[Fe(F₂₀TPP)Cl] catalyzed intramolecular C–N bond formation for alkaloid synthesis using aryl azides as nitrogen source[†]

Yungen Liu, Jinhu Wei and Chi-Ming Che*

Received 10th June 2010, Accepted 23rd July 2010 DOI: 10.1039/c0cc01825b

The syntheses of alkaloids including indoles, indolines, tetrahydroquinolines, dihydroquinazolinones and quinazolinones have been accomplished in moderate to excellent yields *via* $[Fe(F_{20}TPP)Cl]$ catalyzed intramolecular C–N bond formation using aryl azides as nitrogen source.

Transition metal mediated nitrene insertion into sp^2 and sp^3 C–H bonds is an appealing methodology for C–N bond formation,¹ and a number of metal catalysts such as those of Mn, Ru, Co, Cu, Ag and Au have been reported to display potent activity toward this type of C–N bond formation reactions.^{2,3} An important development in this endeavour is the introduction of dirhodium(II, II) complexes as catalysts.⁴ However, due to the low natural abundance of rhodium on earth, there is a surge of interest to develop inexpensive and biocompatible metal complexes as alternatives to dirhodium(II, II) catalysts.

Alkaloids are a family of nitrogen atom containing natural products with active pharmaceutical properties.⁵ Nitrene transfer and insertion reactions for the formation of C–N bonds can be used for preparing alkaloids. For example, Du Bois and co-workers reported the synthesis of (–)-tetrodotoxin through intramolecular nitrene insertion into C–H bonds catalyzed by dirhodium(II, II) complex.^{4a} Driver and co-workers reported the preparation of indole and indoline compounds using rhodium and iridium complexes as catalysts.⁶ Recently, there has been a growing interest in developing iron catalysts for the construction of C–N bonds.⁷

In recent work, we found that $[Fe(F_{20}TPP)Cl] (H_2F_{20}TPP = meso-tetrakis(pentafluorophenyl)porphyrin) is an effective catalyst for aziridination of alkenes, sulfimidation of both alkyl and aryl sulfides, allylic amination of <math>\alpha$ -methyl styrenes and amination of saturated C–H bonds using sulfonyl and aryl azides as the nitrogen source.⁸ Herein we report that $[Fe(F_{20}TPP)Cl]$ is an effective catalyst for preparing alkaloids including indoles, indolines, tetrahydroquinolines, dihydroquinazolinones and quinazolinones *via* intramolecular amination of sp² and sp³ C–H bonds with aryl azides as the nitrogen source.

At the outset, indole formation was selected as the model reaction (Scheme 1). With $[Fe(F_{20}TPP)Cl]$ as catalyst, substituted methyl α -azido-cinnamates 1 including the ones with electron-withdrawing or electron-donating substituents gave indoles 2 in 85–95% yields (9 examples, see the Supporting Information) and with complete azide consumption. The results

Scheme 1 Indole formation catalyzed by [Fe(F₂₀TPP)Cl].

are comparable to those reported by Driver wherein dirhodium(II, II) catalyst was employed.^{6a} On the other hand, the indole moiety can also be formed by insertion of aryl nitrene into the α -position of cinnamates (Table 1). With [Fe(F₂₀TPP)Cl] as catalyst, all of the *ortho*-azido-cinnamates **3** gave the corresponding indoles **2** in 86–91% yields (7 examples) and with complete azide consumption.

Next, the syntheses of indolines 8, 10 and tetrahydroquinolines 9, 11 via direct amination of saturated benzylic C-H bonds were studied (Table 2). With [Fe(F₂₀TPP)Cl] as catalyst, all of these four substrates 4a, 4b and 5a, 5b gave the corresponding indolines 8 and tetrahydroquinolines 9 in good yields and with complete azide consumption (Table 2, entries 1-4). However, when compounds 6a and 6b were used as the substrates, 2-phenyl indoles 12a and 12b were obtained (entries 5, 6). Even after protection of the OH group by methylation, compound 6c still gave 2-phenyl indole (12a) as the major product (entry 7). Compound 6d gave 3-methoxy indoline 10d (cis: trans = 1: 0.58) in 75% yield with complete azide consumption (entry 8). Interestingly, the OH group in compounds 7a-7d could tolerate the reaction conditions and 2-phenyl-3hydroxy tetrahydroquinolines 11a-11d were obtained in good yields with moderate diastereoselectivities (entries 9-12).

