A New and Convenient Route to Optically Active 2-Phosphoryl-3-oxo-5-alkyl/-aryltetrahydrofurans and Their Reactions^[‡]

Chengfu Xu,^[a] Yonghui Zhang,^[a] and Chengye Yuan*^[a]

Keywords: Tetrahydrofurans / Horner-Wadsworth-Emmons reactions / Rhodium catalyst / O-H Insertion reaction

The two enantiomers of 4-hydroxy-2-oxo-4-alkyl/-arylalkylphosphonates were prepared chemoenzymatically and converted to chiral 2-phosphoryl-3-oxo-5-alkyl/-aryl tetrahydrofurans using an intramolecular O–H insertion reaction catalyzed by rhodium(II) acetate. The potential biological activity of the resulting tetrahydrofurans is of much interest. The presence of the β -ketophosphonate skeleton in these hetero-

1. Introduction

Functionalized tetrahydrofurans make up a class of compounds with potential biological activity and synthetic utility.^[1] For example, racemic 2-carboxy-3-oxo-5-aryl tetrahydrofurans have been used to form C-nucleosides that are potential anticancer and anti-HIV agents.^[2] Consequently, the chemical and biological behavior of tetrahydrofuran derivatives aroused our interest, and we also noted that there have been very few reports regarding substituted tetrahydrofurans.^[3]

However, Calters and coworkers prepared chiral 2ethoxycarbonyl-3-oxo-5-phenyltetrahydrofurans using a diazo-ketone-aldol/O–H insertion reaction.^[3a,3b] This synthetic strategy attracted our attention since it is interesting to examine the possibility of obtaining optically active tetrahydrofurans bearing a phosphoryl moiety. Nevertheless, the introduction of a phosphoryl group to heterocycles by direct C–P bond formation is not an easy task. It is noteworthy that the Horner–Wadsworth–Emmons (HWE) reaction of β -ketophosphonates allows the formation of cyclic chiral α , β -unsaturated ketones that could be considered as a new type of building block for the synthesis of complex molecules.

The phosphoryl group is contained in many natural products and living organisms, and several compounds bearing this group have shown significant biological activity.^[4] From a synthetic point of view, it is interesting to examine the reactivity of these β -carbonyl cyclic phosphonates under HWE reaction conditions.^[5]

cycles allowed their use as substrate in the cyclic Horner–Wadsworth–Emmons reaction with aldehydes or ketones furnishing chiral α , β -unsaturated ketones – a new class of building block in organic synthesis.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)

Thus, diethyl 4-hydroxy-2-oxo-4-aryl/-alkylbutylphosphonates gave α , β -unsaturated ketones^[6a] and were transformed into 2-oxo-3-alkenylphosphonates. These 2-oxo-3alkenylphosphonates were reacted further with vinyl ethers via hetero-Diels–Alder reactions, leading to 5-substituted-2-phosphoryl-2-cyclohexen-1-ones.^[7]

The starting diethyl (4*S*)-4-hydroxy-2-oxoalkylphosphonates and diethyl (4*R*)-4-hydroxy-2-oxo-4-arylbutylphosphonates were prepared using *Candida antarctica* lipase B (*CALB*) and *Candida rugosa* lipase (*CRL*) enzymatic catalysis.^[6a]

In this report, optically active 4-hydroxy-2-oxoalkylphosphonates 1a-k were transformed into compounds 3a-k. This process involved the introduction of a phosphoryl group to the α -position of substituted tetrahydrofurans followed by cyclization via an intramolecular O-H insertion reaction catalyzed by rhodium(II) acetate.^[8] The presence of the β -ketophosphonate moiety in the cyclic systems allowed subsequent HWE reactions with aldehydes or ketones. (Scheme 1)

Scheme 1

 [[]a] Shanghai Institute of Organic Chemistry, Chinese Academy of Science,
 345 Lingling Lu, Shanghai, 200032, China E-mail: yuancy@mail.sioc.ac.cn

2. Results and Discussion

The optically active compounds $1\mathbf{a}-\mathbf{k}^{[6a]}$ were converted into the corresponding α -diazo compounds $2\mathbf{a}-\mathbf{k}$, which were then cyclized into compounds $3\mathbf{a}-\mathbf{k}$ in the presence of 1 mol % rhodium (II) acetate followed by an intramolecular

Scheme 2. **a**: $R^1 = Me$; **b**: $R^1 = Et$; **c**: $R^1 = vinyl$; **d**: $R^1 = C_6H_5$; **e**: $R^1 = 4$ -MeC₆H₄; **f**: $R^1 = 4$ -EtC₆H₄; **g**: $R^1 = 4$ -MeOC₆H₄; **h**: $R^1 = 2$ -furyl; **i**: $R^1 = 2$ -BrC₆H₄; **j**: $R^1 = 4$ -FC₆H₄; **k**: $R^1 = 2$,4-Cl₂C₆H₃ (i) TosN₃/K₂CO₃/CNCH₃, 0 °C (ii) 1 mol% Rh₂(OAc)₄/ benzene, reflux

O-H insertion reaction as shown in Scheme 2 and Table 1.

We found that if harsh reaction conditions are applied, i.e. higher reaction temperature and longer reaction time, the *ee* values of optically active compounds 1a-k are reduced dramatically in reactions under basic conditions. Partial or complete racemization during the reaction can be rationalized as shown in Scheme 3.

Scheme 3. $R^1 = Ar$; $A = CH_2P(O)(OEt)_2$ or $C(N_2)P(O)(OEt)_2$

Because of this situation, we carefully optimized the conversion of compounds 1a-k to compounds 3a-k. Compounds 1a-k were converted smoothly to the corresponding diazo derivatives 2a-k, in yields up to 80%, by use of tosyl azide in the presence of an equimolar amount of potassium carbonate in acetonitrile at 0 °C for less than 2 h. If an excess of potassium carbonate was present then the γ -diazo compound 7 was also obtained (Scheme 2). If an or-

ganic base such as triethylamine was used, the yields of compounds $2\mathbf{a}-\mathbf{k}$ were reduced dramatically to less than 40% after 4 h. The resulting α -diazo compounds $2\mathbf{a}-\mathbf{k}$ were converted into substituted tetrahydrofurans $3\mathbf{a}-\mathbf{k}$ by an intramolecular O-H insertion reaction, catalyzed by rhodium(II) acetate. Compounds $3\mathbf{a}-\mathbf{k}$ existed in rapid equilibrium between *cis* and *trans* isomers whose ratio was about 1:1 as shown by ³¹P and ¹H NMR spectroscopy.

