_3$: 3200(mw), 3050(m,sh), 2970(s), 2900(ms,sh), 2810(m), 2215(vs), 1710(vs), 1650(s,sh), 1500(vs), 1460(s), 1405(vs), 1280(s), 1210(vs), 1070(m,sh), 1048(s), 953(vs), 910(s), 865(s), 710(s).

(ii) For $Me_2N \cdot C(O)OSiD_3$: 2930(s), 1720(vs), 1610(s), 1500(vs), 1450(s), 1400(vs), 1280(s), 1200(vs), 1045(s), 890(s), 870(s), 856(s), 698(s).

(iii) for $Me_2N \cdot C(S)SSiH_3$: 2950(s), 2220(s), 2160(s), 1500(s), 1410(ms,sh), 1390(s), 1255(s), 1155(s), 1057(ms), 1010(s), 995(s,sh), 945(s), 915(s), 895(s), 880(s,sh), 705(m).

(iv) For $Me_2N \cdot C(S)SSiD_3$: 2950(s), 1630(s), 1600(s), 1510(s), 1415(s), 1385(s), 1260(s), 1155(s), 1060(ms), 1007(s), 980(ms), 915(m), 885(m), 700(m).

(v) For Me₂N·C(S)OSiH₃: 2960(s), 2900(ms,sh), 2205(vs),

 $2060(m),\ 1700(m),\ 1545(vs),\ 1470(m),\ 1405(vs),\ 1350(m), 1300(vs),\ 1255(m),\ 1160(vs),\ 1060(m),\ 1030(ms),\ 975(s,sh),\ 963(s),\ 941(vs),\ 896(s),\ 835(vs),\ 728(s),\ 701(s).$

(vi) For Me₂N·C(S)OSiD₃: 2960(s), 2900(m,sh), 2060(ms),
1700(m), 1630(s,sh), 1610(s), 1585(s), 1550(vs), 1470(m),
1405(vs), 1340(m,sh), 1300(vs), 1255(m), 1215(s), 1160(s),
1060(m), 1020(m), 975(s), 836(s), 698(s).

Ultraviolet Spectra.—Spectra were recorded of solutions in CCl_4 , made up as for the infrared spectra; extinction coefficients are not given, as concentrations could not be measured accurately enough.

Compound	Absn. max. (cm1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	37,800 35,500(sh), 33,700 35,100(sh), 33,600

Preparation of Compounds.—The preparation of the silylamines, and of the ¹⁵N-labelled compounds, is described elsewhere; 8 CO₂ and CS₂ were obtained commercially, and COS was made from KNCS and sulphuric acid.

Apparatus.—The n.m.r. spectra were recorded using a Varian Associates V-4300B spectrometer, operating at 40 Mc./sec. with flux stabilisation and sample spinning; measurements were made by means of side-bands generated by a Muirhead–Wigan decade oscillator. Errors quoted are statistical mean errors from at least ten individual measurements in each case. Infrared spectra were obtained by means of Perkin-Elmer infraracord spectrometers in the range 4000—670 cm.⁻¹; frequencies are probably accurate to ± 5 cm.⁻¹ in the middle of the range; polystyrene film was used for calibration. Ultraviolet spectra were recorded on a Perkin-Elmer Uvicord spectrometer.

We thank the D.S.I.R. for a grant (to J. C. T.) and the Carl-Duisberg-Stiftung for financial support (G. R.).

[6/964 Received, July 29th, 1966]