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Strategies for the capture and transformation of carbon dioxide 

(CO2) into value-added chemicals have gained tremendous 

attention, because CO2 can be used as a nontoxic, non-

flammable, abundant, and renewable resource.1 Moreover, CO2 is 

one of the most attractive C1 building blocks to displace toxic 

reagents such as phosgene and carbon monoxide.2 Although CO2, 

as the most oxidized carbon derivative, is much less reactive, its 

application to organic synthesis has been considered one of the 

most challenging research topics. In particular, the cyclization of 

unsaturated organic molecules with CO2 is an atom-economical 

approach to produce cyclic carbonates and oxazolidinones, which 

are the essential building blocks for plastics and antibiotics, 

respectively.3 

One of the promising approaches for transforming CO2 is 

through the carboxylative cyclization of propargylic amines with 

CO2 to provide 2-oxazolidinones.4 Recently, various 

investigations of the carboxylative cyclization of propargylic 

amines with CO2 catalyzed by metal nanoclusters5 and by 

organometallic complexes of transition metals such as 

ruthenium,6 silver,7 and gold8 have been conducted. It is also 

reported that a number of metal-free catalysts, such as 

superbases,9 N-heterocyclic carbenes,10 triethanolamine,11 and 

ammonium fluoride,12 have been developed for this reaction. In 

addition, in order to easily recover a catalyst by filtration after the 

reaction, the use of silica (SiO2)-bound catalytic active species, 

such as a ruthenium complex and organic bases, has been 

reported.13 We report herein that silica can be used alone to 

catalyze the carboxylative cyclization of propargylic amines with 

CO2 to provide 2-oxazolidinones.14 In a screening of various 

silicas as catalysts, MCM-41 was found to be the most effective 

catalyst for the carboxylative cyclization of propargylic amines 

with CO2. Further, it was found that the MCM-41 catalyst could 

be recovered by filtration and reused without deactivation. 

We have examined the carboxylative cyclization of a 

propargylic amine 1a with CO2 to provide a 2-oxazolidinone 2a 

through the use of various solid catalysts, as shown in Table 1.15 

First, when a toluene solution of propargylic amine 1a (0.4 

mmol) was stirred at 120 ºC for 5 h in a sealed autoclave under 

3.0 MPa of CO2 using Q-6 (80 mg), an amorphous silica, as a 

catalyst, the corresponding 2-oxazolidinone 2a was obtained in a 

58% chemical yield (Table 1, entry 1). Next, by employing 

mesoporous silicas, such as SBA-15 and MCM-41, as catalysts, it 

was found that MCM-41 afforded the highest chemical yield of 

2a (77%; Table 1, entry 3).16 In contrast, neither basic alumina 

nor acidic alumina exhibited catalytic activities (Table 1, entries 

4 and 5). When hydrotalcite was used as a catalyst, 2a was 

obtained in a low chemical yield (24%; Table 1, entry 6). When 

no catalyst was used, 2a was not obtained (Table 1, entry 7). 

These results indicate that the carboxylative cyclization of 1a 

with CO2 in entries 1–3 in Table 1 could be catalyzed by silica. 

 

Table 1. Carboxylative cyclization of the propargylic amine 
1a with CO2 using various solid catalysts.a 

 

Entry Solid catalyst Yield (%)b 

1 Silica (Q-6) 58 
2 Silica (SBA-15) 66 
3 Silica (MCM-41) 77 
4 Basic alumina 1 
5 Acidic alumina 0 
6 Hydrotalcite 24 
7 none 0 
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By employing only silica as a catalyst, the carboxylative cyclization of a propargylic amine with 

CO2 proceeded to afford the corresponding 2-oxazolidinone. MCM-41, which was a mesoporous 

silica, was found to be the most effective silica for this purpose. Moreover, after the reaction, the 

MCM-41 catalyst was recovered by filtration and could be reused over ten times without 

deactivation.  
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a Reaction conditions: 1a (0.4 mmol), solid catalyst (80 mg), toluene (1 mL; 

0.4 M based on 1a), carried out in a sealed autoclave at 120 ºC for 5 h under 
pressurized CO2 (3.0 MPa). 
b Determined by the integration of 1H NMR absorptions with reference to an 
internal standard. 

