Organic & Biomolecular Chemistry

PAPER

Cite this: Org. Biomol. Chem., 2013, 11, 5017

RSCPublishing

View Article Online View Journal | View Issue

Highly efficient α -C-sialylation promoted by $(p-Tol)_2SO/Tf_2O$ with N-acetyl-5-N,4-O-oxazolidione protected thiosialoside as donor†

Zhen-yuan Gu, Xiao-tai Zhang, Jia-xin Zhang and Guo-wen Xing*

Based on a preactivation protocol with $(p-\text{Tol})_2\text{SO/Tf}_2\text{O}$, a practical, straightforward, and high-yielding synthesis of α -sialyl C-glycosides was accomplished by coupling N-acetyl-5-N,4-O-oxazolidione protected thiosialoside with various trimethylsilyl enol ethers and allyltrimethylsilanes. High yields and excellent α -selectivities were obtained for the strong π -nucleophiles with large nucleophilicity values (N = 4.4-9.0), irrespective of whether silyl enol ethers, silyl ketene acetals or allyltrimethylsilanes were used for the electrophilic C-sialylation.

Received 28th April 2013, Accepted 10th June 2013 DOI: 10.1039/c3ob40876k

www.rsc.org/obc

Introduction

N-Acetylneuraminic acids (Neu5Ac), mostly located at the terminal end of oligosaccharides and glycoconjugates, have vital biological functions in higher animals and human beings.¹ Among the types of sialosides, *C*-glycosides, whose interglycosidic oxygen atoms are substituted by carbon atoms, possess exclusive resistance to chemical and enzymatic degradation and display potential applications in the development of Neu5Ac-containing antiviral drugs and vaccines.²

Due to the requirement of C-C bond formation at a new tertiary carbon atom center, it is more challenging to synthesize C-sialosides than other C-glycosides. In 1991, three groups of investigators³ independently reported the formation of simple allyl and hydroxymethyl C-glycosides of Neu5Ac, but with poor α -selectivity or low reaction yield. Over the years, a few glycosylation strategies, especially the SmI2-mediated reductive coupling reactions with appropriate Neu5Ac donors such as sialyl sulfones, 4^{4a} chlorides, 4^{4b} sulfides and acetates, 5^{4b} have been developed for efficient α-C-sialylation to provide novel series of catabolically stable C-sialoside analogues of glycoconjugates.4-6 It is reported that C-glycosides can be obtained from silyl enol ethers with high stereoselectivity in Sakurai/Mukayiama-type reactions.⁷ For electrophilic α -C-sialylation with silvl enol ethers, very recently, N-acetyl-5-N,4-O-oxazolidione-protected sialyl phosphate (2) was found to be an efficient sialyl donor for the construction of α -C-sialosides in the presence of trimethylsilyl trifluoromethanesulfonate.^{8a} It is noted that donor

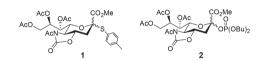


Fig. 1 Structures of N-acetyloxazolidinone protected sialyl donors.

2 is, in fact, derived from the corresponding *N*-acetyloxazolidinone protected thiosialoside 1^{8b} (Fig. 1), which was first prepared by our laboratory and has proven to be an excellent *O*-sialylation donor to couple with various alcohol receptors.^{9a} In an effort to simplify the synthetic sequence of *C*-sialosides and avoid the preparation of complex samarium(III) organometallic species, herein we report that donor **1** is truly a practical *C*-sialyl donor. The reaction, promoted by a $(p-\text{Tol})_2\text{SO/Tf}_2\text{O}$ system, occurs with a wide variety of silyl enol ethers as acceptors in high α -selectivity and good isolated yield.

Results and discussion

In previous reports,⁹ we have established that both diphenyl sulfoxide/trifluoromethanesulfonic anhydride $(Ph_2SO/Tf_2O)^{9d}$ and *N*-iodosuccinimide/trifluoromethanesulfonic acid (NIS/TfOH)^{9a} promotion systems can efficiently activate thiosialoside 1α to afford the desired α -*O*-sialylation products. The stereoselectivity and yield of the sialylation can be modulated by carefully changing the added amount of Ph₂SO. In the current study, inspired by above results, we initially attempted the *C*-sialylation between 1α and acetophenone trimethylsilyl enol ether (3) under Ph₂SO/Tf₂O preactivation conditions in dichloromethane. To our surprise, the expected *C*-sialyl derivative **4** was successfully obtained in 71% yield with exclusive α -stereoselectivity (Table 1, entry 1). When (*p*-Tol)₂SO was used

Department of Chemistry, Beijing Normal University, Beijing 100875, China. E-mail: gwxing@bnu.edu.cn

[†]Electronic supplementary information (ESI) available: Copies of NMR spectra for all new coupling products. See DOI: 10.1039/c3ob40876k

Table 1 Effects of different promoters and amount of $(p-Tol)_2SO$ on the C-sialylation

