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Abstract: Various aryl-substituted 1,4-benzoquinone derivatives
have been prepared via a palladium-catalyzed decarboxylative
cross-coupling of electron-rich aromatic acids with 1,4-benzo-
quinones.
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The development of direct carbon–carbon bond formation
that uses safe, environmentally benign, and low-cost start-
ing materials remains a critical challenge for modern syn-
thetic organic chemists. Recently, some efficient metal-
catalyzed decarboxylative systems have been explored for
C–C bond couplings by using simple carboxylic acids as
the active coupling partners.1 These interesting studies
show that acids can replace both halides and organometal-
lic reagents. An efficient Heck-type reaction which was
believed to be a milestone in palladium-catalyzed decar-
boxylative cross-coupling using ortho-substituted arene
carboxylates alternative to aromatic halides with olefins
was developed by Myers et al.2 On the other hand, carbox-
ylic acids are proved to be efficient surrogates to organo-
metallic reagents in Suzuki–Miyaura coupling reaction.3

Although most of these reactions suffer from limited sub-
strate scope, relatively high additive loading, and high re-
action temperature, it remains very attractive since it
would be safe, convenience, and high selectivities. We
wish to report herein a palladium-catalyzed direct decar-
boxylative coupling of carboxylic acids with 1,4-benzo-
quinone to give various aryl-substituted benzoquinones.
Substituted 1,4-benzoquinone derivatives show versatile
biological activities.4 In the past decades, many methods
have been explored to produce these useful structures.5

However, most of these methods suffer from unstable
starting materials and relatively low selectivities. Taking
advantage of safety, low-cost, and commercial availabili-
ty of carboxylic acids, we successfully accomplished a de-
carboxylative cross-coupling procedure by using arene
carboxylates as the coupling substrates (Scheme 1). To
the best of our knowledge, this is the first example of Pd-
catalyzed synthesis of aryl-substituted benzoquinones via
a direct decarboxylative coupling reaction by using aro-
matic acids and 1,4-benzoquinone.

Scheme 1 Synthesis of aryl-substituted 1,4-benzoquinones using
arene carboxylates and 1,4-benzoquinone

As the initial research, we select 2,4,5-trimethoxybenzoic
acid and 1,4-benzoquinone as standard substrates to opti-
mize suitable conditions for this reaction (Table 1). The
desired decarboxylative coupling product was obtained in
37% yield using 20 mol% of Pd(O2CCF3)2 and 3 equiva-
lents of Ag2CO3 at 120 °C in a mixed solution of 5%
DMSO–DMF (Table 1, entry 1). Interestingly, the isolat-
ed yield of the product increased to 72% by using 20
mol% of Pd(OAc)2 as catalyst (Table 1, entry 2). Howev-
er, the yield was not improved by using other palladium
catalysts (Table 1, entries 3–5) and other additives
(Table 1, entries 6–8). Further investigation of solvent ef-
fect showed that DMF is a more effective solvent
(Table 1, entries 9–12). Decrease of the catalyst and addi-
tive dosage was less efficient (Table 1, entries 13–16). In
the present Pd(II)-catalyzed decarboxylative C–C bond
formation, excess amount of Ag2CO3 was required. It acts
not only as an oxidant which is believed to reoxidize Pd(0)
to Pd(II), but also as a base which might react with car-
boxylic acid to form ArCOOAg followed by transmetala-
tion with Pd(OAc)2(DMSO)2. Other bases such as
Na2CO3, K2CO3, and Cs2CO3 cannot replace the role of
Ag2CO3.

It is seen from Table 2 that aromatic acids bearing elec-
tron-donating groups gave moderate to good yields of the
desired products (Table 2, entries 1–5).6 However, 2,3,4-
trimethoxybenzoic acid only gave 28% yield (Table 2, en-
try 6), it might be attributed to buttressing effect of the
vicinal methoxyl groups. 2,4,6-Trimethyl benzoic acid
gave 43% yield (Table 2, entry 7). The yield of the prod-
uct decreased as the acid bearing an electron-withdrawing
group. For example, 2,6-dimethoxy-3-bromobenzoic acid
and 2-methoxyl-4-amino-5-chlorobenzoic acid gave 36%
and 31% yields of the corresponding products, respective-
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ly (Table 2, entries 8 and 9). It is noteworthy that some
heterocyclic acids also gave the desired products in 34%
to 52% yields (Table 2, entries 10–12). On the other hand,
1,4-naphthoquinone and some substituted benzoquinones
were investigated as substrates for cross-coupling of aro-
matic acids under the typical conditions (Table 2). Vari-
ous aryl-substituted 1,4-naphthoquinones were obtained
in moderate yields by using electron-rich benzoic acids
and 1,4-naphthoquinone (Table 2, entries 13–16). It is
hard to evaluate the reactivity between 2,4,6-trimethoxyl-
benzoic acid and 2,4,6-trimethylbenzoic acid in this sys-
tem. For arylation of 1,4-benzoquinone, the former
showed higher reactivity than the later (entries 2 and 7),
nevertheless in the case of 1,4-naphthoquinone, 2,4,6-tri-
methoxybenzoic acid showed lower reactivity than 2,4,6-
trimethylbenzoic acid (entries 15 and 16). 2-Methyl-1,4-
benzoquinone and 2-bromo-1,4-benzoquinone gave a
mixture of 5- and 6-aryl-substituted benzoquinones in
moderate yields (entries 17–19).5 No products were ob-
tained using more sterically hindered 2,6-dimethyl 1,4-
benzoquinone (entry 20). Many other experiments show
that at least one electron-donating ortho-positioned group
in the acid is necessary for this reaction. In addition, the
steric effect of benzoquinones is obvious but the electron-
ic effect is not clear which is just opposite to carboxylic
acids.

