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Abstract: We report a facile one-pot synthesis of chiral b-amino
esters via direct reductive amination of b-keto esters with
ammonium acetate (NH4OAc) and H2 in the presence of chiral
Ru–ClMeOBIPHEP catalysts using 2,2,2-trifluoroethanol (TFE)
as a solvent, leading to b-amino esters in high yields with high
enantioselectivities (up to 99% ee).

Key words: reductive amination, b-amino esters, b-keto esters,
Ru–ClMeOBIPHEP catalyst

The preparation of chiral b-amino acid derivatives is an
important task for the pharmaceutical industry, since they
are chiral building blocks for the synthesis of numerous
biologically active compounds such as b-peptides, b-lac-
tam antibiotics and many chiral drugs.1 From an industrial
point of view, one of the most promising methods to
prepare b-amino acid derivatives is the use of catalytic
asymmetric hydrogenation. Recently, many groups have
reported asymmetric hydrogenations of b-acetamido
acrylates employing a catalytic amount of chiral Rh or Ru
complexes. However, these methods require additional
steps for the introduction and removal of a protecting
group such as an acyl group. Additionally, mixtures of
E- and Z-isomers are formed, which have sometimes
dramatic differences in the enantioface-discriminating
abilities.2 Moreover, the removal of the acyl group re-
quires harsh conditions (heating under strongly acidic or
basic conditions). Very recently, two groups at Merck and
Takasago described the enantioselective hydrogenation of
unprotected b-enamine esters, which represents an impor-
tant breakthrough in the synthesis of chiral b-amino
esters.3 Börner et al. have developed a direct reductive
amination (DRA) of carbonyl compounds, catalyzed by
homogeneous Rh(I)–diphosphane complexes, providing
chiral amines with high enantioselectivities and chemo-
selectivities.4 Over the last years, Bayer’s central research
department and then Lanxess have developed numerous
applications of the chiral ClMeOBIPHEP ligand
(Figure 1) in asymmetric hydrogenation of prochiral C=O
or C=C bonds.5

Herein we report a facile one-pot synthesis of chiral b-
amino esters via direct reductive amination of b-keto
esters with NH4OAc and H2 in the presence of (R)-1-Ru
catalysts (Scheme 1).

Scheme 1 Direct reductive amination of b-keto esters with (R)-1-
Ru catalyst

Initially, we examined the reductive amination of ethyl
benzoyl acetate 2a with NH4OAc (5 equiv) in the presence
of (R)-1-Ru catalyst I using TFE as a solvent6 (Table 1).
High chemoselectivity in terms of the 3a/4a7 ratio (≥ 99:1)
was observed (entries 1–5, Table 1). It was found that the
reductive amination of 2a was performed efficiently by
increasing the temperature from 60 °C to 80 °C under 10–
30 bar of H2, leading to full conversion and high enantio-
selectivity of 3a (entries 1–3). Similar ee values were ob-
served in the presence of (R)-1-Ru catalyst II8 (entries 2
vs. 4). Increasing the substrate to catalyst (s/c) ratio from
100 to 1,000 led to 64% conversion (entries 4 vs. 5).
Usually the product was formed as the ammonium salt 5a,
due to the excess of NH4OAc, which generates acetic acid
in situ and subsequently protonates the b-amino ester 3a.

Under optimized conditions, a series of aryl-substituted b-
keto esters was investigated using 1 mol% of the (R)-1-Ru
catalyst I. Results are summarized in Table 2. In most
cases, the corresponding ammonium salts 59 were formed
in good yields with high enantioselectivities (≥ 96% ee)
and high chemoselectivities (≥ 99:1 of b-amino ester:b-
hydroxy ester, see entries 1, 2 and 4–6, Table 2). How-
ever, a small amount of b-hydroxyester was formed,
when m-methoxy substituted compound 2c was em-
ployed (entry 3).

Reductive amination of alkyl b-keto esters like 2g was
also successful, yielding the ammonium salt 5g with high
enantioselectivity (96% ee, Scheme 2) and high chemo-
selectivity (≥ 99:1 of b-amino ester:b-hydroxy ester).

