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Herein we report an efficient, tunable system for electrochemical reduction of ketones and phthalimides at room temperature without 
the need for stoichiometric external reductants. By utilizing NaN3 as the electrolyte and graphite felt as both the cathode and the anode, 
we were able to selectively reduce the carbonyl groups of the substrates to alcohols, pinacols, or methylene groups by judiciously 
choosing the solvent and an acidic additive. The reaction conditions were compatible with a diverse array of functional groups, and 
phthalimides could undergo one-pot reductive cyclization to afford products with indolizidine scaffolds. Mechanistic studies showed 
that the reactions involved electron, proton, and hydrogen atom transfers. Importantly, an N3·/HN3 cycle operated as a hydrogen atom 
shuttle, which was critical for reduction of the carbonyl groups to methylene groups. 
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Background and Originality Content 

The reduction of carbonyl groups is undoubtedly one of the 
most central organic transformations, and alcohols, pinacols, 
and alkanes generated by these reactions are essential build-
ing blocks for the synthesis of drugs and other biologically ac-
tive molecules.1 Carbonyl groups are generally reduced with 
hydrogen gas, metal hydrides, or other strongly reducing reac-
tive metals.2, 3 Despite the benefits of these well-established 
methods, some of them require stoichiometric flammable re-
agents, special equipment, or complicated work-up proce-
dures, features that limit their substrate scope and their utility 
for large-scale applications.1–4 Therefore, new methods that 
are versatile and environmentally and user friendly are in de-
mand. 

Recently, electrochemical methods have emerged as an attrac-
tive option for organic synthesis because they are operationally 
safe, do not require stoichiometric external reductants or oxidants, 
and are highly atom economical.5, 6 Direct reduction of carbonyl 
compounds via electrolysis in the absence of stoichiometric reduct-
ants has been reported,7–9 however, most of transformations in 
these reports involve metal electrodes, which usually serve as sac-
rificial anodes (Scheme 1A). In 2019, Cheng and co-workers devel-
oped a method for electrochemical hydrogenation of ketones to af-
ford alcohols or diaryl methanes by using reductive gas ammonia 
as the hydrogen source with graphite felt electrodes; the anodic re-
action involves oxidation of an amide anion (Scheme 1B).10 Herein 
we present our investigation of electrochemical reduction of car-
bonyl compounds with graphite felt electrodes and NaN3 as an elec-
trolyte. We discovered that carbonyl reduction, in a certain degree, 
could be chemoselectively controlled to generate alcohols, pinacols, 
or methylene groups by adjustment of the solvent and acidic addi-
tives without any reductive gases such as ammonia and hydrogen 
(Scheme 1C). 

 
Scheme 1  Electrochemical reduction of carbonyl compounds.  
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*DMQ·2BF4 = dimethylquininium tetrafluoroborate; GF= graphite felt. 

Results and Discussion 

Results  
We began our studies with diphenyl methanone (1) as a model 

substrate with graphite felt as electrodes in an undivided cell (Table 
1). For our initial attempts, we tested the inexpensive and readily 
available electrolyte NaCl, which functioned both to conduct elec-
tric current and to finish the anodic oxidation; in addition, we used 
acetic acid (AcOH) to increase the reactivity of the carbonyl group. 
Preliminary results indicated that constant-current electrolysis (20 
mA) of 1 for 12 h with 1.5 equiv. of NaCl and 20 equiv. of AcOH in 
CH3CN and H2O gave a 53% yield of alcohol 1o, along with a small 
amount of pinacol 1p (entry 1). Encouraged by this result, we set 
about to optimize the reaction conditions. First, screening of differ-
ent sodium salt electrolytes revealed that NaN3 had better solubil-
ity than other sodium salts and gave the highest yield of 1o.11 Next, 
we investigated the influence of protic acids on the reaction out-
come. Interestingly, increasing the amount of AcOH increased both 
the overall yield and the 1o/1p ratio (entries 2–6); specifically, the 
use of 100 equiv. of AcOH resulted in a 70% isolated yield of 1o (78% 
by NMR spectroscopy) (entry 6). Other carboxylic acids were much 
less effective (entries 7 and 8), and mineral acids provided low 
yields of both reduction products (entry 9).  

Table 1  Optimization of conditions for reduction of ketone 1. 

1

Ph Ph

O

Ph

HO
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acid (x equiv)
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H
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Ph

HO OH

Ph
PhPh
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alcohol (o)
1o

pinacol (p)
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Entry Electrolyte / Acid 

(equiv.) 