The syntheses of dihydroquinazolinones 14 (63-83% yields) were achieved from ortho-azidobenzamide derivatives 13 via direct amination of saturated C-H bonds (Table 3). With [Fe(F₂₀TPP)Cl] as catalyst, amination of benzylic C-H bonds of dibenzyl amine 13a and isoindoline 13b gave the corresponding dihydroquinazolinones 14a and 14b in good yields (Table 3, entries 1, 2). Amination of tetrahydroisoquinoline 13c (Table 3, entry 3) gave 14c in moderate yield and quinazolinone 15c was detected as a minor product. Importantly, the intramolecular amination at the 2° C-H bonds of piperidine 13d, pyrrolidine 13e, and diethyl amine 13f have been accomplished to give dihydroquinazolinones 14d-f in moderate yields with quinazolinones 15d-f as the minor products, respectively (Table 3, entries 4–6). Even the insertion at 1° C-H bonds of dimethylamine 13g could proceed to give 14g in moderate yield with 15g as a minor product (Table 3, entry 7). Amination at the 3° C-H bonds of isopropylamine 13h proceeded smoothly to give the product 14h in 71% yield (Table 3, entry 8).

The amination of sp^2 C–H bonds catalyzed by [Fe(F₂₀TPP)Cl] (Scheme 1 and Table 1) possibly involves

Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, China. E-mail: cmche@hku.hk; Fax: 852 2857 1586 † Electronic supplementary information (ESI) available: Experimental procedures and compound characterization data. See DOI: 10.1039/ c0cc01825b

 Table 1
 Indole formation catalyzed by [Fe(F₂₀TPP)Cl]^a

$R \xrightarrow{f_1} M_3 \xrightarrow{f_2} M_3 \xrightarrow{f_3a \cdot g} \xrightarrow{[Fe(F_{20}TPP)CI], 2 \mod N} R \xrightarrow{f_1} M_4 \xrightarrow{f_2} M_4 \xrightarrow{f_3a \cdot g} M_4 \xrightarrow{f_1} M_4 \xrightarrow{f_2} M_4 \xrightarrow{f_2} M_4 \xrightarrow{f_3} $							
Entry	Substrate	Product	Time/h	Yield (%) ^t			
1	MeO MeO N ₃ 3a	MeO MeO NH 2j	16	86			
2	Of the N ₃ Sb		18	89			
3	MeO OMe	MeO OMe NH 2I	18	88			
4	OMe N ₃ 3d	OMe NH 2d	24	89			
5	F COMe N ₃ 3e	FUNH 2m	24	91			
6	CI N ₃ 3f	CI CI OMe NH 2n	24	90			
7	Br OMe	Br OMe	24	89			

^{*a*} All reactions were performed with 0.20 mmol azide, 0.004 mmol $[Fe(F_{20}TPP)Cl]$, and 60 mg 4 Å molecular sieves in 1 mL of anhydrous ClCH₂CH₂Cl under N₂. ^{*b*} Isolated yield.

iron-nitrene/imido intermediates and might proceed through mechanisms analogous to those proposed by Driver and co-workers for dirhodium-catalyzed analogues.^{6a,b} For [Fe(F₂₀TPP)Cl] catalyzed amination of sp³ C-H bonds (Tables 2 and 3), a hydrogen atom abstraction mechanism 3m,9 is proposed (Scheme 2, using substrate 6d as an example). Firstly, [Fe(F₂₀TPP)Cl] catalyzes the decomposition of aryl azide to give an iron-nitrene/imido complex A.¹⁰ Then, a benzyl radical intermediate **B** could be generated by an intramolecular hydrogen atom abstraction pathway. Formation of the C-N bond is accomplished after the proposed benzyl radical intermediate undergoes collapse and rotation/collapse processes to give a mixture of cis- and trans-isomer 10d (cis: trans = 1:0.58). In addition, a mixture of cis- and trans-10a was isolated in a ratio of $\sim 1:1$ in the course of the reaction when 6a was employed as the substrate (Scheme 3). But compound 10a is unstable and is converted to 12a under the reaction conditions.

