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The methoxyamine group represents an ideal protecting 

group for the nitroxide moiety. It can be easily and selectively 

introduced in high yield (typically >90%) to a range of 

functionalised nitroxides using FeSO4.7H2O and H2O2 in 

DMSO. Its removal is readily achieved under mild conditions 10 
in high yield (70-90%) using mCPBA in a Cope-type 

elimination process.  

Nitroxides are versatile and stable free radical species that have 

been extensively studied for more than 50 years. The broad 

interest in nitroxides arises from their applications across a range 15 
of scientific disciplines including materials science, molecular 

biology, biophysics and medicine.1 Nitroxides have been widely 

employed as initiators for the preparation of well-defined, 

functional and complex polymers2 and nitroxide radical 

precursors are commonly used as stabilisers in materials.3 The 20 
nitroxide moiety also provides an excellent synthetic handle for 

additional functionalization of polymers4 and surfaces.5 The use 

of nitroxides as spin-labels has enabled investigation into the 

molecular structure, dynamics and functional activity of various 

biomolecules.1b,6 More recently, nitroxides have been exploited to 25 
prepare organic magnets7 and as dynamic nuclear polarization 

agents for the enhancement of NMR signals.8 The ability of 

nitroxides to undergo redox chemistry has further widened the 

scope of their applications. Their use as antioxidants in conditions 

involving oxidative stress is well documented1b,9 and they display 30 
significant potential as redox mediators for dye-sensitised solar 

cells10 and as cathodic materials in organic batteries.11  

 To cater for the diverse fields in which nitroxides are currently 

utilized, a number of synthetic strategies have been devised in 

order to develop tailored nitroxides for specific applications. 35 
Although the nitroxide moiety displays remarkable robustness in 

several different reaction types (e. g. Pd-catalysed cross-

couplings,12 the copper-catalysed azide-alkyne 1,3-dipolar 

cycloaddition reaction13 and ring closing metathesis14), it is 

unstable in the presence of strong acid and base, radical driven 40 
reactions and strong oxidants and reductants.15 To overcome the 

susceptibility of the nitroxide functionality to these conditions 

and extend nitroxide syntheses to access previously unobtainable 

structural variations, we sought an appropriate protecting group 

strategy. We herein report that the conversion to a methoxyamine 45 
group and cleavage under mild conditions in good yield 

represents a convenient and simple protecting group strategy for a 

range of nitroxide classes bearing different functionalities. 

(Scheme 1). 

 50 

 

 

Scheme 1 Introduction and removal of the methoxyamine nitroxide 

protecting group. 

 In previous nitroxide syntheses, protection of the nitroxide 55 
moiety has been achieved using an acetate group which can be 

subsequently removed with strong base.15b,16 However, this group 

may be unsuitable for a number of nucleophilic reactions as it 

contains a reactive ester moiety. Benzyloxyamines have also been 

employed as protecting groups but can provide low yields upon 60 
deprotection via hydrogenolysis in glacial acetic acid.12c The 

secondary amine precursor is a common synthetic intermediate 

for most hindered nitroxides, but these can be sensitive to 

autooxidation and can introduce difficulties in syntheses 

involving nucleophilic attack. Resolution on chromatography can 65 
also prove challenging for these amines.  

 We envisaged the methoxyamine group to be the ideal 

nitroxide protecting group as it imparts minimal structural change 

on the physical properties of the parent nitroxide, is stable under 

acidic and basic conditions and is inert to a number of typical 70 
functional group transformations. Furthermore, nuclear magnetic 

resonance analysis is facilitated through the introduction of a 

sharp 3H signal. (Nitroxides are paramagnetic and typically give 

significantly broadened NMR signals, so the reversible 

transformation to a functionality with a clear 3H integral aids 75 
structural elucidation). 

 To demonstrate the versatility of the methoxyamine group as a 

suitable nitroxide protecting group, we examined its introduction 

to, and removal from, a variety of functionalised nitroxides 

(containing halides, amines, carbonyls, alkynes and conjugated 80 
systems). The selection was largely based upon the isoindoline 

class of nitroxides due to the presence of an inherent 

chromophore which aided chromatographic analysis of the 

reaction, however 4-benzyloxy-2,2,6,6-tetramethylpiperidin-1-

oxyl (8) was also selected to examine the applicability of this 85 
method towards the piperidine class of nitroxides.  

 The synthesis of methoxyamine derivatives of nitroxides has 

been previously achieved via two main methods: reaction with 

methyl radicals (generated either though Fenton chemistry in 

DMSO17 or the CuCl-catalysed decomposition of90 
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Table 1 Formation of methoxyamines from nitroxides using H2O2 and FeSO4.7H2O in dimethylsulfoxide and deprotection with mCPBA. 

Entry Methoxyamine 

Formation 

Isolated 

yield 

Nitroxide 

Regeneration 

mCPBA  

(equiv.) 

