Antimalarial Activity of 1,4-Epidioxy-bisabola-2,12-diene Derivatives^[1]

Gerhard Rücker^{a)}*, Eberhard Breitmaier^{b)}, Detlef Manns^{a)}, Walter Maier^{c)}, Anne Marek^{a)}, Berta Heinzmann^{a)}, Klemens Heiden^{a)}, and Stephan Seggewies^{a)}

^{a)} Institut für Pharmazeutische Chemie der Universität Bonn, Kreuzbergweg 26, D-53115 Bonn

b) Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn

^{c)} Institut für Medizinische Parasitologie der Universität Bonn, Sigmund-Freud-Str. 25, D-73127 Bonn

Key Words: 1,4-Epidioxy-bisabola-2,12-diene derivatives; aromatic hydroperoxides; in vitro antimalarial activity; photoxidation of γ -curcumene

Summary

1,4-Epidioxy-bisabola-2,12-diene (3) and aromatic hydroperoxides (4, 5) were prepared by photoxidation of γ -curcumene (1). Reduction and esterification of 6 and 7 afforded compounds 9 to 10. All compounds were tested *in vitro* for antimalarial activity. The activity could not be increased significantly, compared with 3. The most active compounds, 3 and 9, did not show *in vivo* antimalarial activity in mice.

Introduction

There has been a rapid increase in the resistance of malaria parasites, in particular of *Plasmodium falciparum*, to currently used drugs^[2]. In previous studies the ascaridol homologue 1,4-epidioxy-bisabola-2,12-diene (**3**), isolated from *Heterothalamus psiadioides, Heterothalamus alienus*^[3], *Kaunia rufescens* (syn. *Eupatorium rufescens* Lund ex de Candolle)^[15] and *Senecio selloi*^[8] plants from Brazil, showed an effective antimalarial activity *in vitro*. This prompted us to derivatize the molecule in order to increase the activity^[3,5].

Results

 γ -Curcumene (1), isolated from the essential oil of Helichrysum italicum, was used as starting material for the preparation of ascaridol analogue peroxides. According to the reaction constants determined by Monroe^[6] for terpinene (100 \times 10^6 L/(Ms)) and isopren (3.7 × 10^4 L/(Ms)), the cyclohexadiene structure reacts more readily than the olefinic structure in the side chain. Photooxidation of 1 with daylight, air, and bengalrose affords 1,4-epidioxy-bisabola-2,12-diene (3) only, while the use of an UV-radiating lamp and oxygen results in 3 as well as the products 4-7. The diene 1 is sensitive to aromatization, giving α -curcumene (2) during the reaction, which on photooxidation affords the hydroperoxides 4 and 5, due to ene reactions^[7]. The aromatic hydroperoxides 4 and 5 were identified by TLC also as constituents of the Brazilian plant Senecio selloi Spreng. by photooxidation of 2 isolated from the plant^[8].

Chromatographic separation of 6 and 7 with silver nitrate impregnated silica gel affords another side product, the ketone 8. Reduction of 6 and 7 with triphenylphosphine $(PPh_3)^{[9]}$ leads to the alcohols 9 and 10a. If the reduction of

6 and 7 is carried out in the mixture, and 9 and 10a are separated by CC on silica gel, no decomposition to 8 occurred and the yield is increased. Alcohol 10a was transformed into the esters $10b-10d^{[5]}$.

The structures of the compounds were characterized by MS, 1D and 2D 1 H NMR- and 13 C NMR spectroscopy. Due to the chiral atoms C-1, C-4, and C-8, two diastereomeric pairs of enantiomers are built, which on hydroperoxidation at the carbon atoms C-12 and C-13 can form several isomers (see Tables 2 and 3). No stereochemistry studies were carried out so far.

 Table 1. EC₅₀-values determined for compounds 3–11d, chloroquinediphosphate, and artemisinin against *Plasmodium falciparum*, strain NF-54.