AcO AcO AcO O	$\begin{array}{c} OAc \\ CO_2Me \\ S \\ CH_2O(/p-Tol)_2SO \\ CH_2Cl_2 - 70^{\circ}C50 \end{array}$	AcO QAC AcO AcN O Ac	
Entry	Conditions ^{<i>a</i>}	$\operatorname{Yield}^{b}(\%)$	$\alpha:\beta^{c}$
1	Tf ₂ O/Ph ₂ SO (2.0 equiv.)	71	α
2	$Tf_2O/(p-Tol)_2SO$ (0.6 equiv.)	61	α
3	$Tf_2O/(p-Tol)_2SO(1.2 \text{ equiv.})$	68	α
4	$Tf_2O/(p-Tol)_2SO(2.0 \text{ equiv.})$	82	α
5	$Tf_2O/(p-Tol)_2SO(3.0 \text{ equiv.})$	84	α
6	$Tf_2O/(p-Tol)_2SO(4.0 \text{ equiv.})$	15	α

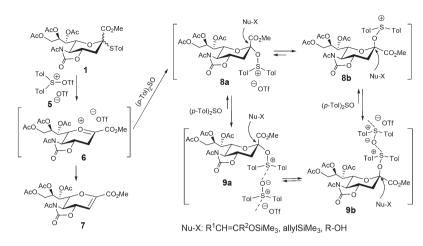
 a 1.2 equiv. Tf₂O was used for the reactions. b Isolated yields after column chromatography. c Determined by $^1{\rm H}$ NMR spectroscopy; α indicates that no β product was detected.

as additive instead of Ph₂SO for the *C*-sialylation, the reaction yield was improved from 71% to 82% (Table 1, entry 4), indicating that $(p\text{-Tol})_2$ SO is more closely matched with sialyl donor **1** (containing *p*-tolyl sulfide as leaving group) than Ph₂SO. The results are also comparable with our previous observations,^{9e} wherein the $(p\text{-Tol})_2$ SO was a superior additive for *O*-sialylation with *N*-acetyl-5-*N*,4-*O*-oxazolidione protected sialyl sulfoxide as donor.

Next, we further probed the influence of different added amounts of $(p\text{-Tol})_2$ SO on the *C*-sialylation. As shown in Table 1, when the amount of $(p\text{-Tol})_2$ SO was increased from 0.6 equiv. to 4.0 equiv., the optimum amount of $(p\text{-Tol})_2$ SO additive was 2.0–3.0 equiv., with the highest *C*-sialylation yield reaching 82–84%. Meanwhile, only the α -*C*-sialyl product was obtained in the reaction with different amounts of $(p\text{-Tol})_2$ SO. In addition, the effect of reaction temperature on the model *C*-sialylation was also examined. The reaction yields were closely related to the temperature (Table 2). Ranging the temperature from -70 °C to -20 °C, the yield decreased gradually from 82% to 68%, suggesting that lower reaction temperature was more appropriate for the *C*-glycosylations. Finally, we used the sialylation conditions described in entry 1 of Table 2 for the following *C*-sialylations with silyl enol ethers as acceptors.

With regard to the mechanism of the *C*-glycosylation (Scheme 1), the *N*-acetyl-5-*N*,4-*O*-oxazolidione protected oxacarbenium cation **6** is believed to be the first crucial intermediate, resulting from the activation of thiosialoside **1** by di-*p*-tolyl

 Table 2
 Effect of temperature on the C-sialylation⁴


Entry	Conditions ^b	Yield ^c (%)	α : β^d	
1	−70 °C 2.0 h then −50 °C 2.0 h	82	α	
2	−50 °C 4.0 h	79	α	
3	−40 °C 4.0 h	75	α	
4	−30 °C 4.0 h	77	α	
5	−20 °C 4.0 h	68	α	

^{*a*} See Table 1 for reaction scheme. ^{*b*} 1.2 equiv. Tf₂O and 2.0 equiv. $(p-Tol)_2SO$ were used for the reactions. ^{*c*} Isolated yields after column chromatography. ^{*d*} Determined by ¹H NMR spectroscopy.