In summary, the commercially-available and air-stable [Fe(F_{20} TPP)Cl] complex is an effective catalyst for preparing indoles, indolines, tetrahydroquinolines, dihydroquinazolinones and quinazolinones *via* intramolecular amination of sp² and sp³ C–H bonds with aryl azides as the nitrogen source.

This work was supported by the Hong Kong Research Grants Council (HKU 7007/08 and HKU/CRF/01/08), and

Table 2 Indoline and tetrahydroquinoline formation catalyzed by $[Fe(F_{20}TPP)Cl]^a$

	$R^{1} \xrightarrow{R^{2}}_{N_{3}} Ph \frac{[Fe]}{CI}$	F ₂₀ TPP)Cl], 2 mol% CH ₂ CH ₂ Cl, reflux		n Ph			
4 $R^2 = H, n = 1$ 6 $R^2 = OH, n = 1$ 8 $R^2 = H, n = 0$ 10 $R^2 = OH, n = 0$ 5 $R^2 = H, n = 2$ 7 $R^2 = OH, n = 2$ 9 $R^2 = H, n = 1$ 11 $R^2 = OH, n = 1$							
Entry	Substrate	Product	Time/h	Yield (%)			
1	Ph N ₃ 4a	8a N Ph	14	80			
2	F Ph N ₃ 4b	8b N H	14	82			
3	Ph N ₃ 5a	9a H Ph	14	79			
4	F Ph N ₃ 5b	F 9b H Ph	14	81			
5	OH Ph N ₃ 6a	12a N H	15	74			
6	F K K S Bb	F 12b N H	15	78			
7	OMe Ph N ₃ 6c	12a N H	18	76			
8	F Ph N ₃ 6d	10d N H	18	75 ^c			
9	OH Ph N ₃ 7a	11a N Ph	16	72 ^{<i>d</i>}			
10	F Ph	F 11b H Ph	16	79 ^e			
11	CI	CI 11c N H Ph	18	75 ^f			
12	Br	Br	20	73 ^g			

^{*a*} All reactions were performed with 0.20 mmol azide, 0.004 mmol [Fe(F₂₀TPP)Cl], and 60 mg 4 Å molecular sieves in 1 mL of anhydrous ClCH₂CH₂Cl under N₂. ^{*b*} Isolated yield. ^{*c*} *cis*: *trans* = 1:0.58. ^{*d*} *dr* = 1:0.38. ^{*e*} *dr* = 1:0.29. ^{*g*} *dr* = 1:0.35.

the Areas of Excellence Scheme established under the University Grants Committee of the Hong Kong Special Administrative Region, China (AoE 10/01P). **Table 3** Dihydroquinazolinone and quinazolinone formation catalyzed by $[Fe(F_{20}TPP)Cl]^a$

