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We have developed a protocol for electrochemical decarboxylative C3
alkylation of a wide range of quinoxalin-2(1H)-ones under metal- and
additive-free conditions. N-Hydroxyphthalimide esters derived from chain,
cyclic, primary, secondary, and tertiary carboxylic acids with a broad scope
proved to be suitable substrates. This operationally simple protocol
performed in an undivided cell under constant-current conditions is
suitable for late-stage functionalization of quinoxalin-2(1H)-ones. The
reactions can even be carried out with a 3 V battery as a power source,
which demonstrates that organic electrosynthesis can be accomplished
without the need for specialized equipment.

New methods and strategies for the direct functionalization of
quinoxalin-2(1H)-ones! and other N-heterocycles? can greatly fulfill
the demand of high-throughput drug screening.? The direct C3
alkylation of quinoxalin-2(1H)-ones has played a prominent role in
this context owing to the utility of C3 alkylated quinoxalin-2(1H)-
ones as versatile drug candidates.* Quinoxalin-2(1H)-ones alkylated
at C3 have traditionally been synthesized by reactions of 1,2-
diaminobenzene derivatives with alkyl-substituted keto esters or
acids.®> In recent years, substantial effort has been devoted to
developing methods for direct C3 alkylation of quinoxalin-2(1H)-
ones®, Most of these methods involve addition reactions of alkyl
radicals generated from their precursors by means of radical
initiators (Scheme 1). However, despite many attempts to improve
the practicality and efficiency of these methods, most of them
require stoichiometric amounts of oxidants,” metal catalysts,® or
photocatalysts.® Therefore, greener and more sustainable methods
for direct C3 alkylation of quinoxalin-2(1H)-ones would be desirable.

We speculated that electrochemistry could serve this purpose.
Electrochemistry, which is a powerful and economical way of
forging new chemical bonds, uses electrons as a clean, renewable
reagent.l The past few years have witnessed booming interest in
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organic electrosynthesis, and various electrochemical reactions that
form C-C,1* C-N,*2 C-0,'3 and C-S'* bonds under mild conditions
have been reported. Inspired by this elegant work, we have now
developed an electrochemical protocol for decarboxylative C3
alkylation of quinoxalin-2(1H)-ones with N-hydroxyphthalimide
(NHP) esters, which are prepared in one step from the
corresponding carboxylic acids and served as excellent alkyl radical
precursors (Scheme 1).15
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Scheme 1. Strategies for direct C3 alkylation of quinoxalin-2(1H)-
ones by means of a radical intermediate.

We commenced our investigation by using 1-methylquinoxalin-
2(1H)-one (1a) and NHP ester 2a as model substrates to optimize
the reaction conditions (Table 1). We were pleased to find that
when we used graphite plates as electrodes, dimethylacetamide
(DMA) as the solvent, "BusNBF, as the electrolyte, and a current
density of 5 mA/cm?, desired product 3aa could be obtained in 85%
yield by 'H NMR spectroscopy and 92% isolated yield after 12 h
under an air atmosphere (entry 1). When we shortened the
reaction time, the yield decreased (entries 2 and 3). Decreasing or
increasing the current density also lowered the yield (entries 4-7).
Evaluation of different solvents revealed that DMA was the best
choice (entries 8-10). In addition, control experiments indicated
that the current and the electrolyte were essential for this reaction
and that it was unaffected by air (entries 11-13). The structure of
3aa was unambiguously confirmed by X-ray analysis (Scheme 2).
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Table 1. Optimization of the reaction conditions?
+Ci-C

"Bu,NBF,
@ T O)\ @ DMA, rt. @ IO
" undvided cell
5mAlcm?, 12 h
Entry Variation from standard Yleldb (%)
conditions
1 none 85 (929)
2 1.5h 13
3 45h 31
4 3 mA/cm? 62
5 8 mA/cm? 74
6 10 mA/cm? 72
7 15 mA/cm? 15
8 MeCN as solvent 34
9 DMSO as solvent 43
10 DMF as solvent 53
11 No electricity 0
12 No electrolyte
13 Under Air 87

9Reaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), "BusNBF,
(2.0 equiv), DMA (5 mL), undivided cell with two graphite
electrodes (each 1.0 x 1.0 cm?), room temperature (r.t.), 5 mA/cm?,
12 h. bYjelds were determined by *H NMR spectroscopy with CH,Br,
as an internal standard. Isolated yield.

Having optimized the conditions, we investigated the scope of
the reaction with respect to the NHP ester (Scheme 2). To our
delight, a wide range of chain, cyclic, primary, secondary, and
tertiary NHP esters proved to be suitable substrates (3aa—3ao).
Included were some heterocyclic substrates, which gave products
3aj and 3ak. Furthermore, NHP esters derived from valine and
dehydrocholic acid were also acceptable, affording 3ap and 3aq and
suggesting that this method is applicable to other amino acids and
natural products.