sulfoxide bis(triflate) 5 which is generated in situ from the promoter pair $(p-Tol)_2SO$ and Tf_2O . As proposed by Crich for the *N*,*N*-diacetyl counterpart¹⁰ and our previous studies, $9^{d,e}$ 6 would either rapidly decompose to the 2,3-glycal 7, or be efficiently trapped by excess $(p-Tol)_2$ SO $(1-2 \text{ equiv.})^{11}$ to provide the N-acetyloxazolidinone protected C2-sialyloxosulfonium salt 8a/8b, which is considered as the second crucial intermediate for the sialvlation and should be more stable from -70 °C to -50 °C (Table 2). The more reactive β-C2-sialyloxosulfonium intermediate 8b could be quickly attacked by a nucleophile such as trimethylsilyl enol ether, allyltrimethylsilane or alcohol to obtain the α -C- or O-sialyl product. It is noteworthy that more excess $(p-Tol)_2SO$ (3 equiv.) additive led to a very low C-sialylation yield (Table 1, entry 6) with excellent α -selectivity. In sharp contrast, the reaction yield of O-sialylation under similar reaction conditions was extraordinarily high (96%), but with declined α -selectivity ($\alpha/\beta = 2.7:1$).^{9d} Similarly, as described in our previous work, the larger of excess (p-Tol)₂SO (3 equiv.) may produce C2-sialyloxosulfonium supramer **9a/9b**,^{9d} the third crucial intermediate, which accounts for the above experimental results. It is suggested that the sialyloxosulfonium species have following relative electrophilicity ranking: $8b > 8a > 9a \cong 9b$. In addition, the C- and O-nucleophiles should fit the relative nucleophilicity order: alcohol > trimethylsilyl enol ether or allyltrimethylsilane.¹² Therefore, alcohol reacts with 9a/9b to give high reaction yield and low α-selectivity; with 8a/8b to afford low reaction yield and high α -selectivity.^{9d} The nucleophilicity of trimethylsilyl enol ether is too weak to attack 9a/9b which could be the major intermediate with 4 equiv. of (p-Tol)₂SO used for the sialylation (Table 1, entry 6), and consequently the yield of the C-sialylation is poor. Noticeably, with 2-3 equiv. of (p-Tol)₂SO (Table 1, entries 4 and 5) trimethylsilyl enol ether mainly attacks 8a/8b, especially the more reactive **8b**, to provide higher product yield and excellent α -selectivity.

To further verify the effectiveness of $(p\text{-}Tol)_2\text{SO/Tf}_2\text{O}$ as a promoting system for *C*-sialylation, a series of trimethylsilyl enol ethers and allyltrimethylsilanes were applied to the *C*-glycosylation with thiosialoside **1** as donor under identical conditions (Table 3). All these neutral π -nucleophiles have varying nucleophilicity values (N = 1.8-9.0) as defined by Mayr and co-workers.¹³

The nucleophilicity of silyl enol ethers plays an important role in the *C*-sialylation. Both high reaction yield and exquisite α -selectivity were obtained in the *C*-sialylation of donor **1** with enoxy silane nucleophiles **3**, **10**, **12**, **14** (N = 5.2-8.2, Table 3, entries **1**, 4–6).^{13,14} When a weak nucleophile **16** (N = 3.8) was employed for the electrophilic substitution, the ketone **17** was obtained in moderate yield, but with low stereoselectivity (α/β = 2.6 : 1, Table 3, entry 7). Similar results were also reported during the *C*-sialylation of *N*-acetyloxazolidinone protected sialyl phosphate (2) with **16**.^{8a} With strong nucleophiles **18** and **20** (N = 8.2 and 9.0, respectively) derived from esters, only single α isomers were obtained in 72–84% yields. Application of this method to the preparation of sialyl aldehyde **23** from trimethylsiloxyethene (**22**) gave exclusive α -selectivity and 43%

Scheme 1 Three proposed crucial intermediates in the sialylation of thiosialoside 1 with $(p-Tol)_2SO/Tf_2O$.

yield. Comparing the glycosylations with **16** and **22** as nucleophiles, the yields are comparative, but glycal 7 was obtained in lower yield in the case of **22** than that of **16**, suggesting that aldehyde **23** was partially decomposed during flash chromatography due to its instability to silica gel.

With allyltrimethylsilane **24** as a sialyl acceptor with a poor *N* value (*N* = 1.8), the coupling reaction provided **25** in 50% yield and very low stereoselectivity ($\alpha/\beta = 1:1.2$, Table 3, entry 12). However, in the case of **26** with a higher *N* value (*N* = 4.4), the *C*-sialylation yield jumped to 86%, and the stereoselectivity was also significantly improved from $\alpha/\beta = 1:1.2$ to α only (Table 3, entry 14). The results further illustrated that the *C*-sialylation is sensitive to the nucleophilicity values, and strong nucleophiles (either trimethylsilyl enol ethers or allyltrimethylsilane) give both higher yields and α -selectivities.

The β -anomer $\mathbf{1\beta}^{15}$ was also examined for the *C*-sialylation with trimethylsilyl enol ethers 3 and 22, and allyltrimethylsilane 24 as nucleophiles (Table 3, entries 3, 11 and 13). Similar reaction yields and stereoselectivities were obtained compared with the corresponding reactions with 1α as donor (Table 3, entries 1, 10 and 12). The results are different from the C-sialylation reported by Crich and co-workers,^{8a} wherein the reaction yield or α -selectivity was highly dependent on the anomer configuration of sially phosphate donor 2, and 2α was more favorable for C-sialylation than 2β . Because the preactivation protocol was utilized for the glycosylation in this study, with anomer 1α as donor the crucial intermediates 6, 8a/8b and 9a/9b and their equilibrium concentrations should be nearly the same as those with anomer 1β as donor (Scheme 1). As a result, donors 1α and 1β have no distinguishable effects on the C-sialylation. In addition, to demonstrate the practicality of the current C-sialylation strategy, the model C-sialylation was successfully scaled up from the preparation of ~35 mg of ketone 4 (Table 3, entry 1) to ~140 mg (Table 3, entry 2) in high yields (82-88%). The anomeric stereochemistry of all new coupling products was assigned on the basis of ${}^{3}J_{C1,H3ax}$ coupling constants.^{5c,16} Generally, the α isomers of the C-sialylations have higher ${}^{3}J_{C1,H3ax}$ coupling constants varying from 6.6 to 7.6, which are consistent with the data described in literature.^{5c}

