
Enantioselective Synthesis of 3‑Allylindolizines via Sequential Rh-
Catalyzed Asymmetric Allylation and Tschitschibabin Reaction
Ke Li and Changkun Li*

Cite This: https://dx.doi.org/10.1021/acs.orglett.0c03383 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The first highly regio- and enantioselective synthesis
of 3-allylindolizines has been developed by the sequential Rh-
catalyzed asymmetric allylation and Tschitschibabin reaction.
Above the 20:1 branch/linear ratio, up to a 96% yield and 99%
ee could be obtained with the help of tert-butyl-substituted chiral
bisoxazolinephosphine ligand. In situ generated highly nucleophilic
2-alkylpyridinium ylides are utilized to undergo the asymmetric
alkylation reaction before cyclization.

As one of the privileged nitrogen-containing heterocycles,
the indolizine skeleton can be found in many biologically

active molecules1 and fluorescent sensors.2 In addition, its
saturated counterpart, the indolizidine, is the core structure of
various alkaloids, such as (−) 205B and 261C.3 Although the
late stage functionalization of the C3 position of existing
indolizine molecules provides a straightforward synthetic
method to many new indolizine derivatives, the asymmetric
versions remained very rare. Indolizines usually react as
electron-rich heterocycles in Friedel−Crafts type transforma-
tions, such as Michael addition with quinone methides and
acid-activated α,β-unsaturated ketones, Cu-catalyzed asym-
metric propargylation, and ring-opening of aziridines, in which
highly reactive electrophiles are usually generated (Scheme
1A).4 Due to the lack of activation mode on the indolizine
skeleton, a new strategy for the asymmetric synthesis of chiral
indolizines derivatives is highly desired.
Tschitschibabin reaction is a frequently utilized synthetic

approach to indolizines, involving the base-promoted intra-
molecular condensation of 1-(2-oxoalkyl)-2-methylpyridinium
salts by removing proton HA (Scheme 1B).5 We envisioned
that an alkylation of the α-carbon of the ketone before the
cyclization would lead to an interrupted Tschitschibabin
process, in which a 3-substituted indolizine could be generated.
The strong nucleophilicity of the pyridinium ylides is expected
to extend the scope of electrophiles.6 The challenge is to
guarantee the alkylation of pyridinium ylide occurs before the
Tschitschibabin cyclization when less reactive electrophiles are
utilized.
Transition-metal-catalyzed regio- and enantioselective allylic

substitutions provide powerful methods to construct new
carbon−carbon and carbon−heteroatom bonds.7 Our group
recently developed a new catalyst based on Rh8 and chiral
bisoxazolinephosphine ligands (NPN*) to realize the highly
branch-selective allylic alkylation of a variety of weakly acidic
nitrogen, oxygen, carbon, and sulfur pronucleophiles.9 The
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Scheme 1. Synthesis Chiral 3-Allylindolizines by
Interrupted Tschitschibabin Reaction
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carbonate or the alkoxide anion generated during the
formation of the π-allyl rhodium intermediate could be used
as the mild base to activate the neutral pronucleophiles. This
small amount of gradually released base is expected to
selectively remove the HB in the pyridinium salts to achieve
the interrupted Tschitschibabin reaction. Herein, we report a
Rh/NPN*-catalyzed highly regio- and enantioselective allylic
alkylation of pyridinium salts and base-promoted cyclization
sequence to prepare 3-substituted indolizines (Scheme 1C).
Chiral 3-allylindolizines bearing aliphatic groups could be
synthesized from 2-alkylpyridines and α-bromoketones. Above
the 20:1 branch/linear ratio, up to a 96% yield and 99% ee
could be obtained with the help of the chiral bisoxazoline-
phosphine ligand with tert-butyl groups on the oxazoline rings.
We started the study with racemic allylic carbonate 1a and 2-

methyl-1-(2-oxo-2-phenylethyl)pyridin-1-ium bromide 2a as
the model substrates (Table 1). The reactions were conducted

with 2.5 mol % [Rh(cod)Cl]2 and 6 mol % chiral NPN ligand
in acetonitrile (0.15 M) at 40 °C for 24 h. A 4 equiv amount of
Cs2CO3 was then added into the reaction tube to promote the
cyclization. The substituent R2 on the oxazoline rings in the
NPN ligands has a significant influence on the reactivity and
selectivity of the reaction. Reactions in the presence of L1 and

