## Biosynthesis of Triterpenes, Ursolic Acid and Oleanolic Acid, from [2-13C,2-2H<sub>3</sub>]Acetate in Tissue Cultures of *Rabdosia japonica* Hara<sup>†</sup>

## Shujiro Seo,\*\* Atsuko Uomori,\* Yohko Yoshimura,\* Ken'ichi Takeda,\* Ushio Sankawa,<sup>b</sup> Yutaka Ebizuka,<sup>b</sup> and Haruo Seto<sup>c</sup>

<sup>a</sup> Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

<sup>b</sup> Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

<sup>c</sup> Institute of Applied Microbiology, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan

1,2-Hydride shifts in the biosynthesis of ursolic acid (**2**) and oleanolic acid (**6**), 20-H from C-19, 19-H from C-18, and 18-H from C-13 in (**2**) and 19-H from C-18 and 18-H from C-13 in (**6**), were verified in cultured cells of *Rabdosia japonica* Hara fed with [2-<sup>13</sup>C,2-<sup>2</sup>H<sub>3</sub>]acetate.

The biogenetic isoprene rule for pentacyclic triterpenes such as the oleanene- and ursene-types includes some 1,2-hydride shifts and carbon rearrangements.<sup>1,2</sup> Recently, we demonstrated the occurrence of carbon rearrangements during D and E ring formation in the biosynthesis of oleanene-type and ursene-type triterpenes in cultured cells of a higher plant, *Rabdosia japonica* Hara.<sup>3</sup> Goodwin *et al.*<sup>4</sup> and Barton *et al.*<sup>5</sup>

<sup>†</sup> Rabdosia japonica Hara was formerly called Isodon japonicus Hara.

CO<sub>2</sub>R

De

29

ര

٠De

Da

D<sub>2</sub>

∔D3

De

D2

Da

۰De

CO<sub>2</sub> R<sup>2</sup>

Ďα

 $D_3$ 





reported two 1,2-hydride shifts, 18-H from C-13 and 19-H

Ď

D<sub>2</sub>

Ď

HO

 $D_3$ 

D<sub>2</sub> Ġ3

D2

(9)

Sodium [2-13C,2-2H3]acetate‡ was administered to suspen-

• =  ${}^{13}C$ 

sion cultures of R. japonica (grown on 91 of Linsmeier-Skoog medium) for four weeks. The suspension cultures were worked up in the usual manner.<sup>3</sup> The mixture of *p*-nitrobenzoates (3) and (7) obtained was separated by h.p.l.c.7 (TSKgel ODS-120T, methanol) followed by hydrolysis to give methyl ursolate (4) and methyl oleanolate (8).

As shown in Table 1, the 100 MHz  $^{13}C\text{-}\{^1H\}\{^2H\}$  n.m.r. spectra of (4) and (8) showed deuterium atoms migrating to the adjacent carbon atoms because of the presence of signals which were shifted owing to the  $\beta$ -deuterium isotope effect  $(^{2}\Delta\delta_{C(2H)})$ .<sup>8</sup> The three signals due to C-13 ( $\delta_{C}$  138.13), C-18

1142

from C-18, in the biosynthesis of  $\beta$ -amyrin. We examined the stereochemistry of the hydrogen atoms at C-12 and C-13, which are the two centre carbon atoms of squalene, using  $[5-{}^{13}C, 5-{}^{2}H_{2}]$  mevalonic acid and found that a 12-pro-S proton of (5) is eliminated to form the 12(13) double bond of oleanolic acid (6). Conversely, the 12(13) double bond of ursolic acid (2) is formed by a 12-pro-R proton elimination from (1).<sup>6</sup> An intermediate having a group X at C-13 may be proposed to rationalize this 1,2 cis elimination but some other mechanism via the C,D- and D,E-cis-intermediate (9), followed by a 1,3-hydride shift from C-13 to C-19, is conceivable for the biosynthesis of ursene-type triterpenes. However, evidence is presented here which excludes the possible intermediacy of (9). Three 1,2-hydride shifts are required for ursolic acid (2) biosynthesis.

<sup>‡</sup> A mixture of labelled acetate (630 mg) and non-labelled acetate (1.26 g) in 9 l of medium.