 

Encouraged by these results, we subsequently optimized the 

amount of catalyst, as shown in Table 2. By employing various 

amounts of MCM-41 as a catalyst, the carboxylative cyclization 

of a propargylic amine 1a with CO2 was carried out under the 

same reaction conditions and scale as shown in Table 1. As a 

result, when 40 mg of MCM-41 was used as a catalyst, the 

corresponding 2-oxazolidinone 2a was obtained in the highest 

chemical yield (84%; Table 2, entry 2). 

 

 

Table 2. Optimization of the amount of the MCM-41 catalyst 
in carboxylative cyclization of the propargylic amine 1a with 
CO2.a 

 

Entry MCM-41 Yield (%)b 

1 80 mg 77 
2 40 mg 84 
3 20 mg 77 

a The reaction conditions and scale were identical to those in Table 1. 

b Determined by the integration of 1H NMR absorptions with reference to an 
internal standard. 

 

 

Next, by employing the optimized amount of the MCM-41 

catalyst, we examined two of the reaction conditions—namely, 

the CO2 pressure and reaction temperature—as shown in Table 3. 

We first performed the carboxylative cyclization of the 

propargylic amine 1a in toluene at 120 ºC for 3 h under various 

CO2 pressures (1.0–5.0 MPa). When the reaction was carried out 

under CO2 pressure of 5.0 MPa, the 2-oxazolidinone 2a was 

obtained in the highest chemical yield (70%; Table 3, entry 4). 

We then examined the reaction temperature under CO2 pressure 

of 5.0 MPa. When the reaction was carried out at 100 ºC, the 

chemical yield of 2a was very low (4%; Table 3, entry 5). On the 

other hand, even when the reaction was carried out at 140 ºC, the 

chemical yield of 2a was almost the same as that at 120 ºC (71%; 

Table 3, entry 6). 

 

 

Table 3. Carboxylative cyclization of the propargylic amine 
1a with CO2 under various reaction conditions.a 

 

 

Entry CO2 (MPa) Temp. (ºC) Yield (%)b 

1 1.0 120 42 
2 3.0 120 55 
3 4.0 120 64 
4 5.0 120 70 
5 5.0 100 4 
6 5.0 140 71 

a Reaction conditions: 1a (0.4 mmol), MCM-41 (40 mg), toluene (1 mL; 0.4 
M based on 1a), carried out in a sealed autoclave for 3 h under the indicated 
reaction conditions. 
b Determined by the integration of 1H NMR absorptions with reference to an 
internal standard. 

 

 

We then performed the MCM-41-catalyzed carboxylative 

cyclization of various propargylic amines 1 under CO2 pressure 

of 5.0 MPa according to the reaction conditions indicated in 

Table 4. By carrying out the carboxylative cyclization of 1a at 

120 ºC for 10 h, the 2-oxazolidinone 2a was obtained in an 84% 

chemical yield (Table 4, entry 1). In the case of the cyclization of 

N-methyl propargylic amine 1b, which has a low boiling point, 

we used a sealed autoclave containing the reaction mixture 

pressurized with CO2 of 5.0 MPa at room temperature before 

heating to 110 ºC.17 As a result, the carboxylative cyclization of 

1b with CO2 proceeded at 110 ºC to provide the corresponding 2-

oxazolidinone 2b in a 57% chemical yield (Table 4, entry 2). 

Even by the introduction of a methyl group at R2 in 1, the 

carboxylative cyclization of the propargylic amine 1c proceeded 

to provide the corresponding 2-oxazolidinone 2c in a 93% 

chemical yield by carrying out the reaction at 140 ºC for 20 h 

(Table 4, entry 3). In contrast, by the introduction of a phenyl 

group at R1 in 1, the carboxylative cyclization of 1d gave a poor 

chemical yield (10%; Table 4, entry 4).18 On the other hand, 

when a trifluoromethyl or a cyano group was introduced at the 

phenyl group in R1, the chemical yields of the corresponding 2-

oxazolidinones 2e and 2f slightly increased due to the high 

reactivity of the carbon–carbon triple bond owing to the 

introduction of electron-withdrawing groups10a,12a (46% and 33%;  

 

 

Table 4. Carboxylative cyclization of various propargylic 
amines 1 for the synthesis of 2.a 

 

Entry Substrate 
 Temp. 