Although the synthesis of substituted tetrahydrofurans has been reported by Calter and Zhu,^[3a] in that work, a carboxy group rather than a phosphoryl group was introduced at the tetrahydrofuran α -position. Undoubtedly, substituted tetrahydrofurans containing a phosphoryl group should offer much more potential for use in organic synthesis. β -Ketophosphonates that react with aldehydes or ketones in the HWE reaction have been used extensively for the synthesis of complex molecules and natural products.^[9]

Since substituted tetrahydrofurans 3a-k contain a phosphoryl group at the α -position in addition to a carbonyl group at the β -position of the ring system, it is interesting to observe their reactivity towards aldehydes and ketones under HWE reaction conditions. Although the HWE reaction has been used in organic synthesis for many years, reactions involving ketones or cyclic systems are relatively rare.^[10] Initially, we performed the reaction with ketones. We found that compounds 3a-k reacted with acetone under reflux in the presence of excess potassium carbonate and water, and α,β -unsaturated ketones 4a-k were obtained in satisfactory yields and excellent enantiomeric excesses. The resulting α,β -unsaturated ketones 4a-k should have some uses, such as by reduction of the carbonyl group to a hydroxy group or in the Michael reaction etc. (see Scheme 4 and Table 2).

Scheme 4

Attempts to carry out the HWE reaction of compounds 3a-k with benzaldehyde in aqueous potassium carbonate

Table 1. The synthesis of 2-phosphoryl-3-oxo-5-alkyl/-aryltetrahydrofurans 3a-k

Substrate	Time (h)		\mathbb{R}^1	Yield (%)		Substrate	Time (h)		\mathbb{R}^1	Yield (%)	
	2	3		2	3		2	3		2	3
a	1.5	0.5	Me	82	94	g	1.5	0.5	4-MeOC ₆ H ₄	84	96
b	1.5	0.5	Et	84	94	ĥ	1.5	0.5	2-furyl	86	97
c	1.5	0.5	vinyl	84	95	i	1.5	0.5	$2-BrC_6H_4$	86	95
d	1.5	0.5	C_6H_5	81	96	i	1.5	0.5	$4 - FC_6H_4$	85	96
e	1.5	0.5	4-MeC ₆ H ₄	80	97	k	1.5	0.5	$2,4-Cl_2C_6H_4$	87	94
f	1.5	0.5	$4-EtC_6H_4$	81	93						

Substrate	Time (h)	\mathbf{R}^1	Yield (%) 4	ee (%) ^[a]	Substrate	Time (h)	\mathbb{R}^1	Yield (%) 4	ee (%) ^[a]
3a	2.0	Me	66	99	3g	2.0	4-MeOC ₆ H ₄	60	>99
3b	2.0	Et	68	>99	3h	2.0	$2-C_4H_3O$	70	94
3c	2.0	$-CH=CH_2$	67	99	3i	2.0	$2-BrC_6H_4$	63	>99
3d	2.0	C ₆ H ₅	67	>99	3j	2.0	$4-FC_6H_4$	67	>99
3e	2.0	4-MeC ₆ H ₄	59	>99	3k	2.0	$2,4-Cl_2C_6H_3$	64	>99
3f	2.0	$4-EtC_6H_4$	59	>99					

Table 2. HWE reaction of compounds 3a-k with acetone

^[a] The *ee* values were determined by chiral HPLC.

solution failed.^[6a] However, sodium hydride was found to be a suitable base^[10] for reaction of compounds $3\mathbf{a}-\mathbf{k}$ with benzaldehyde at low temperatures around -30 to ca. -20 °C. The products of these reactions were mixtures of (Z) and (E) isomers (see Scheme 5).

Scheme 5. (i) PhCHO/NaH/THF, $-20\ ...\ -30\ ^{\circ}\text{C};\ R^{1}$ = Ph, 4-MeOC_6H_4, vinyl

Because the reaction conditions are so delicate and compounds $3\mathbf{a}-\mathbf{k}$ decomposed at room temperature in sodium hydride solution, modification of the method seemed necessary. We observed that compounds $3\mathbf{a}-\mathbf{k}$ reacted smoothly with aldehydes in THF/H₂O solution in the presence of excess K₂CO₃ as base and at room temperature for about 2.5 h to give the expected products. The resulting mixture of (Z) and (E) isomers could be isolated by careful TLC. These two isomers could be differentiated easily by ¹H NMR spectroscopy (Figure 1). The products from reaction of α , β -unsaturated ketones **5** and **6** could also be employed in other reactions (see Scheme 6 and Table 3).

Scheme 6. R^1 = Et, vinyl, Ph, 4-MeOC₆H₄, 4-FC₆H₄; R^2 = Et, Ph. (i) R²CHO/K₂CO₃/THF/H₂O, r.t.

3. Conclusion

In summary, the enzyme catalyzed products, compounds 1a-k, were successfully transformed to functionalized tetrahydrofurans 3a-k with high enantioselectivity. As expected, these tetrahydrofurans bearing the β -ketophosphonate moiety underwent the HWE reaction with aldehydes or ketones to provide optically active α,β -unsaturated ketones, which constitute a new class of chiral building blocks with potential application in organic synthesis.

Figure 1. ¹H NMR spectrum of (5R)-2-[(Z)-benzylidene]-3-oxo-5-phenyltetrahydrofuran (5d') and (5R)-2-[(E)-benzylidene]-3-oxo-5-phenyltetrahydrofuran (6d')

FULL PAPER

Substrate	Time (h)	\mathbb{R}^1	R ²	Yield (%) 5	ee (%) ^[a]	Yield (%) 6	ee (%) ^[a]
3b	2.5	Et	Ph	41	98	18	99
3c	2.5	$-CH=CH_2$	Et	30	_[b]	29	_[b]
	2.5	-	Ph	39	>99	21	99
3d	2.5	C_6H_5	Et	31	98	29	99
	2.5		Ph	41	>99	21	99
3g	2.5	4-MeOC ₆ H ₄	Et	33	_[c]	29	90
	2.5		Ph	38	>99	16	95
3j	2.5	$4-FC_6H_4$	Et	35	>99	34	>99
	2.5	20 B	Ph	42	>99	24	>99

Table 3. HWE reaction of compounds 3a-k with aldehydes

^[a] The *ee* values were determined by chiral HPLC. ^[b] The *ee* values could not be determined by chiral HPLC. ^[c] This compound decompose during chiral HPLC.