Table 1.  ${}^{13}C_{-2}H$  Labelling patterns of methyl ursolate (4) and methyl oleanolate (8) from  $[2 \cdot {}^{13}C_{,2} \cdot {}^{2}H_{3}]$  acetate fed to tissue cultures of *Rabdosia japonica* Hara.<sup>a</sup>

|        | $\overbrace{^{1\Delta\delta_{C(2H)}}}^{(4)}$ |                |                | ( <b>8</b> )<br><sup>1</sup> Δδ <sub>C(2H)</sub> |                   |                | (4)          |                            |         |          |       |                    | (8)                              |                |       |
|--------|----------------------------------------------|----------------|----------------|--------------------------------------------------|-------------------|----------------|--------------|----------------------------|---------|----------|-------|--------------------|----------------------------------|----------------|-------|
|        |                                              |                |                |                                                  |                   |                |              | $^{1}\Delta\delta_{C(2H)}$ |         |          | )     |                    | <sup>1</sup> Δδ <sub>C(2H)</sub> |                |       |
| Carbon | $\delta_{C}$                                 | d1             | d <sub>2</sub> | $\delta_{C}$                                     | d1                | d <sub>2</sub> | Carbon       | δ <sub>C</sub>             | dı      | $d_2$    | ′d₃   | $\delta_{C}$       | d1                               | d <sub>2</sub> | $d_3$ |
| C-1    | 38.66                                        | -0.38<br>-0.44 | -0.82          | 38.48                                            | -0.35 -0.43       | -0.79          | C-16<br>C-17 | 24.25<br>48.09             |         |          |       | 23.10<br>46.73     |                                  |                |       |
| C-2    | 27.25                                        |                |                | 27.22                                            |                   |                | C-18         | 52.90                      | (-0.09) | ))d      |       | 41.33              | $(-0.06)^{d}$                    |                |       |
| C-3    | 78.99                                        | -0.52          |                | 78.99                                            | -0.52             |                | C-19         | 39.06                      | (−0.11  | )a       |       | 45.91              | -0.48                            |                |       |
| C-4    | 38.74                                        |                |                | 38.76                                            |                   |                | C-20         | 38.88                      |         | <i>,</i> |       | 30.68              |                                  |                |       |
| C-5    | 55.26                                        | -0.62          |                | 55.28                                            | -0.63             |                | C-21         | 30.67                      |         |          |       | 33.81              |                                  |                |       |
| C-6    | 18.32                                        |                |                | 18.36                                            |                   |                | C-22         | 36.63                      | -0.40   | -0.80    |       | 32.41              | -0.38                            | -0.76          |       |
| C-7    | 33.00                                        | -0.39          | -0.79          | 32.71                                            | -0.36             | -0.64          | C-23         | 28.14                      | -0.31   | -0.62    |       | 28.12              | -0.31                            | -0.63          |       |
| C-8    | 39.52                                        |                |                | 39.31                                            |                   |                | C-24         | 15.60 <sup>ь</sup>         | -0.29   | -0.56    | -0.85 | 15.58 <sup>ь</sup> | c                                | c              | с     |
| C-9    | 47.58                                        | -0.51          |                | 47.67                                            | -0.51             |                | C-25         | 15.42ь                     | -0.27   | -0.54    | -0.92 | 15.30ь             | -0.28                            | -0.56          | -0.84 |
| C-10   | 36.98                                        |                |                | 37.07                                            |                   |                | C-26         | 16.91                      | -0.29   | -0.56    | -0.83 | 16.85              | -0.28                            | -0.54          | -0.85 |
| C-11   | 23.31                                        |                |                | 23.42                                            |                   |                | C-27         | 23.61                      | -0.30   | -0.59    | -0.89 | 25.95              | -0.32                            | -0.62          | -0.90 |
| C-12   | 122.36                                       |                |                | 125.54                                           |                   |                | C-28         | 177.97                     |         |          |       | 178.21             |                                  |                |       |
| C-13   | 138.13                                       | $(-0.05)^{d}$  |                | 143.77                                           | $(-0.05)^{\circ}$ | d              | C-29         | 17.02                      | -0.29   | -0.59    | -0.88 | 33.11              | с                                | c              | с     |
| C-14   | 42.01                                        |                |                | 41.67                                            |                   |                | C-30         | 21.16                      | -0.30   | -0.60    |       | 23.65              | -0.31                            | -0.62          |       |
| C-15   | 28.05                                        | -0.31 - 0.39   | -0.71          | 27.73                                            | -0.33 -0.39       | -0.70          | OMe          | 51.37                      |         |          |       | 51.41              |                                  |                |       |

<sup>a</sup> <sup>13</sup>C N.m.r. spectra were recorded on a JEOL GX-400 instrument at 100 MHz with <sup>1</sup>H and <sup>2</sup>H decoupling mode in [<sup>2</sup>H]chloroform ( $\delta_C$  77.000). Accuracy of  $\delta_C$  is  $\pm$  0.006 p.p.m. <sup>b</sup> Assignments may be reversed. <sup>c</sup> These values were not obtained because of signal overlap. <sup>d</sup>  $^{2}\Delta\delta_{C(2H)}$  values.