Figure 1
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Scheme 2 Reductive amination of ethyl acetylacetonate 2g

For the reaction mechanism, we also believed that it might
proceed via reduction of an imine intermediate as previ-
ously discussed by the Merck group.3 Furthermore, our
methodology could also be extended to the reductive
amination of cyclic b-keto esters such as 2h. Under non-
optimized conditions, moderate diastereoselectivities
(58% de) and enantioselectivity (82% ee) were obtained
with high chemoselectivity (≥ 99:1 of b-amino ester:b-hy-
droxy ester, Scheme 3).

Scheme 3 Reducive amination of cyclic b-keto ester 2h

In summary, we have demonstrated a facile one-pot
synthesis of various chiral b-amino esters via reductive
amination of b-keto esters. Optimization of the catalyst to
substrate ratio and scale-up are currently being performed
in our laboratories.

General Procedure for the Reductive Amination of b-Keto 
Esters
Preparation of Ethyl (S)-3-Amino-3-phenylpropanoate 
Acetate (5a)
(R)-1-Ru catalyst I (5 mg, 5 mmol), NH4OAc (196 mg, 2.5 mmol), 
b-keto ester 2a (100 mg, 0.5 mmol) and TFE (4 mL) were placed in 
an autoclave. The autoclave was sealed and pressurized to 30 bar H2 

Table 1 Reductive Amination of b-Keto Ester 2aa

Entry [Ru] S/C H2 (bar) Temp (°C) Conversion (%)b ee (%)c

1 I 100 30 60 85 ndd

2 I 100 30 80 100 97 (S)

3 I 100 10 80 100 97 (S)

4 II 100 30 80 100 98 (S)

5 II 1000 30 80 64 nd

a Reaction conditions: 5 mmol (R)-1-Ru catalyst, 0.5 mmol 2a, 2.5 mmol NH4OAc, 4 mL TFE.
b Determined by GC.
c Determined by chiral GC.
d Not determined.
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Table 2 Reductive Amination of Aryl-Substituted Keto Ester 2a–f 
under Optimized Conditionsa

Entry X Yield 
(%)b

ee 
(%)c

Ratio of b-amino 
ester to b-hydroxy 
ester

1 2a: X = H 88 98 99:1

2 2b: X = m-Cl 81 98 99:1

3 2c: X = m-OMe 88 96 94:6d

4 2d: X = p-F 80 96 99:1

5 2e: X = p-OMe 83 98 99:1

6 2f: X = p-Cl 79 99 99:1

a Reaction conditions: 5 mmol (R)-1-Ru catalyst I, 0.5 mmol b-keto es-
ter, 2.5 mmol NH4OAc, 4 mL TFE, 30 bar of H2, 80 °C, 16 h.
b Isolated yields of analytically pure products.
c Determined by chiral GC.
d Determined by GC.
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and the mixture was stirred at 80 °C for 16 h. TFE was removed and 
the crude product was passed through a short silica gel column with 
tert-butylmethylether (TBME) as an eluent. After evaporation of 
the solvent, (S)-5a was obtained in 88% yield, 98% ee as a white 
solid; mp10 86–87 °C. 1H NMR (400 MHz, CDCl3): d = 7.35–7.15 
(m, 5 H), 5.97 (br s, 3 H), 4.40 (dd, J = 8.6, 5.1 Hz, 1 H), 4.05 (q, 
J = 7.1 Hz, 2 H), 2.77 (dd, J = 16.4, 8.6 Hz, 1 H), 2.67 (d, J = 16.4, 
5.1 Hz, 1 H), 1.89 (s, 3 H), 1.15 (t, J = 7.1 Hz, 3 H) ppm. 13C NMR 
(100 MHz, CDCl3): d = 175.2, 170.5, 141.0, 127.7, 126.9, 125.5, 
59.8, 51.3, 41.2, 20.7, 13.1 ppm.
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