We also investigated the scope with respect to the quinoxalin-
2(1H)-one (Scheme 3). Substrates 1 bearing various substituents on
the aromatic ring (methyl, chloro, fluoro, cyano, methoxy, and
trifluoromethyl) reacted smoothly with 2a under the optimal
conditions to produce the corresponding products (3ba—3ka) in
moderate to good vyields. Furthermore, in addition to 1-
methylquinoxalin-2(1H)-ones, quinoxalin-2(1H)-ones bearing an
"propyl, benzyl, or ethoxycarbonylmethylene group on the nitrogen
were also suitable substrates, providing 3la—3na, respectively. It is
worth noting that sensitive allyl and alkyne groups were also
retained under the reaction conditions (30a and 3pa). In addition,
3qa could be synthesized from the corresponding substrate with an
unprotected nitrogen atom on the quinoxalin-2(1H)-one moiety.
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Scheme 2. Substrate scope with respec@%itlﬁeiwm@%w“(
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9Reaction conditions: 1a (0.5 mmol), 2 (1.0 mmol), "BusNBF,
(2.0 equiv), DMA (5 mL), undivided cell with two graphite
electrodes (each 1.0 x 1.0 cm?), room temperature (r.t.), 5 mA/cm?,
12 h. Isolated yields are provided.

Scheme 3. Substrate scope with respect to the quinolin-2(1H)-
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9Reaction conditions: 1 (0.5 mmol), 2a (1.0 mmol), "BusNBF, (2.0
equiv), DMA (5 mL), undivided cell with two graphite electrodes
(each 1.0 x 1.0 cm?), room temperature (r.t.), 5 mA/cm?, 12 h.
Isolated yields are provided.
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Having explored the substrate scope, we turned our attention
to the mechanism (Scheme 4). First, when 2.0 equiv of a radical
inhibitor, TEMPO (2,2,6,6-Tetramethylpiperidinooxy) or BHT (2,6-di-
tert-butyl-4-methylphenol), was added to the standard reaction
mixture (Scheme 4A), alkylation was completely suppressed. When
N-phenylmethacrylamide (1r) was subjected to electrolysis with
NHP esters 2a and 20 under the standard conditions, radical
addition products 3ra and 3ro were detected by high-resolution
mass spectrometry’® (Scheme 4B, 4C). These results indicate that
this reaction probably proceeded via a radical pathway.
Furthermore, cyclic voltammetry showed that the reduction
potentials of substrates 1a and 2a were -1.67 and -1.23 V (vs. SCE),
respectively; that is, 2a was more easily reduced than 1a at the
surface of the cathode (Figure 1).12 The reduction peak of 2a
indicates a reductive pathway for alkyl radical generation.

Scheme 4. Mechanistic studies
2 eq TEMPO
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D

Detected by HRMS
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Figure 1. Cyclic voltammograms of 1a and 2a in 0.1 M
"BugNPFs/MeCN at a scan rate of 100 mV/s. The reduction
potentials versus an aqueous SCE (F1/1a- = -1 67 V; F2/2- = -1.23 V)
were calibrated by the addition of ferrocene (Fc) as an internal
standard; Ege/rer)® = 0.424 V vs SCE.Y7

On the basis of literature reports, a proposed mechanistic
pathway for this electrochemical decarboxylative C3 alkylation is
depicted in Scheme 5. Initially, single-electron reduction of NHP
ester 2a at the cathode generates radical anion A, which then

This journal is © The Royal Society of Chemistry 20xx
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undergoes N-O bond cleavage followed by decarboxyation togjve
corresponding alkyl radical B. This reactivéOkpediesodddsCtosthe
quinoxalinone to furnish nitrogen-centered radical C. Next, a 1,2-H
shift gives carbon-centered radical D, which undergoes single-
electron oxidation at the anode, followed by deprotonation, to give
product 3aa.

Scheme 5. Proposed mechanism

+e” reduction oxidation -e”

o,
o o 1,2-H Shift
o N Npntn CE
_ radical addlllon

A

cathode anode

To verify the practicality of this protocol, we carried out a
scaled-up Specifically, when 6.0 mmol of 1-
methylquinoxalin-2(1H)-one (1a) was allowed to react with NHP
ester 2a under the standard condition, 3aa was isolated in 88%

reaction.

yield, indicating no loss in efficiency (Scheme 6A). In addition, the
reaction could be carried out in one pot, without separation of the
NHP ester (Scheme 6B). Finally, in a further test of the robustness of
this electrochemical reaction, we performed it using a 3 V battery
and obtained a 90% yield of 3aa (Scheme 6C).

Scheme 6. Practicality of the electrochemical method

A. Gram scale synthesis

+C/-C
"Bu,NBF,
DMA r.t. 3aa
undlvn:led cell
15mA, 40 h
1a, 6 mmol 1.289, 88%
B. One-pot synthesis
o [e}
OH + HO-N __DIC, DMAP__
DCM
+CI-
o undivided cell
5mA/cm?, 12 h
3aa, 87%
C. Use of 3-V battery as a readily available power source
+CI-C

"BuNBF,

| o %
N O DMA, r.t.
N —————————— 3aa
@ :r + o two 1.5 V NANFU battery
N o connection in series
undivided cell, 12 h
1a 2a 90%

Conclusions

In conclusion, we have developed a protocol for metal- and
additive-free electrochemical decarboxylative C3 alkylation of
quinoxalin-2(1H)-ones with NHP esters, and we demonstrated its
practicality, scalability, and operational simplicity. We believe that
this protocol has potential utility for pharmaceutical derivatization
and other industrial applications.
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