(ºC) 
Time 
(h) 

Yield 
(%)b 

1 

 

1a 120 10 84 (84)c 

2d 

 

1b 110 10 57 (56)c 

3 
 

1c 140 20 93 (91)c 

4 
 

1d 120 4 10 

5 
 

1e 120 10 46 

6 
 

1f 100 5 33 

7 

 

1g 140 20 6 

8d 

 

1h 140 20 0 

a Reaction conditions: 1 (0.4 mmol), MCM-41 (40 mg), toluene (1 mL; 0.4 M 
based on 1), carried out in a sealed autoclave under the conditions indicated 
in the table. 

b Determined by the integration of 1H NMR absorptions with reference to an 
internal standard. 
c Isolated yield. Purified with silica gel column chromatography (hexane–
ethyl acetate as eluents).  
d Pressurized with CO2 of 5.0 MPa at room temperature before heating to the 
indicated temperature. 
 

 

 

 

 

 

 

 

 

Figure 1. Structure of 2-oxazolones 3e and 3f. 
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Table 5. Catalyst recycling in carboxylative cyclization of the propargylic amine 1b with CO2.a,b 

 
 

No. of run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Yield (%)c 68 74 78 79 81 80 81 81 79 80 81 80 78 77 76 
a Reaction conditions: 1b (4 mmol), MCM-41 (400 mg), toluene (5 mL; 0.8 M based on 1b), carried out at 110 ºC in a sealed autoclave for 10 h under 
pressurized CO2. 
b Pressurized with CO2 of 5.0 MPa at room temperature before heating to 110 ºC. 
c Determined by the integration of 1H NMR absorptions with reference to an internal standard. 
 
 

Table 4, entries 5 and 6, respectively). Only in these cases, the 

corresponding 2-oxazolones 3e and 3f were also obtained in 

slight chemical yields, respectively (Figure 1; 3e: 4%, 3f: 2%). 2-

Oxazolones 3e and 3f appeared to be obtained by the 

tautomerization of the generated 2-oxazolidinones 2e and 2f, 

respectively.10a,19 When we introduced the methyl group in R1, 

the corresponding 2-oxazolidinone 2g was obtained in a low 

chemical yield (6%, Table 4, entry 7).20 When a primary amine 

1h was used as a substrate, the corresponding 2-oxazolidinone 2h 

was not obtained (Table 4, entry 8). 

Finally, the reusability of the MCM-41 catalyst was examined 

by use of the N-methyl propargylic amine 1b, as shown in Table 

5.21 In this experiment, it was found that the MCM-41 catalyst 

was recovered by filtration of the reaction mixture, and could be 

reused over ten times without deactivation to afford the 

corresponding 2-oxazolidinone 2b in a fair chemical yield. 

Figure 2 shows a proposed mechanism for the silica-catalyzed 

carboxylative cyclization of the propargylic amine 1. First, the 

propargylic amine 1 reacts with CO2 to form the corresponding 

carbamic acid 4 in situ.8g,12b It is considered that the thus-obtained 

carbamic acid 4 was activated by silica-surface OH– interaction 

with the carbon–carbon triple bond, as shown in 5.22 Then, the 

corresponding 2-oxazolidinone 2 was provided with the 

regeneration of silica. 
 

 

 
Figure 2. Proposed mechanism of the silica-catalyzed 
carboxylative cyclization of the propargylic amine 1. 

 

 

In summary, by employing only silica as a catalyst, the 

carboxylative cyclization of propargylic amines with CO2 

proceeded to afford the corresponding 2-oxazolidinones. MCM-

41, which was a mesoporous silica, was the most effective 

catalyst for the reaction, providing a 2-oxazolidinone derivative 

in a maximum chemical yield of 93%. Moreover, after the 

reaction, the MCM-41 catalyst was recovered by filtration and 

could be reused over ten times without deactivation. We are 

currently trying to apply a silica catalyst to other chemical 

transformations of CO2. The results will be reported in due 

course. 
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Highlights 

• Silica catalyzed the carboxylative cyclization of a 

propargylic amine with CO2. 

• MCM-41 was the most effective silica catalyst for 

the reaction. 

• The MCM-41catalyst was recovered by filtration 

and could be reused over ten times. 
 