4. Experimental Section

IR spectra were recorded with a Shimadzu IR-440 spectrometer. EI mass spectra (MS) were run with an HP-5989A mass spectrometer. ¹H NMR spectra were recorded in CDCl₃ with a Bruker AMX-330 (300 MHz) spectrometer and downfield chemical shifts (ppm) are reported relative to TMS (internal standard). ¹³C NMR spectra were recorded in CDCl₃ on the same spectrometer and downfield chemical shifts (ppm) are reported relative to TMS (internal standard). ³¹P NMR spectra were taken on the same spectrometer using 80% phosphorus acid as external standard. Melting points are uncorrected.

The chiral liquid chromatography system was constructed from the following components: Waters 515 HPLC pump; UV Waters 2487 Dual λ Absorbance Detector operating at 254 nm; Penelson Network chromatography interface NCI 900, Turbochrom Navigator data station software; column dimensions: 0.46 cm \times 25 cm; the flow rate: 0.7 mL/min; eluent: hexane/2-propanol, 9:1–8:2 (v/v).

General Procedure for Preparation of Optically Active Diethyl 4-Hydroxy-2-oxoalkylphosphonates $1^{[6a]}$

Diethyl (4*R*)-4-(4-Ethylphenyl)-4-hydroxy-2-oxobutylphosphonate (1f): Colorless oil; yield: 43%. [α]_D²⁵ = +42.3 (c = 1.3, CHCl₃). IR (film): $\tilde{\nu}$ = 3380, 2968, 2933, 2911, 2875, 1715, 1249, 1025, 971 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.28 (d, J = 7.8 Hz, 2 H, ArCH), 7.17 (2 H, d, J = 8.4 Hz, ArCH), 5.16–5.12 (m, 1 H, ArCH), 4.18–4.08 (m, 4 H, OCH₂CH₃), 3.13 (d, J = 22.8 Hz, 2 H, CH₂P), 3.16–2.92 (m, 2 H, CHCH₂), 2.63 (q, J = 7.8 Hz, 2 H, ArCH₂CH₃), 1.33 (t, J = 7.2 Hz, 6 H, OCH₂CH₃), 1.22 (t, J = 7.5 Hz, 3 H, ArCH₂CH₃) ppm. ³¹P NMR (120 MHz, CDCl₃): δ = 19.561 ppm. EI-MS: m/z = 328 (6.56) [M⁺], 311 (96.86), 195 (64.16), 194 (59.13), 152 (55.50), 133 (100.00), 125 (87.55), 91 (51.40), 79 (64.14). HR-MS calcd. for C₁₆H₂₅O₅P [M⁺]: 328.1440; found: 328.1406.

General Procedure for Preparation of Diethyl 1-Diazo-4-hydroxy-2oxo-4-aryl(or -alkyl)alkylphosphonates 2: Compound 1 (1 mmol), tosyl azide^[11] (236 mg, 1.2 mmol), and acetonitrile (8 mL) were mixed in a 25 mL flask and cooled to 0 °C. Then K₂CO₃ (166 mg, 1.2 mmol) was added to this mixture. After stirring at 0 °C for 1.5 h, the mixture was filtered. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography to furnish the corresponding compound 2.

Diethyl (4S)-1-Diazo-4-hydroxy-2-oxopentylphosphonate (2a): Colorless oil; yield: 82%. $[\alpha]_{25}^{25} = +30.2$ (c = 1.1, CHCl₃). IR (film):

 \tilde{v} = 3427, 2982, 2935, 2911, 2379, 2123, 1655, 1290, 1263, 1194, 1015, 979 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 4.31−4.10 (m, 5 H, OCH₂CH₃, CHCH₃), 3.30 (s, 1 H, OH), 2.77 (dd, *J* = 3.3, 16.8 Hz, 1 H, CHCH₂CO), 2.65 (dd, *J* = 8.7, 16.5 Hz, 1 H, CHCH₂CO), 1.46−1.37 (m, 6 H, OCH₂CH₃), 1.24 (d, *J* = 6.3 Hz, 3 H, CHCH₃) ppm. ³¹P NMR (120 MHz, CDCl₃): δ = 11.23 ppm. EI-MS: *m*/*z* = 265 (100.00) [M⁺ + 1], 237 (27.63), 236 (15.59), 219 (34.95), 181 (42.23), 163 (46.22), 138 (35.45), 111 (34.89), 82 (40.76), 65 (43.46), 45 (52.53). C₉H₁₇N₂O₅P (264.22): calcd. C 40.91, H 6.49, N 10.60; found C 40.97, H 6.58, N 10.45.

Diethyl (4*S***)-1-Diazo-4-hydroxy-2-oxo-hexylphosphonate (2b):** Colorless oil; yield: 84%. $[\alpha]_{25}^{25} = +28.9 \ (c = 1.3, CHCl_3).$ IR (film): $\tilde{v} = 3431, 2980, 2937, 2880, 2123, 1654, 1263, 1191, 1164, 1016, 980 cm⁻¹. ¹H NMR (300 MHz, CDCl_3): <math>\delta = 4.29-4.15 \ (m, 4 \text{ H}, OCH_2CH_3), 4.02-3.95 \ (m, 1 \text{ H}, HOCHCH_2), 2.77 \ (dd, <math>J = 3.3, 16.5 \text{ Hz}, 1 \text{ H}, CHCH_2CO), 2.67 \ (dd, J = 8.7, 16.5 \text{ Hz}, 1 \text{ H}, CHCH_2CO), 2.67 \ (dd, J = 8.7, 16.5 \text{ Hz}, 1 \text{ H}, CHCH_2CO), 1.60-1.47 \ (m, 2 \text{ H}, CHCH_2CH_3), 1.39 \ (6 \text{ H}, dt J = 1.5, 6.9 \text{ Hz}, OCH_2CH_3), 0.97 \ (t, J = 7.2 \text{ Hz}, 3 \text{ H}, CHCH_2CH_3)$ ppm. ³¹P NMR (120 MHz, CDCl_3): $\delta = 13.79 \text{ ppm}$. EI-MS: $m/z = 250 \ (6.04) \ [M^+ - N_2], 221 \ (4.05), 179 \ (16.47), 165 \ (20.12), 137 \ (39.42), 123 \ (45.12), 109 \ (61.00), 93 \ (48.39), 82 \ (63.67), 65 \ (100.00), 55 \ (79.02). C_{10}H_{19}N_2O_5P \ (278.24): calcd. C \ 43.17, H \ 6.88, N \ 10.07; found C \ 42.95, H \ 6.87, N \ 9.97.$