Conclusion

In summary, in spite of the development of a few *C*-sialylation strategies in sialic acid chemistry, herein is described the first direct *C*-sialylation of *N*-acetyloxazolidinone¹⁷ protected thiosialoside based on a preactivation protocol with (*p*-Tol)₂SO/Tf₂O. The efficiency of the *C*-sialylation is not only regulated by the reaction conditions, especially the added amount of (*p*-Tol)₂SO, but also dependent on the reactivity of the nucleophiles. High reaction yield and excellent α -selectivity were obtained for strong π -nucleophiles with large nucleophilicity values (*N* = 4.4–9.0), irrespective of whether silyl enol ethers, silyl ketene acetals or allyltrimethylsilane were used for the electrophilic *C*-sialylation. The *C*-sialylation methodology developed in this study simplifies the existing synthetic route to build sialyl *C*-glycosides and affords a powerful tool to explore the syntheses of complex *C*-sialylconjugates and glycomimetics.

Experimental

General

All chemicals were purchased as reagent grade and used without further purification. Dichloromethane was distilled over calcium hydride (CaH_2) . The reactions between donor 1 and different acceptors were carried out under anhydrous conditions (argon atmosphere) with anhydrous solvent. Reactions were monitored by analytical thin-layer chromatography on silica gel F254 glass plates. Spots were detected under UV (254 nm) or by staining with a solution of acidic ceric ammonium molybdate and EtOH-H₂SO₄ (3%). Flash column chromatography was performed on silica gel (200-300 mesh). ¹H NMR spectra were recorded with a 400 MHz NMR spectrometer at 20 °C. Chemical shifts (in ppm) were referenced to tetramethylsilane (δ = 0 ppm) in deuterated chloroform. ¹³C NMR spectra were recorded with a 400 MHz NMR spectrometer (100 MHz) and calibrated with $CDCl_3$ (δ = 77.23 ppm). High-resolution mass spectra were recorded using electrospray ionization (ESI).

Table 3 C-Sialylation of thiosialoside donor 1 with various trimethylsilyl enol ethers and allyltrimethylsilanes

$$\begin{array}{c} AcO & OAc & CO_2Me \\ \hline AcO & & & \\ AcO & & \\ \hline CH_2CI_2 & -70^\circ C & -50^\circ C \\ \hline AcO & & \\ \hline CH_2CI_2 & -70^\circ C & -50^\circ C \\ \hline AcO & & \\ \hline AcO &$$

Entry	Donor	Nucleophile	N value ^a	Product	Yield ^b	$\alpha:\beta^{c}$
1 ^{<i>d</i>}	1α	OTMS Ph 3	6.2	Aco Aco OAc CO ₂ Me	82%	α
2 ^e 3 4	1α 1β 1α	3 3 OTMS	6.2 6.2 6.2–8.2	$\begin{array}{c} 4 \\ 4 \\ AcO \\ AcO \\ AcN \\ O \end{array} \begin{array}{c} CO_2 Me \\ CO_2 Me \\ O \end{array}$	88% 86% 95%	α α α
5	1α	10 OTMS 12	5.4	11 MeO Aco Aco OAc CO ₂ Me Acn O 13	96%	α
6 ^{<i>d</i>}	1α	—отмя 14	5.2	Aco OAc CO ₂ Me	71%	α
7 ^{<i>d</i>}	1α	⊖ ^{OTMS} t-Bu 16	3.8	ACO ACO DAC CO ₂ Me ACN CO T t-BU	37% + 54% 7	2.6:1
8	1α	OTMS	8.2	ACO OAC CO ₂ Me ACO OAC TO PhO 0 19 PhO	72%	α
9	1α	18 OMe OTMS 20	9.0	AcO OAc CO ₂ Me	84%	α
$10^{d,f}$	1α	OTMS 22	_	ACO ACO OAC CHO	43% + 26% 7	α
11^{f} $12^{d,f}$	1β 1α	22 	 1.8	^O 23 ²³ ^{ACO} OAc CO ₂ Me ^{ACO} 25	40% + 24% 7 50% + 50% 7	α 1:1.2
13 ^{<i>f</i>} 14	1β 1α	²⁴ ————————————————————————————————————	1.8 4.4	Aco Aco OAc CO_2Me	45% + 49% 7 86%	1:1 α

^{*a*} See ref. 13 and 14. ^{*b*} Yield of isolated products. ^{*c*} Determined by ¹H NMR spectroscopy. ^{*d*} The ¹H NMR spectroscopic data are consistent with those reported in ref. 8*a*. ^{*e*} A large-scale sialylation was carried out with 160 mg of donor 1α used for the reaction. ^{*f*} 10.0 equiv. of acceptor was used in the reaction.