L2 with methyl and benzyl respectively gave the desired
product 3aa in low yield, branch/linear ratio, and enantiose-
lectivity (entries 1 and 2). A large amount of side product 3aa′
was obtained.10 However, L3 and L4 with bulkier isopropyl
and phenyl groups lead to moderate yields, above the 20:1
branch/linear ratio and 98% ee for 3aa (entries 3 and 4). To
our delight, full conversion of the allylic carbonate 1a was
observed when L5 with a tert-butyl group was applied (entry
5), which might be caused by the noncovalent dispersion
interaction between the ligand and the substrate.11 Compound
3aa was isolated in 95% yield, >20:1 b/l ratio, and 99% ee. The
effect of the R1 group on the phosphine atom was further
investigated. For highly effective ligands with a tert-butyl group,
the electron-donating or electron-withdrawing groups at the R1

position have little effect on the outcome of the reactions
(entries 6 and 7). Nevertheless, an inferior effect of the 4-OMe
group in L8 was observed by comparison to L4 with the
isopropyl group at R2 (entry 8). The reaction at room
temperature was less efficient (entry 9). Higher temperature
(60 °C) caused the faster consumption of 2a to form more
cyclization byproduct 3aa′ (entry 10). CH3CN was proven to
be superior compared to other solvents examined.
With the optimized reaction conditions in hand (entry 5,

Table 1), we then investigated the scope of allylic carbonates
(Scheme 2). The reactions of allylic carbonates with simple
methyl, phenylethyl, and benzylether protected alkyl groups
afford the desired chiral 3-allylindolizines in high yields and
99% ee (3ba, 3ca, and 3da). The formation of 3ba could be
conducted in 5 mmol scale without erosion of reactivity and

Table 1. Optimization of the Reaction Conditionsa

entry L* 3aa/3aa′b yield (%)c ee (%)d B/Le

1 L1 0.25:1 23 33 3:1
2 L2 0.24:1 21 23 2:1
3 L3 1.38:1 65 98 >20:1
4 L4 1.05:1 61 98 >20:1
5 L5 3.85:1 95 99 >20:1
6 L6 2.99:1 88 >99 13:1
7 L7 2.64:1 85 99 >20:1
8 L8 0.88:1 51 98 12:1
9f L5 2.15:1 82 99 >20:1
10g L5 1.75:1 76 99 >20:1

aAll reactions were run with 2.5 mol % catalyst precursor and 6 mol %
ligand on a 0.3 mmol scale at 40 °C for 24 h unless otherwise noted,
and the reactions with 4 equiv Cs2CO3 were conducted in the
presence of air. bThe ratios were determined by 1H NMR. cYield of
isolated product. dThe enantiomeric excess values were determined
by HPLC analysis with a chiral column. eThe ratios of branch
products to linear products were determined by 1H NMR. fThe
reaction was carried out at room temperature. gThe reaction was
carried out at 60 °C.

Scheme 2. Reaction Scope of Allylic Carbonatesa

aAll reactions were run with 2.5 mol % catalyst precursor and 6 mol %
ligand on a 0.3 mmol scale at 40 °C for 24 h unless otherwise noted,
and the reactions with 4 equiv of Cs2CO3 were conducted in the
presence of air. bReaction at 5 mmol scale. cThe ee value was
determined after the hydroboration/oxidation sequence. d1.5 equiv of
allyl carbonate, 1.0 equiv of 2a, and 3 equiv of BSA were used and the
reaction was run for 72 h. e1.5 equiv of allyl carbonate, 1.0 equiv of 2a,
and 3 equiv of BSA were used and the reaction was run for 48 h. f2.0
equiv of allyl carbonate, 1.0 equiv of 2a, and 3 equiv of BSA were used
and the reaction was run for 72 h.
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selectivities. The absolute configuration of 3ba was assigned to
be R by the single crystal X-ray diffraction analysis. In addition,
allyl carbonates with β-branched isobutyl (3ea) and α-
branched cyclopropyl groups react smoothly to give the
allylation products in high yields and ee (3ea and 3fa).
Sterically more hindered cyclohexyl, isopropyl, and phenyl
groups in the allylic carbonates cause the reactions to become
sluggish. To our delight, high conversions could be obtained by
changing the reaction conditions appropriately. More allylic
carbonates, extra base N,O-bis(trimethylsilyl)acetamide
(BSA), and a longer reaction time were necessary to obtain
high yields for 3ga, 3ha, and 3ia.
To further explore the substrate scope, various 2-

alkylpyridinium salts were synthesized and evaluated (Scheme
3). Several α-bromoacetophenones could be used in this

transformation. Electron-donating and -withdrawing groups as
well as bromide at para-, meta-, and ortho- positions on the
phenyl ring of the ketone have neglectable effect on the yields
and ee (3ab, 3ac, and 3ad). Moreover, the phenyl ring could be
replaced by a simple methyl group when α-bromoacetone was
used to prepare the pyridinium salts (3ae). Besides the ketone
side, the 2-methylpyridine part could also be modified.
Application of 2-ethyl and 2-benzylpyridines in the pyridinium
salts preparation led to the formatin of 1-methyl and 1-phenyl
3-allylindolizines in high yields and ee when electron-
withdrawing L7 was used as ligand (3af and 3ag). In addition,
the pyridinium salts from 2,3-dimethylpyridine and 5-bromo-2-
methylpyridine could be converted to the 3-allylindolizines
with a 5- and 7-substituent successfully (3ah and 3ai).