Diethyl (4*R***)-1-Diazo-4-hydroxy-2-oxo-5-hexenylphosphonate (2c):** Colorless oil; yield: 84%. $[\alpha]_{D}^{25} = +27.3 \ (c = 1.2, \text{CHCl}_3)$. IR (film): $\tilde{v} = 3409, 2986, 2936, 2910, 2124, 1655, 1269, 1019, 980 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃): $\delta = 5.95-5.83 \ (m, 1 \text{ H}, CH=CH_2)$, 5.33 (d, $J = 17.1 \text{ Hz}, 1 \text{ H}, CH_2=CH$), 5.16 (d, $J = 10.5 \text{ Hz}, 1 \text{ H}, CH_2=CH$), 4.64–4.58 (m, 1 H, HOCHCH₂), 4.29–4.15 (m, 4 H, OCH₂CH₃), 3.05 (s, 1 H, OH), 3.08 (d, $J = 5.4 \text{ Hz}, 2 \text{ H}, CHCH_2CO$), 1.39 (t, $J = 6.9 \text{ Hz}, 6 \text{ H}, OCH_2CH_3$) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 13.62 \text{ ppm}. \text{ EI-MS: }m/z = 277 \ (0.18) [M^+ + 1], 220 \ (6.01), 191 \ (7.26), 175 \ (10.35), 163 \ (16.49), 146 \ (21.77), 135 \ (35.11), 121 \ (37.53), 109 \ (65.53), 93 \ (40.03), 81 \ (66.70), 65 \ (100.00), 57 \ (61.22), 55 \ (58.39). C₁₀H₁₇N₂O₅P (276.23): calcd. C$ 43.48, H 6.20, N 10.14; found C 43.26, H 6.37, N 9.98.

Diethyl (4*R*)-1-Diazo-4-hydroxy-2-oxo-4-phenylbutylphosphonate (2d): Colorless oil; yield: 81%. $[α]_D^{25} = +52.3$ (c = 0.8, CHCl₃). IR (film): $\tilde{v} = 3400$, 2986, 2124, 1656, 1268, 1018, 979 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.39-7.28$ (m, 5 H, Ar*H*), 5.29 (dd, J =2.7, 9.0 Hz, 1 H ArC*H*), 4.24–4.11 (m, 4 H, OC*H*₂CH₃), 3.41 (s, 1 H, O*H*), 3.04 (dd, J = 9.0, 16.2 Hz, 1 H, CHC*H*₂CO), 2.90 (dd, J = 3.0, 16.8 Hz, 1 H, CHC*H*₂CO), 1.44–1.26 (m, 6 H, OCH₂C*H*₃) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 6.13$ ppm. EI-MS: *m*/*z* = 298 (2.33) $[M^+ - N_2]$, 270 (15.46), 254 (13.48), 220 (26.20), 196 (31.53), 179 (11.57), 160 (25.24), 136 (33.12), 123 (39.34), 109 (65.15), 105 (90.28), 79 (81.12), 77 (100.00), 65 (54.19). HR-MS calcd. for $C_{14}H_{19}O_5P [M - N_2]^+$: 298.0970; found 298.0997.

Diethyl (4*R*)-1-Diazo-4-hydroxy-4-(4-methylphenyl)-2-oxobutylphosphonate (2e): Colorless oil; yield: 80%. $[\alpha]_{D}^{25} = +48.7$ (c = 1.0, CHCl₃). IR (film): $\tilde{\nu} = 3406$, 2986, 2123, 1656, 1268, 1018, 979 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.26$ (d, J = 7.9 Hz, 2 H, ArH), 7.16 (d, J = 7.9 Hz, 2 H, ArH), 5.15 (dd, J = 2.7, 9.1 Hz, 1 H, ArCH), 4.24–4.13 (m, 4 H, OCH₂CH₃), 3.03 (dd, J = 9.2, 16.2 Hz, 1 H, CHCH₂CO), 2.90 (dd, J = 3.2, 16.3 Hz, 1 H, CHCH₂CO), 2.34 (s, 3 H, ArCH₃), 1.65–1.34 (m, 6 H, OCH₂CH₃) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 15.03$ ppm. EI-MS: *ml* z = 312 (6.59) [M⁺ – N₂], 284 (35.55), 220 (19.65), 174 (24.26), 137 (24.95), 130 (49.55), 119 (100.00), 109 (43.24), 93 (48.67), 91 (76.02), 77 (41.80), 65 (45.39). HR-MS calcd. for C₁₅H₂₁O₅P [M – N₂]+: 312.1127; found 312.1121.

Diethyl (4*R*)-1-Diazo-4-(4-ethylphenyl)-4-hydroxy-2-oxobutylphosphonate (2f): Colorless oil; yield: 81%. $[a]_{25}^{25} = +49.8$ (c = 1.0, CHCl₃). IR (film): $\tilde{v} = 3405$, 2969, 2934, 2875, 2123, 1656, 1268, 1017, 979 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.24$ (d, J = 8.1 Hz, 2 H, Ar*H*), 7.20 (d, J = 8.1 Hz, 2 H Ar*H*), 5.16 (dd, J = 3.0, 9.0 Hz, 1 H, Ar*CH*), 4.25–4.10 (m, 4 H, OCH₂CH₃), 3.04 (dd, J = 9.3, 16.2 Hz, 1 H, CHCH₂CO), 2.90 (dd, J = 3.0, 15.9 Hz, 1 H, CHCH₂CO), 2.64 (dd, J = 7.5 Hz, 2 H, Ar*CH*₂CH₃), 1.43–1.34 (m, 6 H, OCH₂CH₃), 1.23 (t, J = 7.5 Hz, 3 H, ArCH₂CH₃) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 11.10$ ppm. EI-MS: m/z = 355 (0.84) [M⁺ + 1], 337 (29.39), 326 (12.44), 298 (51.31), 280 (12.85), 253 (14.82), 224 (20.79), 188 (27.41), 144 (59.18), 133 (100.00), 123 (29.88), 109 (40.90), 91 (47.04), 79 (75.53), 65 (43.01). HR-MS calcd. for C₁₆H₂₃O₅N₂PNa⁺ [M + Na]⁺: 377.1242; found 377.1237.