		linion		Std. dev.	
3	0.05	0.21	8.86×10^{-3}	5.57×10^{-3}	
4 :	>1	>4.3	-	-	
5	0.10	0.43	1.08×10^{-2}	3.38×10^{-3}	
6	0.07	0.30	1.08×10^{-2}	6.81×10^{-3}	
7	0.10	0.37	1.39×10^{-2}	8.75×10^{-3}	
8	0.25	1.0	1.75×10^{-2}	1.10×10^{-2}	
9	0.04	0.15	2.00×10^{-3}	1.25×10^{-3}	
10a	0.11	0.43	1.74×10^{-2}	1.09×10^{-2}	
10ь	0.06	0.20	0.017	1.06×10^{-2}	
10c	0.08	0.29	-	6.32×10^{-4}	
10d	0.09	0.31	-	1.26×10^{-2}	
chloroquine × 2 PO4	0.01	0.02	3.61×10^{-3}	2.27×10^{-3}	
artemisinin	0.005	0.017	1.80×10^{-4}	1.13×10^{-4}	

Compounds 3–10d were tested *in vitro* against *Plasmodium* falciparum and their EC₅₀ values were determined (Table 1). The best results, compared to artemisinin^[2] (EC₅₀ < 0.005 µg/ml) were obtained for compounds 3 and 9 (EC₅₀ = 0.05 and 0.04 µg/ml respectively). The activity could not be increased significantly by derivatization of 3. 3 and 9 were tested on mice, but were found to be inactive.

Acknowledgments

Financial support given by the Fonds der Chemischen Industrie, Frankfurt is gratefully appreciated.

Experimental Section

General

CC was executed with silica gel (0.063–0.200 mm, Merck, Darmstadt) or silica gel impregnated with 20% of $AgNO3^{[10]}$. Analytical TLC: precoated glass plates (60 F₂₅₄, layer thickness 0.25 mm, Merck, Darmstadt); detection UV – 254 nm, R-1 = anisaldehyde/H₂SO4^[11], R-2 = peroxide reagent^[12]. FAB-MS: 70eV; rel. intensities in %; if not indicated otherwise; ¹H NMR were measured at 300 MHz and ¹³C NMR at 75 MHz in CDCl₃.

γ-Curcumene (1)

The separation of 3 g of the essential oil of *Helichrysum italicum* (Melchers, Bremen) by means of CC on silica gel (light petroleum) yielded 350 mg of a mixture, which was separated with AgNO₃ impregnated silica gel (light petroleum:diethyl ether:toluene (98:2:1)), affording 220 mg of 1: colourless oil; $R_f 0.6-0.7$ (light petroleum). Spectroscopic data are identical with ref.^[13]. [α]₂²² = -76.5 ° (c = 0.996 in CHCl₃); literature values of optical rotation of **1** are reported different^[13].

Photoxidation

To 500 mg of 1 in 250 ml CHCl₃, 50 mg of bengal rose, dissolved in 10 ml of methanol, were added. The solution was exposed to an UV-radiating lamp (Hg-Dampf-Hochdruckstrahler TQ 150 (Hanau) or HPK 125 (Philips)) for 15 min at -10 °C with oxygen bubbling vividly through it. This mixture was evaporated *in vacuo* at room temp. and separated by CC on silica gel (light petroleum:acetone (88:12)), giving, after evaporation *in vacuo* at room temp., the fractions I–V.

1,1-Dimethyl-5-(4-methyl-2,3-dioxabicyclo[2.2.2]oct-5-en-1-yl)-1-hexene (1,4-Epidioxy-bisabola-2,12-diene) (3)

Fraction II (R_f 0.56; light petroleum:ethyl acetate (90:10)) gave 10 mg of colourless oil. Spectroscopic data identical to ref. ^[3,14].

(E)-1-Hydroperoxy-1, I-dimethyl-5-(4-methylphenyl)-2-hexene (4)

Fraction III of the separation of the photoxidation mixture contained 60 mg of a mixture of 4 and 5, which were separated by CC on silica gel impregnated with 10% of AgNO₃ (light petroleum:acetone (95:5)), giving 24 mg of 4, slightly impure because of fast decomposition. Yellow oil.– TLC: R_f 0.15 (light petroleum:acetone (95:5)), R-1: violet, R-2: immediately blue.– FAB-MS (70 eV, m-NBA + NaOAc); m/z (%) = 257 (3, M+Na⁺). 217 (2), 201 (11, M⁺–OOH), 176 (12), 119 (100. C₉H₁₁⁺). ¹H NMR and ¹³C NMR data Table 2 and 3.