 $(\delta_C 52.90)$ , and C-19  $(\delta_C 39.06)$  of methyl ursolate (4) accompanying the shifted signals owing to the  $\beta$ -deuterium isotope effect (shown in parentheses in Table 1) are evidence of the 1,2-hydride shifts, 18-H from C-13, 19-H from C-18, and 20-H from C-19. This result, which agrees with a recent report,<sup>9</sup> excludes the possibility of the intermediate (9).

In oleanolic acid (6) biosynthesis, the two 1,2-hydride shifts (18-H from C-13 and 19-H from C-18) were clearly confirmed by the  $\beta$ -deuterium isotopically shifted signals on C-13 ( $\delta_{\rm C}$  143.77) and C-18 ( $\delta_{\rm C}$  41.33). A large difference was observed in the ratio of the shifted signal to the natural abundance signal between the triterpenes (4) and (8) (*ca.* 0.5) and sitosterol (*ca.* 0.1).<sup>10</sup> The amplitude of  $^{2}\Delta\delta_{\rm C(2H)}$  values induced by a deuterium atom on a secondary carbon (-0.06 p.p.m.) seems to be smaller than that on a tertiary carbon (*ca.* -0.1 p.p.m.). sp<sup>2</sup> Carbon atoms (C-13) showed -0.05 p.p.m.

The number of deuterium atoms attached directly to the <sup>13</sup>C-labelled carbon atoms was indicated by the shifted signals due to the  $\alpha$ -deuterium isotope effect ( ${}^{1}\Delta\delta_{C(2H)}$ ).<sup>8</sup> The values of  ${}^{1}\Delta\delta_{C(2H)}$  of -0.27 to -0.32 p.p.m. for methyl groups, -0.33 to -0.43 p.p.m. for methylene groups, and -0.48 to -0.63 p.p.m. for methine groups can be useful for  ${}^{13}C$  signal assignments.<sup>8</sup> The amplitude of an equatorial  ${}^{1}\Delta\delta_{C(2H)}$  shift was suggested to be smaller than that of an axial one.<sup>11</sup> Some methylene groups such as C-1 and C-15 of (4) and (8) showed two  $\alpha$ -shifted signals for d<sub>1</sub>. The smaller shift (-0.31 to -0.38 p.p.m.) indicates an equatorial deuterium atom and the larger shift (-0.39 to -0.44 p.p.m.) an axial one. According to the biogenetic mechanism as shown in (5), the deuterium atom at C-19 in (5) becomes equatorial ( $\beta$ ) in (8), but a rather large

 $\alpha$ -shift (-0.48 p.p.m.) was observed. This might be due to an unusual magnetic effect of the 12(13) double bond<sup>12</sup> which is in very close proximity to the 19 $\beta$ -H.

Received, 28th April 1986; Com. 567

## References

- 1 R. B. Woodward and K. Bloch, J. Am. Chem. Soc., 1953, 75, 2023.
- 2 (a) L. Ruzicka, Proc. Chem. Soc., 1959, 341; (b) A. Eschenmoser, L. Ruzicka, O. Jeger, and D. Arigoni, Helv. Chim. Acta, 1955, 38, 1890.
- 3 S. Seo, Y. Tomita, and K. Tori, J. Am. Chem. Soc., 1981, 103, 2075.
- 4 H. H. Rees, E. I. Mercer, and T. W. Goodwin, *Biochem. J.*, 1966, 99, 726; H. H. Rees, G. Britton, and T. W. Goodwin, *ibid.*, 1968, 106, 659.
- 5 D. H. R. Barton, G. Mellows, D. A. Widdowson, and J. J. Wright, J. Chem. Soc. (C), 1971, 1142.
- 6 S. Seo, Y. Tomita, K. Tori, and Y. Yoshimura, J. Chem. Soc., Chem. Commun., 1980, 1275.
- 7 K. Kojima, personal communication.
- 8 P. E. Hansen, Annu. Rep. NMR Spectrosc., 1983, 15, 105.
- 9 Y. Tomita, M. Arata, and Y. Ikeshiro, J. Chem. Soc., Chem. Commun., 1985, 1087.
- 10 S. Seo, U. Sankawa, H. Seto, A. Uomori, Y., Yoshimura, Y. Ebizuka, H. Noguchi, and K. Takeda, J. Chem. Soc., Chem. Commun., preceding communication.
- 11 R. Aydin, J. R. Wesener, H. Günther, R. L. Santillan, M.-E. Garibay, and P. Joseph-Nathan, J. Org. Chem., 1984, 49, 3845.
- 12 K. Tori, K. Aono, Y. Hata, R. Muneyuki, T. Tsuji, and H. Tanida, *Tetrahedron Lett.*, 1966, 9.

1143