Diethyl (4*R*)-1-Diazo-4-hydroxy-4-(4-methoxyphenyl)-2-oxobutylphosphonate (2g): Colorless oil; yield: 84%. $[\alpha]_{D}^{25} = +43.9$ (c = 1.0, CHCl₃). IR (film): $\tilde{v} = 3403$, 2986, 2937, 2839, 2124, 1654, 1514, 1249, 1019, 980 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.30$ (d, J = 6.6 Hz, 2 H, Ar*H*), 6.88 (d, J = 6.6 Hz, 2 H, Ar*H*), 5.14 (dd, J = 3.6, 9.0 Hz, 1 H, ArC*H*), 4.22–4.14 (m, 4 H, OC*H*₂CH₃), 3.80 (s, 3 H OC*H*₃), 3.03 (dd, J = 9.3, 16.2 Hz, 1 H, CHC*H*₂CO), 2.88 (dd, J = 3.3, 16.2 Hz, 1 H, CHC*H*₂CO), 1.40–1.34 (m, 6 H, OCH₂C*H*₃) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 6.15$ ppm. EI-MS: m/z = 328 (2.16) [M⁺ - N₂], 300 (13.13), 220 (7.03), 190 (8.41), 150 (22.81), 146 (42.92), 137 (47.61), 135 (100.00), 123 (20.87), 109 (49.39), 94 (23.28), 77 (38.87), 65 (36.51) ppm. C₁₅H₂₁N₂O₆P (356.31): calcd. C 50.56, H 5.94, N 7.86; found C 50.60, H 5.88, N 7.69.

Diethyl (4*R***)-1-Diazo-4-(2-furyl)-4-hydroxy-2-oxobutylphosphonate (2h):** Colorless oil; yield: 86%. $[\alpha]_D^{25} = +34.0 \ (c = 0.9, \text{CHCl}_3)$. IR (film): $\tilde{v} = 3389, 2987, 2911, 2125, 1656, 1253, 1017, 981 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl}3): $\delta = 7.38-7.37 \ (m, 1 \text{ H}, \text{ Ar}H)$, 7.35–7.33 (m, 1 H, ArH), 6.30–6.28 (m, 1 H, ArH), 5.21 (dd, J = 3.0, 8.1 Hz, 1 H ArCH), 4.28–4.14 (m, 4 H, OCH₂CH₃), 3.62 (d, J = 5.1 Hz, 1 H, OH), 3.22 (dd, $J = 8.7, 16.5 \text{ Hz}, 1 \text{ H}, \text{CHCH}_2\text{CO}$), 3.02 (dd, $J = 3.6, 16.5 \text{ Hz}, 1 \text{ H}, \text{CHCH}_2\text{CO}$), 1.42–1.36 (m, 6 H, OCH₂CH₃) ppm. ³¹P NMR (120 MHz, CDCl_3): $\delta = 11.43 \text{ ppm}. \text{ EI-MS: }m/z = 299 \ (0.50) \ [M^+ - \text{OH}], 288 \ (6.70), 259 \ (36.41), 244 \ (34.97), 231 \ (22.72), 214 \ (33.16), 203 \ (40.79), 186 \ (44.39), 179 \ (22.96), 151 \ (42.09), 135 \ (25.66), 123 \ (100.00), 106 \ (70.22), 97 \ (79.20), 81 \ (48.16), 65 \ (56.14). C_{12}H_{17}N_2O_6P \ (316.25): \text{ calcd. C } 45.58, \text{ H} 5.42, N 8.86; found C 45.51, H 5.51, N 8.80.$

Diethyl (4*R***)-4-(2-Bromophenyl)-1-diazo-4-hydroxy-2-oxobutylphosphonate (2i):** Colorless oil; yield: 86%. $[a]_{D}^{25} = +96.3$ (c = 0.9, CHCl₃). IR (film): $\tilde{v} = 3384$, 2986, 2909, 2125, 1656, 1266, 1046, 1019, 980 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.63$ (d, J = 7.5 Hz, 1 H, Ar*H*), 7.52 (d, J = 7.5 Hz, 1 H, Ar*H*), 7.37 (t, J = 7.5 Hz, 1 H, Ar*H*), 7.16 (t, J = 7.2 Hz, 1 H, Ar*H*), 5.49 (d, J = 8.4 Hz, 1 H ArC*H*), 4.24–4.11 (m, 4 H, OC*H*₂CH₃), 3.09 (dd, J = 1.5, 16.8 Hz, 1 H, CHC*H*₂CO), 2.81 (dd, J = 9.3, 17.1 Hz, 1 H, CHC*H*₂CO), 1.40–1.34 (m, 6 H, OCH₂C*H*₃) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 10.85$ ppm. EI-MS: *m*/*z* = 408 (0.88) [M⁺], 325 (10.20), 297 (28.31), 269 (24.59), 241 (36.54), 223 (36.52), 195 (16.92), 185 (26.38), 159 (15.92), 137 (30.38), 123 (26.08), 109 (52.23), 91 (41.31), 77 (100.00), 65 (69.04). C₁₄H₁₈BrN₂O₅P (405.18): calcd. C 41.50, H 4.48, N 6.91; found C 41.76, H 4.56, N 6.63.

Diethyl (4*R***)-1-Diazo-4-(2-fluorophenyl)-4-hydroxy-2-oxobutylphosphonate (2j):** Colorless oil; yield: 85%. $[a]_{25}^{25} = +51.4$ (c = 0.9, CHCl₃). IR (film): $\tilde{v} = 3400$, 2987, 2911, 2125, 1653, 1511, 1266, 1018, 980 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.40-7.38$ (m, 2 H, Ar*H*), 7.15–7.00 (m, 2 H, Ar*H*), 5.16 (dd, J = 3.3, 9.0 Hz, 1 H, Ar*CH*), 4.25–4.08 (m, 4 H, OC*H*₂CH₃), 3.84 (s, 1 H, O*H*), 3.01 (dd, J = 9.3, 16.5 Hz, 1 H, CHC*H*₂CO), 2.86 (dd, J = 3.6, 16.5 Hz, 1 H, CHC*H*₂CO), 2.86 (dd, J = 3.6, 16.5 Hz, 1 H, CHC*H*₂CO), 1.44–1.33 (m, 6 H, OCH₂C*H*₃) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 10.98$ ppm. EI-MS: m/z = 316 (6.97) [M⁺ – N₂], 288 (11.16), 272 (29.50), 244 (10.31), 216 (15.96), 179 (27.08), 165 (100.00), 133 (52.18), 123 (87.38), 109 (70.50), 95 (27.27), 65 (19.49). HR-MS calcd. for C₁₄H₁₈FO₅P [M – N₂]+: 316.0876; found 316.0864.