2-Hydroperoxy-1-(1-methylethenyl)-4-(4-methylphenyl)-pentane (5)

Separation of Fraction III (see 4) gave 30 mg of 5. Colourless oil.– TLC: $R_{\rm f} 0.18$ (*n*-hexane:diethyl ether (90:10)), R-1: red-orange, R-2: immediately blue.– $[\alpha]_{D}^{20}$: –17.57° (c = 0.64, CHCI₃).– FAB-MS (70 eV, m-NBA) = 257 (27, M+Na⁺), 217 (4), 201 (17, M⁺–OOH), 176 (31), 119 (100, C₉H₁₁⁺). ¹H NMR and ¹³C NMR data Table 2 and 3.

(E)-1-Hydroperoxy-1,1-dimethyl-5-(4-methyl-2,3-dioxabicyclo[2.2.2]oct-5-en-1-yl)-2-hexene (6)

Fraction IV of the separation of the photoxidation mixture contained 300 mg of a mixture of 6 and 7, which were separated by CC on silica gel, impregnated with AgNO₃ (light petroleum:ethyl acetate (82:18)). 168 mg of 6 were obtained. Colourless oil.– TLC: R_f 0.22 (light petroleum:acetone (90:10)), R-1: brown-yellow, R-2: immediately blue.– $[\alpha]_{20}^{20}$:–6.08° (c = 1.3,

н	4	5	6	7	8	9	10a	10b	10c	10d
			isomer a (isomer b)	isomer a (isomer b)						
2	7.08	7.09	6.39 (6.4)	6.4 (6.42)	6.41 (6.415)	6.39 (6.4)	6.40 (6.41)	6.41 (6.42)	6.37 (6.39)	6.35 (6.36)
3	7.08	7.09	6.46 (6.49)	6.45 (6.48)	6.54 (6.51)	6.47 (6.49)	6.47 (6.50)	6.45 (6.47)	6.43 (6.45)	6.41 (6.43)
5(')	7.08	7.09	1.98-2.08	1.96–2.8	1.5-1.56	1.98-2.08	1.98–2.07	1.97–2.07 (1.99)	1.98	1.97 (1.95–2.04)
5″			1.47-1.56	1.48–1.56	2.0-2.07	1.491.56	1.50–1.56	1.48–1.54	1.47–1.52 (1.47–1.52)	1.48–1.50 (1.45–1.52)
6(')	7.08	7.09	1.98-2.08	1.96-2.8	1.5-1.56	1.98-2.08	1.98-2.07	1.97-2.07	2.03	2.01
6″			1.47-1.56	1.48-1.56	2.0-2.07	1.49-1.56	1.50-1.56	1.48–1.54	1.47-1.52	1.48-1.52
7	2.32	2.33	1.36	1.39	1.37	1.37	1.37	1.37	1.35	1.33
8	2.79	2.65	1.78–1.87	1.64–1.78	1.7-1.8	1.74–1.86	1.62-1.78	1.48-1.85	1.77-1.80	1.75-1.80
9	1.27	1.22 (1.23)	0.97	0.99	1.00 (1.00)	0.98	0.99 (1.00)	0.99 (1.00)	1.02 (1.01)	1.00 (0.99)
10(*)	2.33	1.3–1.5*	1.91 (1.94)	1.16–1.32	1.4–1.5	1.66 (1.74)	1.05–1.34	1.05–1.34	1.17-1.23	1.68–1.74
10″			2.41 (2.415)	1.38-1.48	1.89–2.0	2.39	1.50–1.70	1.48–1.85	1.81–1.91 (1.71–1.91)	1.88
11(*)	5.6	1.5-1.66*	5.65	1.66–1.7	2.74	5.56	1.45-1.7	1.48-1.85	1.19-1.23	168-1.74
					(2.77)				(1.19–1.25)	
11″									1.65–1.77	1.12-1.22
12	5.37	4.27 (4.28)	5.53 (5.56)	4.29		5.64 (5.65)	4.05	5.13	5.39	5.34
14(*)	1.26	4.99	1.31	5.02	5.75 (5.77)	1.31	4.83 (4.84)	4.87 (4.90)	4.91 (4.93)	4.90
14″		5.01			5.95 (5.96)		4.94	4.93 (4.94)	5.02 (5.03)	5.00
15	1.24	1.65 (1.69)	1.31	1.73	1.85 (1.86)	1.31	1.72 (1.71)	1.71 (1.72)	1.79 (1.78)	1.76
ООН	6.83	7.8	7.5 (7.55)	7.8 (7.82)						
OH						1.46	1.57			
–Ac								2.06		
(2')									8.05	7.53
(3')									7.43	
(4')									7.55	
(5')									7.43	7.66
(6')									8.05	6.86
(8')										3.9
(9')										3.9

Table 2. ¹H NMR (CDCl₃) spectroscopic data of compounds 4–10d (δ [ppm]).