ĺ	$ \begin{array}{c} $	TPP)CI], 2 r ₂ CH ₂ CI, reflu	$\xrightarrow{\text{nol}\%}_{\text{Jx}} \qquad $	+ 15
Entry	Substrate	Time/h	14 (yield %) ^b	15 (yield %) ^b
1	13a	18	U 14a H N Ph (83))
2		18)
3	$\overbrace{13c}^{\bigcirc}_{N_3}$	18		$) \qquad \qquad$
4	$\underset{\mathbf{13d}}{\overset{0}{\underset{N_{3}}{\underset{N_{3}}{\overset{0}{\underset{N_{3}}{\underset{N_{3}}{\overset{0}{\underset{N_{3}}{\underset{N_{3}}{\overset{0}{\underset{N_{3}}{\underset{N_{3}}{\underset{N_{3}}{\underset{N_{3}}{\underset{N_{3}}{\underset{N_{3}}{\underset{N_{3}}{\underset{N_{3}}{\underset{N_{3}}{\underset{N_{3}}{\underset{N_{3}}{\underset{N_{3}}{\underset{N}{\underset{N}}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}$	24) (16) 15d
5	$\underset{13e}{\overset{0}{\underset{N_{3}}}}$	24) (14) 15e
6		24	€ 14f H (63)) 15f (17)
7	13g	24	(63)) (13) 15g
8	$(\mathbf{x}_{N_3}^{O})_{H}^{O}$	30	0 14h H 14h H (71))

^{*a*} All reactions were performed with 0.20 mmol azide, 0.004 mmol [Fe(F_{20} TPP)Cl], and 60 mg 4 Å molecular sieves in 1 mL of anhydrous ClCH₂CH₂Cl under N₂. ^{*b*} Isolated yield.

Scheme 2 Possible pathway of C-N bond formation.

Scheme 3 Formation of 2-phenylindolin-3-ol (10a).