General coupling protocol for the C-salylation

A solution of sialyl donor (0.069 mmol, 1 equiv.), $(Tol)_2SO$ (0.138 mmol, 2 equiv.) and activated 4 Å powdered sieves in anhydrous dichloromethane (2 mL) was stirred for 15 min at -70 °C under argon, followed by addition of Tf₂O (13.4 µL, 1.2 equiv.). After stirring the mixture for 30 min, a solution of

acceptor (5 equiv.) in anhydrous dichloromethane (1 mL) was added. The resulting mixture was then stirred for 2.0 hours at -70 °C then warmed to -50 °C for another 2.0 hours. After quenching with Et₃N (0.1 mL), the mixture was diluted with dichloromethane (50 mL), filtered through Celite[®], washed with saturated brine (10 mL × 3), dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was

purified by silica gel column chromatography eluting with a petroleum ether–EtOAc system to give the coupling products.

Methyl (2-C-(2-oxa-2-p-methoxylphenylethyl)-5-N-acetamido-7,8,9-tri-O-acetyl-5-N,4-O-carbonyl-3,5-dideoxy-D-glycero-α-Dgalacto-non-2-ulopyranitol)onate (11). This compound was prepared according to the general procedure for C-sialylation with a sialyl donor 1α (40.1 mg, 0.069 mmol) and 10 (76.7 mg, 0.345 mmol). Purification by column chromatography over silica gel (hexanes-AcOEt = 1:1) gave the desired product (39.8 mg, 95%) as colorless viscous oil. ¹H NMR (400 MHz, $CDCl_3$: $\delta = 7.96$ (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 5.45 (d, J = 6.7 Hz, 1H), 5.17 (dt, J = 2.6, 6.7 Hz, 1H), 4.62 (d, J = 9.4 Hz, 1H), 4.25 (dd, J = 2.6, 12.2 Hz, 1H), 4.19 (dt, J = 3.3, 12.5 Hz, 1H), 3.88 (s, 3H), 3.86 (dd, J = 6.8, 12.2 Hz, 1H), 3.77 (s, 3H, COOCH₃), 3.57 (d, J = 14.8 Hz, 1H), 3.56 (t, J = 9.5 Hz, 1H), 3.30 (d, J = 14.8 Hz, 1H), 2.87 (dd, J = 3.5, 12.4 Hz, 1H, H-3eq), 2.47 (s, 3H), 2.31 (t, J = 12.7 Hz, 1H, H-3ax), 2.13 (s, 3H), 2.03 (s, 3H), 1.93 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 193.9, 172.1, 171.5 (C1, ${}^{3}J_{C1,H3ax}$ = 7.1 Hz), 170.6, 170.4, 169.8, 164.0, 153.7, 131.1, 130.1, 113.7, 78.5, 75.8, 75.6, 72.2, 70.1, 62.7, 59.4, 55.6, 52.9, 46.1, 35.1, 24.7, 21.1, 20.8, 20.7 ppm; HRMS (ESI-TOF): m/z calcd for C₂₈H₃₃NO₁₄Na $[M + Na]^+$ 630.1799, found: 630.1771.

Methyl (2-C-(2-oxa-2-methylethyl)-5-N-acetamido-7,8,9-tri-Oacetyl-5-N,4-O-carbonyl-3,5-dideoxy-D-glycero-a-D-galacto-non-2-ulopyranitol)onate (13). This compound was prepared according to the general procedure for C-sialylation with a sialyl donor 1α (40.1 mg, 0.069 mmol) and 12 (45.0 mg, 0.345 mmol). Purification by column chromatography over silica gel (hexanes-AcOEt = 1:1) gave the desired product (34.1 mg, 96%) as colorless viscous oil. ¹H NMR (400 MHz, $CDCl_3$: $\delta = 5.50$ (dd, J = 1.5, 6.1 Hz, 1H), 5.30 (dt, J = 2.5, 7.4 Hz, 1H), 4.71 (dd, J = 1.4, 9.4 Hz, 1H), 4.40 (dd, J = 2.5, 12.2 Hz, 1H), 4.13 (dt, J = 3.6, 12.9 Hz, 1H), 3.95 (dd, J = 7.4, 12.2 Hz, 1H), 3.78 (s, 3H, COOCH₃), 3.61 (dd, J = 9.6, 10.9 Hz, 1H), 3.05 (d, J = 15.3 Hz, 1H), 2.85 (d, J = 15.3 Hz, 1H), 2.72 (dd, J = 3.6, 12.3 Hz, 1H, H-3eq), 2.48 (s, 3H), 2.22 (s, 3H), 2.19 (t, J = 12.6 Hz, 1H, H-3ax), 2.14 (s, 3H), 2.11 (s, 3H), 2.05(s, 3H) ppm; 13 C NMR (100 MHz, CDCl₃): δ 203.9, 172.2, 171.4 (C1, ${}^{3}J_{C1,H3ax}$ = 7.6 Hz), 170.8, 170.4, 169.9, 153.6, 77.9, 76.1, 75.3, 72.7, 70.6, 63.1, 59.3, 53.0, 51.1, 34.9, 31.7, 24.7, 21.1, 20.8 ppm; HRMS(ESI-TOF): m/z calcd for $C_{22}H_{29}NO_{13}Na$ $[M + Na]^+$ 538.1537, found: 538.1528.