Yield of 

1o (%)a 

Yield of 

1p (%)a 

1b NaCl / AcOH (20) 53 13 

2 NaN3 / AcOH (20) 56 12 

3 NaN3 / AcOH (40) 57 12 

4 NaN3 / AcOH (60) 64 10 

5 NaN3 / AcOH (80) 69 10 

6 NaN3 / AcOH (100) 78 (70c) <10 

7 NaN3 / t-BuCO2H (20) 23 6 

8 NaN3 / i-PrCO2H (20) 26 15 

9d NaN3 /  

aq. H2SO4 or HCl (20) 

<10 <10 

10 NaN3 / HCO2H (20) <10 93 (86b) 

11 NaN3, no acid <10 <10 

12 AcOH (100), no NaN3 no electric current                 

13 NaN3 / AcOH (100), 

GF(+) / GF(−) were re-

placed with Pt(+) / Pt(−) 

28 <10 

a Reactions were carried out on a 0.5 mmol scale at room temperature (25 
oC), and yields were determined from the 1H NMR spectra of the reaction 
mixtures. GF = graphite felt. b 0.5 mL H2O was added to dissolve NaCl. c Iso-
lated yield. d The concentration of H2SO4 is 18.4 mol/L and the concentration 
of HCl is 12 mol/L. 

This latter result may be attributable to the evolution of hydrogen, 
which is kinetically favored under strongly acidic conditions. Unex-
pectedly, when 20 equiv. of formic acid (HCO2H) was used, the 
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product selectivity was reversed; that is, the pinacol product was 
favored over the alcohol (entry 10). A series of control experiments 
proved that both the acidic additive and NaN3 were necessary (en-
tries 11 and 12). Platinum electrodes were evaluated and found to 
give a low yield of the desired alcohol (entry 13). 
 
Substrate Scope. 

Selective reduction of diaryl ketones to alcohols or pinacols. We 
explored the scope of the reaction by testing some diaryl ketones 
under conditions A (for alcohols) or B (for pinacols) (Figure 1). In 
general, para- and meta-substituted diaryl ketones (2–6) could be 
selectively reduced to alcohols or pinacols in high yields under the 
corresponding reaction conditions. However, coupling of ketyl radi-
cals derived from ortho-substituted diaryl ketones was hindered by 
the steric bulk of the substituents, and thus only direct reduction 
products (alcohols) were obtained (7o and 8o). A reaction of (4-
methoxyphenyl)(phenyl)methanone gave only alcohol 9o in moder-
ate yield, an outcome that may be attributable to oxidation of the 
methoxyphenyl group. 
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air. a 20 equiv. of AcOH was used.  
Figure 1. Reduction of diaryl ketones to alcohols or pinacols.  

Selective reduction of other carbonyl compounds to alcohols. 
Additionally, various aryl alkyl ketones (10 and 11), heteroaryl aryl 
ketones (12 and 13), aryl aldehydes (14–16), and α-ketoesters (17–
21) were smoothly reduced to the corresponding alcohols under 
conditions A (Figure 2). Pyridine and thiophene rings, a benzyl 
group, halogen atoms, and esters were tolerated. Moreover, we 
were delighted to find that benzyl-protected ketoprofen (22) could 
also be reduced efficiently to the corresponding alcohol (22o). In-
terestingly, even when NaN3 was replaced with NaCl in these reac-
tions, the alcohol products were obtained in similar yields. 
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Figure 2. Selective reduction of other carbonyl compounds to alcohols.  

Selective reduction of phthalimides. Phthalimides with a variety 
of functional groups also efficiently underwent selective reduction 
under conditions A’ to afford hydroxylactams 23o, 24o, 27o, and 
28o. These results prompted us to evaluate the possibility of C–C 
bond formation via an acyl-iminium ion (Figure 3). We discovered 
that by changing the reaction medium from CH3CN/AcOH to HCO2H, 
we could obtain various pharmaceutically important indolizidine 
scaffolds by means of a one-pot reduction/cyclization of 
phthalimide derivatives with a tethered nucleophile (vinyl, aryl, or 
hydroxyl) (23c–26c)12, 13. 

Moreover, we were pleased to find that when 1:1 (v/v) 
HCO2H/AcOH was used as solvent, reactions of imides gave lac-
tams12. Specifically, electrochemical reactions of various imides 
with 1.5 equiv. of NaN3 gave the corresponding lactams (23a, 24a, 
27a, and 28a) in moderate to good yields (Figure 3). The 
phthalimide tether profoundly influenced the yield, with longer 
tethers favoring the lactam products (compare the yields of 27a and 
28a). 
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Figure 3. Selective reduction of phthalimides.  

Reduction of pyridyl aryl ketones. Interestingly, in reactions of 
phenyl pyridinyl ketones (Figure 4), the location of the nitrogen 
atom played a substantial role in the outcome of the reduction. Un-
der conditions A’ and D, phenyl(pyridin-4-yl)methanone mainly 
gave the corresponding diaryl methanes, whereas phenyl(pyridin-
2-yl)methanone and phenyl(pyridin-3-yl)methanone gave the cor-
responding alcohols; these results indicate that product selectivity 
was controlled by the substrate itself rather than by the reaction 
conditions. Finally, we found that the reduction of phenyl(pyridin-
2-yl)methanone to alcohol could easily be carried out on a gram 
scale.11 
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Figure 4. Reduction of pyridyl aryl ketones.  