Diethyl (*4R*)-1-Diazo-4-(2,4-dichlorophenyl)-4-hydroxy-2-oxobutylphosphonate (2k): Colorless oil; yield: 87%. $[\alpha]_{D}^{25} = +96.0$ (*c* = 0.7, CHCl₃). IR (film): $\tilde{v} = 3379$, 2986, 2910, 2125, 1656, 1265, 1048, 1018, 979 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.58$ (d, *J* = 8.4 Hz, 1 H, Ar*H*), 7.35–7.28 (m, 2 H, Ar*H*), 5.47 (dd, *J* = 2.4, 9.0 Hz, 1 H, Ar*CH*), 4.23–4.13 (m, 4 H, OC*H*₂CH₃), 3.06 (dd, *J* = 2.4, 17.1 Hz, 1 H, CHC*H*₂CO), 2.28 (dd, *J* = 9.3, 17.1 Hz, 1 H, CHC*H*₂CO), 1.43–1.34 (m, 6 H, OCH₂C*H*₃) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 10.80$ ppm. EI-MS: *m*/*z* = 395 (0.50) [M⁺ + 1] [M⁺], 359 (16.44), 331 (19.13), 303 (44.75), 275 (31.71), 257 (24.13), 220. (87.73), 175 (63.92), 137 (66.52), 111 (100.00), 109 (88.16), 93 (30.53), 65 (52.47), 65 (54.19). C₁₄H₁₇Cl₂N₂O₅P (395.18): calcd. C 42.55, H 4.34, N 7.09; found C 42.50, H 4.55, N 7.32.

General Procedure for Preparation of 2-Diethoxylphosphoryl-3-oxo-5-aryl(or -alkyl)tetrahydrofurans 3: To a suspension of $Rh_2(OAc)_4$ (1 mg) in refluxing benzene (10 mL) was added compound 2 (1 mmol) in benzene (3 mL) over a 5 min period. After an additional 30 min at reflux, the mixture was cooled to room temperature. After concentration and flash chromatography, the corresponding compound 3 was obtained.

(55)-2-Diethoxyphosphoryl-5-methyl-3-oxotetrahydrofuran (3a): Colorless oil; yield: 94%. $[\alpha]_D^{25} = +26.2 (c = 1.0, CHCl_3)$. IR (film): $\tilde{v} = 2983, 2934, 2913, 1762, 1255, 1048, 1023, 974 cm^{-1}$. ¹H NMR (300 MHz, CDCl_3): $\delta = 4.83-4.76$ (m, 0.5 H, OCHCH_2), 4.41-4.34 (m, 1 H, OCHCH_2, OCHCO), 4.29-4.17 (m, 4.5 H, OCH_2CH_3, OCHCO), 2.79-2.58 (m, 1 H, CHCH_2CO), 2.41-2.16 (m, 1 H, CHCH_2CO), 1.51 (d, J = 5.4 Hz, 1.5 H, CHCH_3), 1.43 (d, J = 5.4 Hz, 1.5 H, CHCH_3), 1.37 (t, J = 7.2 Hz, 6 H, OCH_2CH_3) ppm. ³¹P NMR (120 MHz, CDCl_3): $\delta = 14.79$, 13.82 ppm. ¹³C NMR (75.5 MHz, CDCl_3): $\delta = 209.4$ (J = 35.3 Hz), 79.1 (J = 44.7 Hz), 74.7 (J = 30.4 Hz), 63.5 (J = 19.3 Hz), 44.8 (J = 40.2 Hz), 21.0, 16.4 ppm. EI-MS: m/z = 236

www.eurjoc.org

FULL PAPER

 $\begin{array}{l} (7.58) \ [M^+], \ 179 \ (15.56), \ 167 \ (34.17), \ 138 \ (58.41), \ 127 \ (39.82), \ 111 \\ (90.29), \ 138 \ (35.45), \ 99 \ (73.88), \ 81 \ (87.57), \ 65 \ (43.58), \ 43 \ (100.00). \\ C_9H_{17}O_5P \ (236.20): \ calcd. \ C \ 45.77, \ H \ 7.25; \ found \ C \ 45.72, \ H \ 7.35. \end{array}$

(5*S*)-2-Diethoxyphosphoryl-5-ethyl-3-oxotetrahydrofuran (3b): Colorless oil; yield: 94%. [α]₂₅²⁵ = +14.5 (c = 2.1, CHCl₃). IR (film): \tilde{v} = 2980, 2937, 2883, 1763, 1255, 1050, 1024, 974 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 4.63–4.58 (m, 0.5 H), 4.36 (d, J = 14.4 Hz, 0.5 H, OCHCO), 4.29–4.18 (m, 5 H, OCH₂CH₃, OCHCH₂, OCHCO), 2.76–2.55 (m, 1 H, CHCH₂CO), 2.44–2.22 (m, 1 H, CHCH₂CO), 1.90–1.67 (m, 2 H, CHCH₂CH₃), 1.40–1.34 (m, 6 H, OCH₂CH₃), 1.05–0.97 (m, 3 H, CHCH₂CH₃) ppm. ³¹P NMR (120 MHz, CDCl₃): δ = 17.17, 16.34 ppm. EI-MS: m/z = 250 (6.97) [M⁺], 221 (11.57), 179 (23.15), 167 (80.49), 139 (50.49), 127 (42.92), 111 (100.00), 99 (57.57), 81 (85.61), 65 (65.79), 41 (79.70). C₁₀H₁₉O₅P (250.23): calcd. C 48.00, H 7.65; found C 48.15, H 7.94.

(5*R*)-2-Diethoxyphosphoryl-3-oxo-5-vinyltetrahydrofuran (3c): Colorless oil; yield: 95%. [α]₂₅²⁵ = +21.2 (c = 1.0, CHCl₃). IR (film): \tilde{v} = 2897, 2914, 1761, 1254, 1048, 1023, 975 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 6.12–5.87 (m, 1 H, CH=CH₂), 5.44–5.27 (m, 2 H, CH₂=CH), 5.18–5.09 (m, 0.5 H, OCHCH₂), 4.80–4.50 (m, 0.5 H, OCHCH₂), 4.38 (d, J = 14.4 Hz, 0.5 H, OCHCO), 4.30–4.20 (m, 4.5 H, OCH₂CH₃, OCHCO), 2.88–2.37 (m, 2 H, CHCH₂CO), 1.40–1.34 (m, 6 H, OCH₂CH₃) ppm. ³¹P NMR (120 MHz, CDCl₃): δ = 16.81, 15.99 ppm. EI-MS: m/z = 248 (4.77) [M⁺], 220 (13.18), 179 (23.47), 167 (74.60), 139 (59.01), 111 (100.00), 99 (54.38), 81 (59.43), 65 (50.03), 54 (76.59). C₁₀H₁₇O₅P (248.21): calcd. C 48.39, H 6.90; found C 48.10, H7.20.