Methyl (2-*C*-(2-oxa-2-phenoxylethyl)-5-*N*-acetamido-7,8,9-tri-*O*-acetyl-5-*N*,4-*O*-carbonyl-3,5-dideoxy-*D*-*glycero*-α-*D*-*galacto***non-2-ulopyranitol)onate (19).** This compound was prepared according to the general procedure for *C*-sialylation with a sialyl donor 1α (40.1 mg, 0.069 mmol) and 18 (71.9 mg, 0.345 mmol). Purification by column chromatography over silica gel (hexanes–AcOEt = 1:1) gave the desired product (29.5 mg, 72%) as white solid. M.p. 62–63 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.38 (t, *J* = 7.9 Hz, 2H), 7.24 (t, *J* = 7.4 Hz, 1H), 7.12 (d, *J* = 7.7 Hz, 2H), 5.48 (dd, *J* = 1.6, 5.4 Hz, 1H), 5.40 (dt, *J* = 2.6, 7.6 Hz, 1H), 4.74 (dd, *J* = 1.6, 9.3 Hz, 1H), 4.41 (dd, *J* = 2.6, 12.2 Hz, 1H), 4.13 (dt, *J* = 3.4, 12.9 Hz, 1H), 4.04 (dd, *J* = 7.4, 12.1 Hz, 1H), 3.83 (s, 3H, COOCH₃), 3.72 (dd, *J* = 9.6, 10.9 Hz, 1H), 3.19 (d, *J* = 14.8 Hz, 1H), 3.02 (d, *J* = 14.8 Hz, 1H), 2.87 (dd, *J* = 3.5, 12.2 Hz, 1H, H-3eq), 2.49 (s, 3H), 2.40 (t, *J* = 12.7 Hz, 1H, H-3ax), 2.13 (s, 3H), 2.07 (s, 3H), 1.93 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 172.1, 171.0 (C1, ³*J*_{C1,H3ax} = 6.8 Hz), 170.6, 170.5, 170.0, 166.6, 153.4, 150.3, 129.4, 126.1, 121.4, 78.1, 76.6, 75.4, 73.0, 70.8, 62.9, 59.3, 53.2, 43.7, 35.2, 24.7, 21.1, 20.7 ppm; HRMS(ESI-TOF): *m/z* calcd for C₂₇H₃₁NO₁₄Na [M + Na]⁺ 616.1642, found: 616.1621.

Methyl (2-C-(1,1-dimethyl-2-oxa-2-methoxylethyl)-5-N-acetamido-7,8,9-tri-O-acetyl-5-N,4-O-carbonyl-3, 5-dideoxy-D-glyceroα-D-galacto-non-2-ulopyranitol)onate (21). This compound was prepared according to the general procedure for C-sialylation with a sialyl donor 1α (40.1 mg, 0.069 mmol) and 20 (70.0 µL, 0.345 mmol). Purification by column chromatography over silica gel (hexanes-AcOEt = 1:1) gave the desired product (32.4 mg, 84%) as colorless viscous oil. ¹H NMR (400 MHz, $CDCl_3$: $\delta = 5.51$ (dd, J = 1.6, 6.5 Hz, 1H), 5.40 (dt, J = 2.7, 6.8 Hz, 1H), 4.50 (dd, J = 1.5, 9.4 Hz, 1H), 4.37 (dd, J = 2.6, 12.2 Hz, 1H), 4.08 (dd, J = 6.9, 12.2 Hz, 1H), 3.85 (dt, J = 3.7, 12.7 Hz, 1H), 3.79 (s, 3H, C1OOCH₃), 3.73 (s, 3H), 3.57 (dd, J = 9.6, 11.1 Hz, 1H), 2.79 (dd, J = 3.8, 12.1 Hz, 1H, H-3eq), 2.68 (t, J = 12.6 Hz, 1H, H-3ax), 2.47 (s, 3H), 2.14 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.31 (s, 3H), 1.21 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 173.7, 171.6, 170.3, 170.0, 169.9 (C1, ${}^{3}J_{C1,H3ax}$ = 6.8 Hz), 169.4, 153.3, 84.2, 76.1, 75.7, 72.5, 69.8, 62.5, 58.7, 52.3, 51.7, 49.1, 31.6, 24.3, 20.9, 20.8, 20.7, 20.4 ppm. HRMS(ESI-TOF): m/z calcd for $C_{24}H_{34}NO_{14}$ $([M + H])^+$ 560.1979, found: 560.1980.