Mechanistic Studies.  
To determine the mechanism of these reduction reactions, we 

carried out a series of control experiments (Scheme 2). First, when 
reduction of diphenyl ketone 1 was conducted with deuterated ace-
tic acid (D4-HOAc), alcohol 1o’ (99% deuterium incorporation) was 
isolated in 65% yield (Scheme 2A),14 indicating that AcOH was the 
hydrogen source. Moreover, reaction of radical clock substrate 33 
gave ring-opening product 33x in 28% isolated yield, suggesting that 
a benzyl radical was involved in the reaction (Scheme 2B). In addi-
tion, cathodic cyclic voltammetry analysis of a mixture of 1 and 
AcOH or HCO2H revealed that the absolute value of the reduction 
potential of the diphenyl ketone was lower under weakly acidic con-
ditions than in CH3CN alone; the reduction peak of 1 was observed 
at −1.3 V in CH3CN (vs SCE [saturated calomel electrode]), whereas 
the reduction peak in CH3CN/AcOH was at −1.1 V and that in 
CH3CN/HCO2H) was at −1.0 V (Scheme 2C).14 

On the basis of the results of our mechanistic studies, we pro-
pose the mechanism outlined in Scheme 2D. First, the carbonyl 
group is protonated and then reduced by a single electron at the 
cathode to generate radical II. This species can either be further re-
duced to alcohol V (path A) or undergo radical dimerization to fur-
nish pinacol product III (path B). In the presence of AcOH, the re-
duction of II occurs via either a proton/electron transfer sequence 
or by transfer of a hydrogen atom from HN3 generated in situ.15 Our 
initial screening of sodium salt electrolytes demonstrated that 
NaN3 can be replaced with NaCl for the reduction of ketones to al-
cohols, indicating radical II is more likely to undergo proton/elec-
tron transfer to give alcohol V rather than hydrogen transfer with 
HN3. When HCO2H is present in the medium, it may serve as the 
more reactive reductant, preventing further reduction of II, thus re-
sulting in the formation of dimerization products. For reduction to 
methylene compounds, we envisaged that at high proton concen-
trations, carbocation VI is generated by protonation and subse-
quent dehydration. Carbocation VI can be reduced by an electron 
from the cathode to produce radical VII, which may undergo a hy-
drogen atom transfer reaction with HN3 to generate VIII and N3·. 
N3· Subsequent hydrogen abstraction from HCO2H provides radical 
IX, which undergoes anodic oxidation to give CO2 and a proton.16 
With HN3 as a hydrogen atom donor and N3· as a hydrogen atom 
abstractor, the N3·/HN3 cycle operates as a hydrogen atom shut-
tle,15 while HCO2H serves as the terminal oxidant. In this process, 
NaN3 is a necessary reagent. 
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Scheme 2. Mechanistic studies.  
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a In the cyclic voltammetry experiment, the concentrations of 1 and the acid 

(AcOH or HCO2H) were 0.02 M. SCE = saturated calomel electrode. 

Conclusions 

In summary, we have developed a system for electrochemical 
reduction of carbonyl compounds without the need for a catalyst or 
a stoichiometric external reductant. By using NaN3 as an electrolyte 
and graphite felt as both the cathode and the anode, we success-
fully reduced various carbonyl compounds to the corresponding al-
cohols, pinacols, or methylene compounds by judiciously choosing 
the solvent and acidic additive. These reactions were efficient, 
chemoselective, and compatible with various functional groups. 
Moreover, one-pot reductive cyclization of phthalimide substrates 

provided a valuable tool for direct construction of indolizidine scaf-
folds, which are found in natural products and drug molecules. Fur-
ther mechanism studies of this chemistry and exploration of its ap-
plications for pharmaceutical synthesis are ongoing in our laborato-
ries. 

Experimental 

The flask was equipped with two rubber plugs, graphite felt (2 
cm×1 cm×0.5 cm) as anode and cathode. Two electrodes were sep-
arated with a Teflon film. The graphite felt anode and cathode at-
tached to a platinum wire. A Teflon wire tied around two electrodes. 
Substrate (0.5 mmol, 1.0 equiv) and acid (AcOH or HCOOH) (10.0 
mmol, 20.0 equiv) were first dispersed CH3CN (4.5 mL) stirred for 5 
min at room temperature. NaN3 (49.0 mg, 0.75 mmol, 1.5 equiv) 
was then added. The reaction mixture was stirred and electrolyzed 
with a constant current of 20 mA at room temperature (25 oC). After 
the reaction completed as monitored with TLC, the solvents were 
removed in vacuo and the residue was purified by silica gel flash 
chromatography to give the desired products. 
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