(5R)-2-Diethoxyphosphoryl-3-oxo-5-phenyltetrahydrofuran (3d): Colorless oil; yield: 96%. $[\alpha]_{D}^{25} = +66.3$ (c = 1.5, CHCl₃). IR (film): $\tilde{v} = 2986, 2914, 1763, 1252, 1048, 1023, 977 \text{ cm}^{-1}$. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3): \delta = 7.52 - 7.28 \text{ (m, 5 H, ArH)}, 5.71 \text{ (dd, } J =$ 6.9, 6.9 Hz, 0.5 H, ArCH), 5.25 (dd, J = 5.7, 6.0 Hz, 0.5 H, ArCH), 4.55 (d, J = 14.1 Hz, 0.5 H, OCHCO), 4.40 (d, J = 13.8 Hz, 0.5 H, OCHCO), 4.32-4.21 (m, 4 H, OCH₂CH₃), 3.09-2.56 (m, 2 H, CHCH₂CO), 1.46–1.29 (m, 6 H, OCH₂CH₃) ppm. ³¹P NMR $(120 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 14.24, 13.45 \text{ ppm}$. ¹³C NMR (75.5 MHz, $CDCl_3$): $\delta = 208.5 (J = 39.4 \text{ Hz}), 139.7 (J = 17.7 \text{ Hz}), 128.8, 126.4,$ 126.1, 80.1 (J = 10.4 Hz), 79.3 (J = 19.3 Hz), 63.7 (J = 13.4 Hz), 45.1 (J = 74.9 Hz), 16.5 ppm. EI-MS: m/z = 298 (1.35) [M⁺], 242 (3.48), 179 (20.94), 160 (32.23), 144 (30.04), 123 (18.21), 105 (89.00), 104 (100.00), 77 (30.67). C₁₄H₁₉O₅P (298.27): calcd. C 56.38, H 6.42; found C 56.10, H 6.62.

(5*R*)-2-Diethoxyphosphoryl-5-(4-methylphenyl)-3-oxotetrahydrofuran (3e): Colorless oil; yield: 97%. [*a*]₂₅²⁵ = +64.3 (*c* = 1.1, CHCl₃). IR (film): \tilde{v} = 2985, 2916, 1761, 1251, 1048, 1023, 977 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.81–7.22 (m, 4 H, Ar*H*), 5.66 (dd, *J* = 6.9, 8.6 Hz, 0.5 H, ArC*H*), 5.19 (dd, *J* = 5.1, 6.0 Hz, 0.5 H, ArC*H*), 4.50 (d, *J* = 14.4 Hz, 0.5 H, OCHCO), 4.36 (d, *J* = 13.9 Hz, 0.5 H, OCHCO), 4.26–4.21 (m, 4 H, OCH₂CH₃), 3.03–2.03 (m, 2 H, CHCH₂CO), 2.40 (s, 3 H, ArC*H*₃), 1.39–1.24 (m, 6 H, OCH₂C*H*₃) ppm. ³¹P NMR (120 MHz, CDCl₃): δ = 18.23, 17.38 ppm. EI-MS: *m/z* = 312 (4.65) [M⁺], 179 (20.13), 174 (37.94), 158 (17.23), 119 (100.00), 118 (70.45), 105 (19.48), 91 (52.37). HR-MS Calcd. for C₁₅H₂₁O₅PNa ([M + Na]⁺): 335.1024; found 335.1019.

(5*R*)-2-Diethoxyphosphoryl-5-(4-ethylphenyl)-3-oxotetrahydrofuran (3f): Colorless oil; yield: 93%. $[\alpha]_D^{25} = +66.5 \ (c = 1.1, CHCl_3)$. IR (film): $\tilde{v} = 2969, 2933, 2914, 2875, 1761, 1253, 1048, 1022, 976 \ cm^{-1}.$ ¹H NMR (300 MHz, CDCl₃): $\delta = 7.43 \ (d, J = 8.4 \ Hz, 1 \ H, ArH), 7.31 \ (d, J = 8.4 \ Hz, 1 \ H, ArH), 7.27-7.21 \ (m, 2 \ H, ArH),$

5.67 (dd, J = 6.9, 7.5 Hz, 0.5 H, ArCH), 5.21 (dd, J = 6.0, 6.3 Hz, 0.5 H, ArCH), 4.53 (d, J = 14.7 Hz, 0.5 H, OCHCO), 4.38 (d, J = 13.8 Hz, 0.5 H, OCHCO), 4.31–4.20 (m, 4 H, OCH₂CH₃), 3.02 (dd, J = 6.8, 18.3 Hz, 0.5 H, CHCH₂CO), 2.84–2.77 (m, 1 H, CHCH₂CO), 2.70–2.57 (m, ArCH₂CH₃, 2.5 H, CHCH₂CO), 1.41–1.32 (m, 6 H, OCH₂CH₃), 1.24 (t, J = 7.5 Hz, 3 H, ArCH₂CH₃) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 14.26$, 13.47 ppm. EI-MS: m/z = 326 (10.09) [M⁺], 256 (4.65), 188 (41.93), 179 (18.16), 151 (12.07), 133 (100.00), 132 (80.17), 117 (54.39), 105 (23.05), 91 (26.64), 65 (13.72). C₁₆H₂₃O₅P (326.33): calcd. C 58.90, H 7.10; found C 58.79, H 7.19.