Methyl (2-C-(2-methylallyl)-5-N-acetamido-7,8,9-tri-O-acetyl-5-N,4-O-carbonyl-3,5-dideoxy-D-glycero-α-D-galacto-non-2-ulopyranitol)onate (27). This compound was prepared according to the general procedure for C-sialylation with a sialyl donor 1α (40.1 mg, 0.069 mmol) and 26 (61.0 µL, 0.345 mmol). Purification by column chromatography over silica gel (hexanes-AcOEt = 2:1) gave the desired product (30.5 mg, 86%) as colorless viscous oil. ¹H NMR (400 MHz, CDCl₃): δ = 5.55 (dd, J = 1.4, 6.0 Hz, 1H), 5.40 (dt, J = 2.7, 6.9 Hz, 1H), 4.96 (s, 1H), 4.79 (s, 1H), 4.50 (dd, J = 2.4, 12.2 Hz, 1H), 4.42 (dd, J = 1.4, 9.4 Hz, 1H), 4.07 (dd, J = 7.0, 12.2 Hz, 1H), 4.00 (dt, J = 3.6, 12.8 Hz, 1H), 3.77 (s, 3H, COOCH₃), 3.60 (dd, J = 9.5, 11.1 Hz, 1H), 2.72 (dd, *J* = 3.6, 12.2 Hz, 1H, H-3eq), 2.60 (d, *J* = 13.8 Hz, 1H), 2.48 (d, J = 13.8 Hz, 1H), 2.48 (s, 3H), 2.14 (s, 3H), 2.11 (s, 3H), 2.06 $(t, J = 12.5 \text{ Hz}, 1\text{H}, \text{H}-3ax), 2.05 (s, 3\text{H}), 1.84 (s, 3\text{H}) \text{ ppm}; {}^{13}\text{C}$ NMR (100 MHz, CDCl₃): δ = 172.3 (C1, ${}^{3}J_{C1,H3ax}$ = 6.6 Hz), 170.4, 170.2, 169.6, 153.5, 139.7, 116.6, 80.9, 76.1, 75.7, 72.5, 70.6, 62.6, 59.3, 52.5, 46.5, 34.4, 24.5, 23.5, 20.9, 20.5 ppm; HRMS(ESI-TOF): m/z calcd for $C_{23}H_{32}NO_{12}([M + H])^+$ 514.1925, Found 514.1917.

Acknowledgements

The project was financially supported by the National Natural Science Foundation of China (21272027, 20502002), Beijing Natural Science Foundation (2122031) and Beijing Municipal Commission of Education.

Notes and references

- (a) R. Schauer, Sialic Acid: Chemistry, Metabolism and Function, Springer, New York, 1982, vol. 10; (b) Biology of the Sialic Acids, ed. A. Rosenberg, Plenum, New York, 1995; (c) T. Angata and A. Varki, Chem. Rev., 2002, 102, 439.
- 2 (a) D. E. Levy and C. Tang, *The Chemistry of C-Glycosides*, Pergamon, Oxford, 1995; (b) X. J. Yuan and R. J. Linhardt, *Curr. Top. Med. Chem.*, 2005, 5, 1393; (c) H. Ando and M. Kiso, in *Glycoscience: Chemistry and Chemical Biology*, ed. B. O. Fraser-Reid, K. Tatsuta and J. Thiem, Spring-Verlag, New York, 2nd edn, 2008, vol. 2, pp. 1313–1360; (d) B. Vauzeilles, D. Urban, G. Doisneau and J.-M. Beau, in *Glycoscience: Chemistry and Chemical Biology*, ed. B. O. Fraser-Reid, K. Tatsuta and J. Thiem, Spring-Verlag, New York, 2nd edn, 2008, vol. 3, pp. 2021–2078; (e) G.-J. Boons and A. V. Demchenko, in *Carbohydrate-Based Drug Discovery*, ed. C.-H. Wong, Wiley-VCH, Weinheim, 2003, vol. 1, pp. 55–102.
- 3 (a) H. Paulsen and P. Matschulat, *Liebigs Ann. Chem.*, 1991, 487; (b) K. Walliman and A. Vasella, *Helv. Chim. Acta*, 1991, 74, 1520; (c) J. Nagy and M. Bednarski, *Tetrahedron Lett.*, 1991, 32, 3953.
- 4 (a) I. R. Vlahov, P. I. Vlahova and R. J. Linhardt, J. Am. Chem. Soc., 1997, 119, 1480; (b) T. Polat, Y. Du and R. J. Linhardt, Synlett, 1998, 1195; (c) Y. Du, T. Polat and R. J. Linhardt, Tetrahedron Lett., 1998, 39, 5007; (d) H. G. Bazin, Y. Du, T. Polat and R. J. Linhardt, J. Org. Chem., 1999, 64, 7254; (e) B. Kuberan, S. A. Sikkander, H. Tomiyama and R. J. Linhardt, Angew. Chem., Int. Ed., 2003, 42, 2073; (f) K. R. Dino, S. N. Baytas, Q. Wang, E. M. Munoz, K. Tukuzoki, H. Tomiyama and R. J. Linhardt, J. Org. Chem., 2005, 70, 8197; (g) X. Yuan, D. K. Ress and R. J. Linhardt, J. Org. Chem., 2007, 72, 3085; (h) J.-H. Kim, F. Huang, M. Ly and R. J. Linhardt, J. Org. Chem., 2008, 73, 9497.
- 5 (a) Z. Abdallah, G. Doisneau and J. M. Beau, Angew. Chem., Int. Ed., 2003, 42, 5209; (b) A. Malapelle, Z. Abdallah, G. Doisneau and J. M. Beau, Angew. Chem., Int. Ed., 2006, 45, 6016; (c) A. Malapelle, A. Coslovi, G. Doisneau and J. M. Beau, Eur. J. Org. Chem., 2007, 3145; (d) A. Malapelle, Z. Abdallah, G. Doisneau and J. M. Beau, Heterocycles, 2009, 77, 1417.
- 6 (a) W. Notz, C. Hartel, B. Waldscheck and R. R. Schmidt, J. Org. Chem., 2001, 66, 4250; (b) G. Hirai, T. Watanabe,