Notes and references

- (a) P. Müller and C. Fruit, Chem. Rev., 2003, 103, 2905;
 (b) J. A. Halfen, Curr. Org. Chem., 2005, 9, 657;
 (c) H. M. L. Davies and M. S. Long, Angew. Chem., Int. Ed., 2005, 44, 3518;
 (d) K. Godula and D. Sames, Science, 2006, 312, 67;
 (e) A. R. Dick and M. S. Sanford, Tetrahedron, 2006, 62, 2439;
 (f) H. M. L. Davies and J. R. Manning, Nature, 2008, 451, 417;
 (g) F. Collet, R. H. Dodd and P. Dauban, Chem. Commun., 2009, 5061.
- 2 (a) R. Breslow and S. H. Gellman, J. Am. Chem. Soc., 1983, 105, 6728; (b) D. Mansuy, J. P. Mahy, A. Dureault, G. Bedi and P. Battioni, J. Chem. Soc., Chem. Commun., 1984, 1161.
- 3 (a) J. L. Liang, S. X. Yuan, J. S. Huang, W. Y. Yu and C. M. Che, Angew. Chem., Int. Ed., 2002, 41, 3465; (b) S. K. Y. Leung, W. M. Tsui, J. S. Huang, C. M. Che, J. L. Liang and N. Zhu, J. Am. Chem. Soc., 2005, 127, 16629; (c) M. M. Díaz-Requejo, T. R. Belderraín, M. C. Nicasio, S. Trofimenko and P. J. Pérez, J. Am. Chem. Soc., 2003, 125, 12078; (d) Y. Cui and C. He, Angew. Chem., Int. Ed., 2004, 43, 4210; (e) Z. Li, D. A. Capretto, R. Rahaman and C. He, Angew. Chem., Int. Ed., 2007, 46, 5184; (f) Z. Li, D. A. Capretto, R. O. Rahaman and C. He, J. Am. Chem. Soc., 2007, 129, 12058; (g) Y. M. Badiei, A. Dinescu, X. Dai, R. M. Palomino, F. W. Heinemann, T. R. Cundari and H. Warren, Angew. Chem., Int. Ed., 2008, 47, 9961; Τ. (h) S. Cenini, E. Gallo, A. Caselli, F. Ragaini, S. Fantauzzi and C. Piangiolino, Coord. Chem. Rev., 2006, 250, 1234; (i) S. Fantauzzi, E. Gallo, A. Caselli, C. Piangiolino, F. Ragaini, N. Re and S. Cenini, Chem.-Eur. J., 2009, 15, 1241; (j) S. Fantauzzi, E. Gallo, A. Caselli, F. Ragaini, N. Casati, P. Macchi and S. Cenini, Chem. Commun., 2009, 3952; (k) W. G. Shou, J. Li, T. Guo, Z. Lin and G. Jia, Organometallics, 2009, 28, 6847; (l) V. Subbarayan, J. V. Ruppel, S. Zhu, J. A. Perman and X. P. Zhang, Chem. Commun., 2009, 4266; (m) H. Lu, V. Subbarayan, J. Tao and X. P. Zhang, Organometallics, 2010, 29, 389; (n) H. Lu, J. Tao, J. E. Jones, L. Wojtas and X. P. Zhang, Org. Lett., 2010, 12, 1248.
- 4 (a) A. Hinman and J. Du Bois, J. Am. Chem. Soc., 2003, 125, 11510; (b) P. M. Wehn and J. Du Bois, Angew. Chem., Int. Ed., 2009, 48, 3802.
- 5 (a) G. Bonola, P. Da Re, M. J. Magistretti, E. Massarani and I. Setnikar, J. Med. Chem., 1968, 11, 1136; (b) A. Witt and J. Bergman, Curr. Org. Chem., 2003, 7, 659; (c) A. Cagir, S. H. Jones, R. Gao, B. M. Eisenhauer and S. M. Hecht, J. Am. Chem. Soc., 2003, 125, 13628; (d) J. P. Michael, Nat. Prod. Rep., 2005, 22, 627; (e) S. B. Mhaske and N. P. Argade, Tetrahedron, 2006, 62, 9787; (f) Z. Chen, G. Hu, D. Li, J. Chen, Y. Li, H. Zhou and Y. Xie, Bioorg. Med. Chem., 2009, 17, 2351.
- 6 (a) B. J. Stokes, H. Dong, B. E. Leslie, A. L. Pumphrey and T. G. Driver, J. Am. Chem. Soc., 2007, **129**, 7500; (b) M. Shen, B. E. Leslie and T. G. Driver, Angew. Chem., Int. Ed., 2008, **47**, 5056; (c) K. Sun, R. Sachwani, K. J. Richert and T. G. Driver, Org. Lett., 2009, **11**, 3598.
- 7 (a) B. D. Heuss, M. F. Mayer, S. Dennis and M. M. Hossain, *Inorg. Chim. Acta*, 2003, 342, 301; (b) C. Bolm, J. Legros, J. Le Paih and L. Zani, *Chem. Rev.*, 2004, 104, 6217; (c) S. Y. Yan, Y. Wang, Y. J. Shu, H. H. Liu and X. G. Zhou, *J. Mol. Catal. A: Chem.*, 2006, 248, 148; (d) Z. Wang, Y. Zhang, H. Fu, Y. Jiang and Y. Zhao, *Org. Lett.*, 2008, 10, 1863; (e) P. Liu, E. L. M. Wong, A. W. H. Yuen and C. M. Che, *Org. Lett.*, 2008, 10, 3275; (f) A. A. O. Sarhan and C. Bolm, *Chem. Soc. Rev.*, 2009, 38, 2730; (g) M. Shen and T. G. Driver, *Org. Lett.*, 2008, 10, 3267; (h) B. J. Stokes, C. V. Vogel, L. K. Urnezis, M. Pan and T. G. Driver, *Org. Lett.*, 2010, 12, 2884.
- 8 Y. Liu and C. M. Che, *Chem.-Eur. J.*, 2010, DOI: 10.1002/ chem.201000581.
- 9 (a) T. Bach, B. Schlummer and K. Harms, *Chem.-Eur. J.*, 2001, 7, 2581;
 (b) S. Fantauzzi, A. Caselli and E. Gallo, *Dalton Trans.*, 2009, 5434.
- 10 (a) Y. Moreau, H. Chen, E. Derat, H. Hirao, C. Bolm and S. Shaik, J. Phys. Chem. B, 2007, 111, 10288; (b) J. Conradie and A. Ghosh, Inorg. Chem., 2010, 49, 243.