Time 

(hr) 

Isolated 

yield 

1 

 

74%a 

 

2.1 0.5 85% 

2 4.2 0.1 80% 

3 

 

96% 

 

2.1 0.5 88% 

4 4.2 0.1 86% 

5 

 

88% 

(from 3b) 

 

3.0 2.0 88% 

6 

 

68%a 

 

2.5 1.0 84% 

7 

 

85-95% 

(80% over 

2 stepsc) 

 

2.5 1.0 75% 

8 3.0 8.0 37% 

9 

 

95% 

 

2.1 0.5 67% 

10 

 

87% 

 

3.0 1.0 85% 

a Compounds 1 and 7  are formed in high yield from the nitroxides 2 and 8 , however they are volatile and provide lower isolated yields due to loss of product upon workup in vacuo. Successful protection 

and deprotection for the even more volatile parent TEMPOL was also achieved, details of which are provided in the Supplementary Information. 
b  See Supplementary Information for synthetic procedure. 
c  Compound 9 can be formed from the nitroxide in good yield or synthesised from the arylhalide in two steps as previously described.12c 5 
aldehyde/ketone peroxide intermediates18) or reduction of the 

nitroxide to the corresponding hydroxylamine and subsequent 

reaction with an alkyl halide.19 Our preference has been to use 

Fenton chemistry as the reaction is fast, tolerates a wide range of 

functional groups and does not require an inert atmosphere. 10 
Accordingly, a range of methoxyamines 1, 3, 5, 7, 9, 11 and 13 

were prepared in high yield (typically over 90%) by reacting the 

corresponding nitroxides with FeSO4.7H2O and H2O2 in DMSO.  

 N-Alkoxyamines have been previously cleaved using 

diammonium cerium(IV) nitrate at elevated temperatures (70 °C), 15 
however over-oxidation results in the formation of the 

oxoammonium species which may readily decompose.20 We now 

report that removal of the methyl protecting group can be readily 

facilitated by oxidation with 3-chloroperoxybenzoic acid 

(mCPBA) in DCM in a Cope-type elimination reaction that 20 
precludes other functional group modification and provides high 

yields of the desired nitroxide (Table 1).  

 Typically, mCPBA has been used synthetically as an oxidant 

in the oxidation of ketones, amines and sulfides, most notably in 

the Baeyer-Villiger and Rubottom oxidations, as well as being 25 
utilised in the Prilezhaev epoxidation of alkenes.21 Furthermore, 

mCPBA has been demonstrated to be a mild oxidant capable of 

producing N-oxides via electrophilic attack at nitrogen.22 

Subsequent oxygen transfer yields a substrate that is primed for 

Cope elimination.23 The mechanism for the application in this 30 
context is proposed in Scheme 2. GCMS evidence for the 

formation of formaldehyde is provided in the Supplementary 

Information.  

 In the absence of sensitive functionalities, such as the simple 

alkyl substituted aryl system 1, the mCPBA promoted 35 
deprotection occurs more readily when larger amounts of 

mCPBA are used (Table 1, entries 1 and 2). 

 

 

 40 

 

 

 

 

 45 

 

Scheme 2 Proposed deprotection mechanism via N-oxidation and 

subsequent Cope-type elimination. 

 Similarly, the presence of aryl halides has little impact on the 

nitroxide yield when using excess mCPBA (Table 1, entries 3 and 50 
4). Notably, deprotection of the methoxyamine 5 occurs in high 

yield (88%) even in the presence of aldehydes (Table 1, entry 5). 

The TEMPO-based methoxyamine 7 also underwent efficient 

deprotection in high yield (Table 1, entry 6), and this result 
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further highlights that benzyl ethers remain unaffected under 

these conditions. In the case of anthracene methoxyamines such 

as 9, deprotection was observed to produce the nitroxide 10 in 

good yield (75%), however small amounts of fluorescent side-

products were also detected (Table 1, entry 7 and 8). These 5 
products are expected to arise from partial oxidation of the 

anthracene core to give substituted anthraquinones, perhaps via 

the corresponding endoperoxides.24 Notably, the formation of by-

products could be minimised using shorter reaction times and 

decreased equivalents of mCPBA. In the presence of anthracenes 10 
with alkyne side-chains, such as in 11, the deprotection gave the 

desired nitroxide 12 in reasonable yield (67%) along with similar 

fluorescent by-products as were seen with 9. These by-products 

may also include small amounts of peracid oxidation of the 

alkyne (Table 1, entry 9).25 Again, these side reactions could be 15 
minimised by immediate quenching of the reaction upon 

consumption of the starting material (followed via TLC). The 

nitro group was shown to be quite stable under the deprotection 

conditions with a high yield (85%) of nitroxide 14 arising from 

the treatment of methoxyamine 13 (Table 1, entry 10). However, 20 
attempted deprotection of 5-amino-2-methoxy-1,1,3,3-

tetramethylisoindoline by mCPBA  gave multiple products after 

only a few minutes, as indicated by TLC, consistent with 

competitive oxidation of the primary aryl amine. 

 We have shown the methoxyamine group to be a highly 25 
efficient, chemically robust protecting group for nitroxide 

syntheses. The introduction of the methyl group was achieved for 

a variety of nitroxides under mild conditions and in high yield 

using methyl radicals generated from DMSO, ferrous ions and 

hydrogen peroxide. Removal of the methyl protecting group was 30 
readily achieved using mCPBA in DCM in the presence of a 

variety of functional groups. The facile nature of the Cope-type 

elimination allows for the methyl ether to be readily cleaved 

before any significant side reactions occur. If side reactions are 

possible through over oxidation, then careful monitoring of the 35 
reaction and the use of limited amounts of mCPBA can still 

provide the nitroxide in good yield. In this way, deprotection can 

be induced in good to high yields (67-88%). This new nitroxide 

protecting group strategy should now enable a large range of 

synthetic transformations that were not previously possible in the 40 
presence of the nitroxide radical and thereby substantially 

broaden the scope of possible nitroxide applications.  
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