* assignment interchangeable

Table 3. ¹³ C	CNMR (CDCl3	spectroscopic data	of compounds 4	-10d (δ [ppm]]).
--------------------------	-------------	--------------------	----------------	--------	----------	----

с	4	5	6	7	8	9	10a	10c	10d
			isomer a (isomer b)	isomer a (isomer b)	isomer a (isomer b)	isomer a (isomer b)	isomer a (isomer b)	isomer a (isomer b)	isomer a (isomer b)
1	135.5	135.3	74.5	74.5	74.5	74.5	74.5	74.4	74.3
2	128.9	128.9	136.5 (136.2)	136.5 (136.3)	136.4 (136.2)	136.4 (136.2)	136.4 (136.3)	136.2 (136.4)	136.3 (136.4)
3	126.8	126.7	132.5	133.4	133.0	132.8	133.1	133.3	133.4
			(133.4)	(132.8)	(133.5)	(133.4)	(133.5)	(132.8)	(132.9)
4	143.4	143.8	79.8	80.0	80.2	79.7	80.0 (79.9)	79.7 (79.8)	79.7 (79.8)
5	126.8	126.7	26.7 (25.3)	26.3*	25.5* (25.9*)	26.3 (26.5)	26.1 (25.5)	25.3 (26.1)	25.2 (25.9)
6	128.9	128.9	29.4 (29.5)	29.3 [#] (29.4 [#])	29.4 (29.6)	29.4 (29.6)	29.5 (29.6)	29.5 (29.4)	29.4 (29.3)
7	21.0	21.0	21.43	21.5	21.5	21.5	21.5	21.4	21.3
8	39.6	39.6 (39.3)	37.5 (37.4)	37.6 (37.5)	37.1	37.6 (37.5)	37.5 (37.4)	37.4 (37.3)	37.3 (37.2)
9	21.7	22.7 (22.4)	14.3 (14.27)	14.3 (14.2)	14.5 (14.4)	14.0 (13,9)	14.3 (14.2)	14.2	14.0 (14.1)
10	1.5	34.2 (34.1)	34.6 (34.3)	27.1 [#] (27.6 [#])	26.0* (26.7*)	34.0 (33.8)	33.3 (33.1)	31.0 (30.7)	30.9 (30.7)
11	130.6	28.8 (28.9)	130.0 (129.8)	25.3*	36.0 (35.7)	125.10 (125.0)	27.5 (27.0)	26.6 (27.0)	26.6 (26.9)
12	134.6	89.8 (89.6)	134.9 (135.2)	89.6 (89.5)	201.7 (201.6)	139.9 (139.8)	75.8	78.0 (77.8)	77.5 (77.8)
13	81.9	143.5 (143.4)	81.97	143.4	144.2 (144.3)	70.64	147.4	142.4 (142.6)	142.7 (142.8)
14	24.5*	114.4* (114.1*)	24.5 (24.4)	114.9 (114.3)	124.5	29.9 (29.8)	110.9 (111.0)	113.4 (112.9)	113.2 (112.7)
15	23.8*	17.2* (17.0*)	24.32 (24.36)	17.4	17.7	29.9 (29.8)	17.8	18.0 (18.3)	17.9 (18.2)
1'								130.3	148.5
2′								129.4	111.9
3'								128.2	152.8
4′								132.7	165.5
5'								128.2	123.4
6′								129.4	110.2
7'								165.5	>200
8′									55.9
9′									55.9

*,# assignment interchangeable

CHCI₃).– FAB-MS (70 eV, m-NBA + NaOAc); m/2 (%) = 291 (88, M+Na⁺), 259 (20), 235 (100, M⁺–OOH). ¹H NMR and ¹³C NMR data see Tables 2 and 3.

blue.- $[\alpha]_{20}^{D_1}$: +12.25° (c = 1.02, CHC1₃).- FAB-MS (70 eV, m-NBA + NaOAc); m/z (%) = 291 (100, M+Na⁺), 273 (34, 291–H₂O⁺), 217 (18, M⁺–OOH-H₂O).- ¹H NMR and ¹³C NMR data Tables 2 and 3.