To demonstrate the broad scope of this Rh-catalyzed allyl
substitution reaction, linear allylic methyl carbonates with both
Z and E geometries were tested. When L4 was used as the
ligand instead of L5, Z-1j could be transformed smoothly to
the branched product 3aa with a 10:1 branch/linear ratio, 91%
yield, and >99% ee (Scheme 4, eq 1). For E-1k, ligand L8

could lead to a higher yield and selectivity (eq 2). Both
branched and linear allylic carbonates react to give the same
branched 3-allylindolizine 3aa.
Some control experiments were conducted to understand

the reaction mechanism (Scheme 5). First, without Cs2CO3

addition, the allylated bicyclic pyridinium salts intermediate 4
was isolated as 1:1.3 diastereomer mixture in 87% yield, along
with 9% of 3aa (eq 3). Compound 4 reacts with Cs2CO3 in
CH3CN to give 3aa in 93% yield and 99% ee. However, the
corresponding allylation product 4 cannot be obtained from
the bicyclic pyridinium salt 510 under otherwise identical
conditions (eq 4). The in situ generated methoxide base is
prone to remove the HB

first (Scheme 1B). The allylic
alkylation of the α-carbon of ketone in 2a may occur before the
cyclization. This was further confirmed by the fact that
pyridinium salt 6 without the 2-methyl group could react
under the identical conditions to give 7 in 93% yield with a

Scheme 3. Reaction Scope of 2-Substituted Pyridinium
Saltsa

aAll reactions were run with 2.5 mol % catalyst precursor and 6 mol %
ligand on a 0.3 mmol scale at 40 °C for 24 h unless otherwise noted,
and the reactions with 4 equiv of Cs2CO3 were conducted in the
presence of air. bThe ee value was determined after the hydro-
boration/oxidation sequence. cThe reaction was carried out with 1.5
equiv of pyridinium salt 2f with 2 equiv of BSA (N,O-Bis(trimethyl-
silyl)acetamide) and L7 ligand for 48 h. dThe reaction was carried out
with 2 equiv of BSA and L7 ligand. eThe reaction was carried out with
1.2 equiv of allyl carbonate rac-1a and 1.0 equiv of 2i for 48 h.

Scheme 4. Reactions of Linear Allylic Carbonates

Scheme 5. Control Experiments
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2.7:1 dr (eq 5). Finally, when 3aa′ was subjected to the same
conditions, only 10% of 3aa was isolated. No higher yields
could be obtained with other conditions. The nucleophilicity
of pyridinium ylides is higher than that of the electron-rich
heterocycles, which is the key for a successful reaction with a
less electrophilic π-allylrhodium intermediate.12

The chiral 3-allylindolizines could be converted to other
indolizines derivatives by further functional group manipu-
lations (Scheme 6). Pd/C-catalyzed hydrogenation and

hydroboration/oxidation at the double bond gave products 8
and 9 respectively in high yields without any erosion of the
enantioselectivity. Treatment of 3ba with Vilsmeier’s reagent
affords the formylated indolizine 10 in 98% yield. The
tetracyclic N-heterocycle 11 could be prepared from 3ac by
Pd-catalyzed intramolecular Heck reaction/isomerization.
In summary, we have developed the first highly regio- and

enantioselective synthesis of 3-allylindolizines via the Rh/
bisoxazolinephosphine-catalyzed asymmetric allylic substitu-
tion/Tschitschibabin reaction sequence. Chiral 3-allyl indoli-
zines could be prepared with an above 20:1 branch/linear
ratio, up to 96% yield, and normally 99% ee from 2-
alkylpyridines, α-bromomethylketones, and three different
types of allylic carbonates. The moderate nucleophilicity of
the indolizine molecule could be overcome by applying highly
nucleophilic 2-alkylpyridinium ylides. The utilization of a tert-
butyl-based NPN ligand is the key to enabling the allylation to
occur before the Tschitschibabin cyclization process.
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