A possible mechanism of this Pd(II)-catalyzed decarbox-
ylative Heck-type cross-coupling is proposed as followed.
Decarboxylation of the acid which might be catalyzed by
silver(I) salt7 occurs to form an arylsilver intermediate,
which is then transmetalated to give an arylpalladium(II)
intermediate followed by Heck addition to benzoquinone,
and b-hydride elimination gives the C–C bond-coupling
product.

Table 1 Optimization of the Typical Reaction Conditionsa

Entry Catalyst Solvent Additive Yield (%)b

1 Pd(TFA)2 DMF Ag2CO3 37

2 Pd(OAc)2 DMF Ag2CO3 72

3 PdCl2 DMF Ag2CO3 53

4 Pd(PPh3)2Cl2 DMF Ag2CO3 35

5 Pd(PPh3)4 DMF Ag2CO3 44

6 Pd(OAc)2 DMF AgOAc 44

7 Pd(OAc)2 DMF Cu(OAc)2 22

8 Pd(OAc)2 DMF Cu2(OH)2CO3 53

9 Pd(OAc)2 benzene Ag2CO3 35

10 Pd(OAc)2 toluene Ag2CO3 38

11 Pd(OAc)2 DMAc Ag2CO3 46

12 Pd(OAc)2 diglymed Ag2CO3 53

13e Pd(OAc)2 DMF Ag2CO3 53

14f Pd(OAc)2 DMF Ag2CO3 47

15g Pd(OAc)2 DMF Ag2CO3 36

16h Pd(OAc)2 DMF Ag2CO3 22

a Reaction conditions: 2,4,5-trimethoxybenzoic acid (0.2 mmol), 1,4-
benzoquinone (0.3 mmol), additive (0.6 mmol), catalyst (0.04 mmol), 
DMSO (0.5 mL) in solvent (10 mL), 120 °C, 3 h, unless otherwise 
specified.
b Isolated yields.
c DMA = N,N-dimethylacetamide.
d Diglyme = 2-methoxyethyl ether.
e Ag2CO3 (0.4 mmol).
f Ag2CO3 (0.2 mmol).
g Pd(OAc)2 (0.02 mmol).
h Pd(OAc)2 (0.01 mmol).
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3 55

4 71

5 44

6 28

7 43

8 36

9 31

10 34

11 52

Table 2 Synthesis of Aryl-Substituted 1,4-Benzoquinone Using Carboxylic Acids with 1,4-Benzoquinonea  (continued)

Entry Benzoquinone Product Yield (%)b
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12 39

13 63

14 41

15 49

16 55

17

(1:1)

68

18

(1:1)

55

19

(1:1)

41

20 0

a Reaction conditions: acid (0.2 mmol), 1, 4-benzoquinone (0.3 mmol), Ag2CO3 (0.6 mmol), Pd(OAc)2 (0.04 mmol), DMSO (0.5 mL) in DMF 
(10 mL), 120 °C, 3 h, unless otherwise specified.
b Isolated yield.

Table 2 Synthesis of Aryl-Substituted 1,4-Benzoquinone Using Carboxylic Acids with 1,4-Benzoquinonea  (continued)

Entry Benzoquinone Product Yield (%)b
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In summary, this work demonstrates a palladium(II)-cata-
lyzed decarboxylative cross-coupling method to prepare
aryl-substituted 1,4-benzoquinone derivatives by using
electron-rich arene carboxylates and 1,4-benzoquinones.
Although electron-rich acid is necessary and hindered
benzoquinone is not effective, carboxylic acids involving
heterocyclic carboxylic acids as substrates, direct cou-
pling with benzoquinone, and short reaction time makes
this procedure attractive. Further investigation including
more efficient catalytic systems and expansion of the sub-
strate scope is under way in our laboratory.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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