2-Hydroperoxy-1-(1-methylethenyl)-4-(4-methyl-2,3-dioxabicyclo[2.2.2]oct-5-en-1-yl)-pentane (7)

I-(1-Methylethenyl)-4-(4-methyl-2,3-dioxabicyclo [2.2.2]oct-5-en-I-yl)pentan-2-one (8)

Separation of fraction IV (see 6) gave 36 mg of 7. Colourless oil.– TLC: $R_f 0.22$ (light petroleum:acetone (90:10)), R-1: brown-red, R-2: immediately

This substance was obtained as a side product during the separation of the mixture of 6 and 7. Colourless oil.– TLC: $R_f 0.16$ (toluene:acetone (98:2)),

R-1: grey-brown, R-2: blue after 5–8 min.– $[\alpha]_D^{20}$: –4.27° (c = 0.8, CHC1₃).– FAB-MS (70 eV, m-NBA + NaOAc); $m/_2$ (%) = 273 (55, M+Na⁺), 251 (M⁺–H), 217 (80, 251–H₂O₂⁺), 132 (100, C₁₀H₁₂^{+•}). ¹H NMR and ¹³C NMR data Tables 2 and 3.

(E)-1-Hydroxy-1,1-dimethyl-5-(4-methyl-2,3-dioxabicyclo[2.2.2]oct-5-en-1-yl)-2-hexene (9)

A solution of 35 mg of **6** in diethyl ether was added dropwise to an ice-cooled solution of 38 mg of triphenylphosphine in 10 ml of diethyl ether. After stirring for 15 min at 0° C, the temperature was slowly raised to room temp. and stirred for another hour. The reaction mixture was evaporated *in vacuo* at room temp. and purified by CC on silica gel (light petroleum:ethyl acetate (80:20)), giving 20 mg of a colourless oil.– TLC: R_f 0.2 (light petroleum:ethyl acetate (80:20)) R-1: violet, R-2: blue after 5–8 min.– $[\alpha]_{D}^{2D}$: +11.5° (*c* = 0.27, CHCl₃).– ¹H NMR and ¹³C NMR data Tables 2 and 3.

2-Hydroxy-1-(1-methylethenyl)-4-(4-methyl-2,3-dioxabicyclo[2.2.2]oct-5-en-1-yl)-pentane (10a)

30 mg of **7** were submitted to the same procedure described above for the reduction of **6**. After stirring at room temp. for 1 h, the reaction mixture was evaporated *in vacuo* and purified by CC on silica gel (light petroleum: ethyl acetate (80:20)), affording 17 mg colourless oil. – TLC: R_f 0.28 (light petroleum:ethyl acetate (80:20)), R-1: brown-violet, R-2: blue after 5–8 min.– $[\alpha]_D^{20}$: +15.9° (c = 0.33, CHCl₃). ¹H NMR and ¹³C NMR data Tables 2 and 3.

[1-(1-Methylethenyl)-4-(4-methyl-2,3-dioxabicyclo[2.2.2]oct-5-en-1-yl)pentyl] acetate (10b)

To 10 mg of **10a** in 4 ml pyridine 2 ml of acetic anhydride were added and the reaction mixture stirred over night at room temp., excluding humidity. The solution was evaporated *in vacuo* at 40° C until dryness and purified by CC on silica gel (light petroleum:ethyl acetate (93:7)). 5 mg of a slightly yellow oil were obtained.– TLC: R_f 0.43 (light petroleum:ethyl acetate (93:7)), R-1: brown-violet, R-2: blue after 5–8 min.– $[\alpha]_D^{20}$: +9,3° (c = 0.86, CHCl₃). ¹H NMR data Table 2.

[1-(1-Methylethenyl)-4-(4-methyl-2,3-dioxabicyclo[2.2.2]oct-5-en-1-yl)-pentyl]-benzoate (10c)

318 mg **10a** were dissolved in 5 ml diethyl ether and 331 mg triphenylphosphine, dissolved in 5 ml diethyl ether, were added. The mixture was stirred and a solution of 154 mg benzoic acid and 221 mg diethylazodicarboxylate in diethyl ether was added dropwise. It was stirred for several hours; then it was allowed to stand for 6 days at room temp., excluding humidity. The solution was evaporated *in vacuo* at room temp. and purified two times by CC on silica gel (light petroleum:diethyl ether (85:15)). 154 mg of an oily product were obtained. – TLC: Rf 0.17 (light petroleum:diethyl ether (85:15)), R-1: violet, R-2: blue reaction after 2 min. ¹H and ¹³C NMR data Table 2 and 3.