K. Yamaguchi, T. Miyagi and M. Sodeoka, *J. Am. Chem. Soc.*, 2007, **129**, 15420; (*c*) T. Watanabe, G. Hirai, M. Kato, D. Hashizume, T. Miyagi and M. Sodeoka, *Org. Lett.*, 2008, **10**, 4167.

- 7 (a) H. Kunz, J. Weiβmüller and B. Müller, *Tetrahedron Lett.*, 1984, 25, 3571; (b) H. Kunz, B. Müller and J. Weissmüller, *Carbohydr. Res.*, 1987, 171, 25.
- 8 (*a*) A. Noel, B. Delpech and D. Crich, *Org. Lett.*, 2012, **14**, 1342; (*b*) C.-H. Hsu, K.-C. Chu, Y.-S. Lin, J.-L. Han, Y.-S. Peng, C.-T. Ren, C.-Y. Wu and C.-H. Wong, *Chem.-Eur. J.*, 2010, **16**, 1754.
- 9 (a) F. F. Liang, L. Chen and G. W. Xing, Synlett, 2009, 425;
 (b) L. Chen, F. F. Liang, M. F. Xu, G. W. Xing and Z. W. Deng, Acta Chim. Sinica, 2009, 67, 1355; (c) G. W. Xing, L. Chen and F. F. Liang, Eur. J. Org. Chem., 2009, 5963;
 (d) Y. J. Wang, J. Jia, Z. Y. Gu, F. F. Liang, L. Chen, R. C. Li, M. H. Huang, C. S. Xu, J. X. Zhang, Y. Men and G. W. Xing, Carbohydr. Res., 2011, 346, 1271; (e) Z. Y. Gu, J. X. Zhang and G. W. Xing, Chem.-Asian J., 2012, 7, 1524; (f) Y. J. Wang, Z. Y. Gu and G. W. Xing, Chem.-Asian J., 2012, 7, 489.
- 10 D. Crich and W. Li, Org. Lett., 2006, 8, 959.
- 11 The second equivalent of the sulfoxide may play an analogous role to nitriles, which were used as the solvents in α-selective O-sialylations. See: (a) P. Sinäy and J. R. Pougny, *Tetrahedron Lett.*, 1976, 17, 4073; (b) R. R. Schmidt and J. Michel, *J. Carbohydr. Chem.*, 1985, 4, 141.
- 12 See the database of nucleophilicities and electrophilicities at http://www.cup.lmu.de/oc/mayr/DBintro.html
- 13 H. Mayr, B. Kempf and A. R. Ofial, *Acc. Chem. Res.*, 2003, **36**, 66.
- 14 J. P. Krumper, W. A. Salamant and K. A. Woerpel, *J. Org. Chem.*, 2009, **74**, 8039.
- 15 B. Sun and H. Jiang, *Tetrahedron Lett.*, 2011, **52**, 6035.
- 16 (a) H. Hori, T. Nakajima, Y. Nishida, H. Ohrui and H. Meguro, *Tetrahedron Lett.*, 1988, 29, 6317; (b) S. Prytulla, J. Lauterwin, M. Klssinger and J. Thiem, *Carbohydr. Res.*, 1991, 215, 345.
- 17 The 5-*N*,4-*O*-oxazolidinone protective group has a significant α -direction effect in sialylations, and recently Crich and co-workers conducted a deep study to explain the effect, see: P. K. Kancharla, C. Navuluri and D. Crich, *Angew. Chem., Int. Ed.*, 2012, **51**, 11105.