[1-(1-Methylethenyl)-4-(4-methyl-2,3-dioxabicyclo[2.2.2]oct-5-en-1-yl)pentyl]-3,4-dimethoxybenzoate (10d)

311 mg **10a**, 252 mg 3,4-dimethoxybenzoic acid, and 33 mg 4-(*N*,*N*-dimethylamino)pyridine were dissolved in 22 ml dichloromethane. It was cooled in an ice bath, stirred and 300 mg dicyclohexylcarbodiimide were added. After 2 h, the ice was removed and the mixture was allowed to stand for 15 days at room temp., excluding humidity. The solution was evaporated *in vacuo* at room temp., and purified two times by CC on silica gel (light petroleum:ethyl acetate (75:25)). 392 mg of highly viscous, slightly yellow oil were obtained.– TLC: R_f 0.23 (light petroleum:ethyl acetate (75:25)), R-1: intensive violet, R-2: blue after 4–5 min. ¹H and ¹³C NMR data Table 2 and 3.

In Vitro Antimalarial Activity

To determine the antimalarial activity of compounds **3–10d** in vitro, tests against *Plasmodium falciparum*, strain NF-54, were carried out (Table 1). 1% ethanolic solutions of the compounds were diluted serially with medium and prepared in 24 well-plates. The growth rate was followed up during a 96 h period in RPMI 1640 medium, supplemented with 10% human plasma and 0.2% NaHCO₃ at 5% hematocrit level without antibiotics. Parasitaemia was counted from Giemsa-stained smears. EC₅₀ values see Table 1. Results are means of two independent experiments done in duplicate, each compared with a positive and a negative (chloroquinediphosphate) control, as well as with experiments undertaken to determine the EC₅₀ of artemisinin and chloroquinediphosphate. Calculations are carried out by Probit analysis. The compounds **4–10d** turned out to be active, but the activity could not be increased significantly, compared with **3**.

Blood Schizontocidal Test Protocol

Female, random-bred NMRI albino mice, weighting 25-32 g, were inoculated peritoneally with 10^6 parasitized blood cells of *Plasmodium yoellii nigeriensis*. Animals were then dosed intraperitoneally once daily for three consecutive days, beginning on the day of infection (day 0). Compounds **3** and **9** were dissolved in ethanol 96% and diluted with sterile 0.9% NaCl solution to give concentrations of 40, 80, 160, 320, and 640 mg/kg mice. The parasitaemia was determined on days 2, 4, 6, 8, and 10 by Giemsa-stained blood smears and compared with untreated controls. A compound was supposed to have an activity, if lifetime of the treated mice exceeded the lifetime of the untreated mice at least twice. Both compounds were inactive.

References

- Dedicated to Prof. Dr. Hans Achenbach, Erlangen, on the occasion of his 65th birthday.
- [1] Peroxides as Constituents of Plants Part 22; for Part 21 see *Planta Med.* **1996**, *62*, 565–566.
- [2] G. Rücker, Pharmazie in unserer Zeit 1995, 24, 189–195.
- [3] A. Marek, Ph. D. Thesis, Bonn, 1994
- [4] G. Rücker, E. Schenkel, D. Manns, M. Falkenberg, A. Marek, *Phyto-chemistry* 1996, 41(1), 297–300.
- [5] S. Seggewies, Diploma Thesis, Bonn, 1996
- [6] B. M. Monroe, J. Am. Chem. Soc. 1981, 103, 7253-7256.
- [7] A. Frimer, Chem. Rev. 1979, 359-387.
- [8] B. Heinzmann, Ph. D. Thesis, Bonn, 1996.
- [9] L. Horner, W. Jurgeleit, Liebigs Ann. Chem. 1955, 591, 138-152.
- [10] B. de Vries, Chem. Ind. 1962, 1049.
- [11] E. Merck, Anfärbereagenzien für Dünnschicht- und Papier-Chromatographie, Darmstadt, **1970** (reagent No. 21).
- [12] W. Huber, E. Fröhlke, Chromatographia 1972, 5, 256.
- [13] N. H. Andersen, D. D. Syrdal, Phytochemistry 1970, 9, 1325-1340.
- [14] F. Bohlmann, J. Jakupovic, C. Zdero, *Phytochemistry* **1978**, *17*. 2034–2036.
- [15] K. Heiden, Ph. D. Thesis, Bonn 1996.

Received: November 21, 1996 [FP159]