(5R)-2-Diethoxyphosphoryl-5-(4-methoxyphenyl)-3-oxotetrahydrofuran (3g): Colorless oil; yield: 96%. $[\alpha]_D^{25} = +64.0$ (c = 0.8, CHCl₃). IR (film): $\tilde{v} = 2985, 2935, 2913, 2841, 1761, 1517, 1251,$ 1027, 977 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.43 (d, J = 8.7 Hz, 1 H, ArH), 7.32 (d, J = 9.0 Hz, 1 H, ArH), 6.93 (dd, J =2.1, 8.7 Hz, 2 H, ArH), 5.65 (dd, J = 6.6, 6.9 Hz, 0.5 H, ArCH), 5.19 (dd, J = 6.3, 6.6 Hz, 0.5 H, ArCH), 4.52 (d, J = 14.7 Hz, 0.5 H, OCHCO), 4.37 (d, J = 13.8 Hz, 0.5 H, OCHCO), 4.30–4.20 (m, 4 H, OCH_2CH_3), 3.82 (s, 3 H, OCH_3), 3.00 (dd, J = 6.8, 18.3 Hz, 0.5 H, CHCH₂CO), 2.83-2.76 (m, 1 H, CHCH₂CO), 2.64 $(dd, J = 6.6, 18.3 \text{ Hz}, 0.5 \text{ H}, CHCH_2CO), 1.44-1.26 (m, 6 \text{ H}, 1.26 \text{ H})$ OCH₂CH₃) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 3.93$, 8.59 ppm. EI-MS: m/z = 328 (22.97) [M⁺], 258 (3.11), 191 (22.27), 190 (23.03), 179 (10.03), 150 (15.57), 135 (100.00), 134 (54.28), 121(33.01), 91 (18.39). C₁₅H₂₁O₆P (328.30): calcd. C 54.88, H 6.45; found C 54.58, H 6.74.

(5*R*)-2-Diethoxyphosphoryl-5-(2-furyl)-3-oxotetrahydrofuran (3h): Colorless oil; yield: 97%. $[a]_{25}^{25} = -6.0 \ (c = 0.8, CHCl_3)$. IR (film): $\tilde{v} = 2987$, 1763, 1253, 1046, 1021, 977 cm⁻¹. ¹H NMR (300 MHz, CDCl_3): $\delta = 7.46-7.28 \ (m, 1 H, ArH), 6.49-6.37 \ (m, 2 H, ArH), 5.66 \ (t, J = 7.4 Hz, 0.5 H, ArCH), 5.28 \ (dd, J = 6.0, 6.3 Hz, 0.5 H, ArCH), 4.45 \ (t, J = 13.8 Hz, 0.5 H, OCHCO), 4.36 \ (d, J = 13.5 Hz, 0.5 H, OCHCO), 4.29-4.18 \ (m, 4 H, OCH_2CH_3), 3.16-2.75 \ (m, 2 H, CHCH_2CO), 1.41-1.31 \ (m, 6 H, OCH_2CH_3), ppm. ³¹P NMR (120 MHz, CDCl_3): <math>\delta = 12.57, 12.46 \ ppm. EI-MS: m/z = 288 \ (7.96) \ [M^+], 218 \ (32.87), 179 \ (27.44), 151 \ (29.32), 123 \ (43.04), 109 \ (17.42), 95 \ (30.74), 94 \ (100.00), 81 \ (54.58), 65 \ (29.32). C_{12}H_{17}O_6P \ (288.23): calcd. C 50.00, H 5.94; found C 49.86, H 6.05.$

(5R)-5-(2-Bromophenyl)-2-diethoxyphosphoryl-3-oxotetrahydrofuran (3i): Colorless oil; yield: 95%. $[\alpha]_D^{25} = +87.4$ (c = 0.8, CHCl₃). IR (film): $\tilde{v} = 2985, 2932, 2912, 1763, 1254, 1047, 1021, 976 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.84$ (d, J = 8.4 Hz, 1 H, ArH), 7.60-7.53 (m, 1.5 H, ArH), 7.42-7.35 (m, 1 H, ArH), 7.24-7.20 (m, 1 H, ArH), 5.93 (t, J = 8.1 Hz, 0.5 H, ArCH), 5.58 (dd, J =5.4, 5.7 Hz, 0.5 H, ArCH), 4.63 (d, J = 14.4 Hz, 0.5 H, OCHCO), 4.43 (d, J = 14.7 Hz, 0.5 H, OCHCO), 4.33-4.23 (m, 4 H, OCH_2CH_3), 3.31 (dd, J = 6.9, 18.6 Hz, 0.5 H, $CHCH_2CO$), 3.13 $(dd, J = 6.0, 18.6 \text{ Hz}, 0.5 \text{ H}, CHCH_2CO), 2.51-2.37 \text{ (m, 1 H},$ CHCH₂CO), 1.43–1.36 (m, 6 H, OCH₂CH₃) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 14.21$, 13.34 ppm. EI-MS: m/z = 377(0.84) [M⁺], 348 (11.56), 306 (14.13), 297 (88.21), 269 (25.33), 241 (22.23), 184 (68.51), 167 (62.78), 123 (36.20), 111 (49.96), 103 (100.00), 77 (80.38), 65 (35.96). C₁₄H₁₈BrO₅P (377.17): calcd. C 44.58, H 4.81; found C 44.79, H 4.75.

(5*R*)-2-Diethoxyphosphoryl-5-(4-fluorophenyl)-3-oxotetrahydrofuran (3j): Colorless oil; yield: 96%. $[\alpha]_D^{25} = +71.9 \ (c = 1.3, CHCl_3)$. IR (film): $\tilde{v} = 2987, 2914, 1762, 1514, 1252, 1048, 1023, 977 \ cm^{-1}$. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.53-7.48 \ (m, 1 \ H, ArH),$ 7.41–7.37 (m, 1 H, ArH), 7.13–7.07 (m, 2 H, ArH), 5.70 (dd, $J = 6.9, 6.9 \ Hz, 0.5 \ H, ArCH),$ 5.25 (dd, $J = 6.0, 6.0 \ Hz, 0.5 \ H, ArCH),$ 4.55 (d, J = 14.4 Hz, 0.5 H, OCHCO), 4.40 (d, J = 13.8 Hz, 0.5 H, OCHCO), 4.33–4.10 (m, 4 H, OCH₂CH₃), 3.05 (dd, J = 6.9, 18.0 Hz, 0.5 H, CHCH₂CO), 2.89 (dd, J = 5.8, 17.7 Hz, 0.5 H, CHCH₂CO), 2.74 (dd, J = 11.4, 17.4 Hz, 0.5 H, CHCH₂CO), 2.57 (dd, J = 9.3, 18.0 Hz, 0.5 H, CHCH₂CO), 1.44–1.25 (m, 6 H, OCH₂CH₃) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 14.09$, 14.39 ppm. EI MS: m/z = 316 (1.70) [M⁺], 179 (30.10), 178 (24.11), 162 (27.72), 151 (21.61), 133 (17.40), 123 (86.52), 122 (100.00), 109 (29.54), 81 (21.25), 65 (10.87). C₁₄H₁₈FO₅P (316.26): calcd. C 53.17, H 5.74; found C 53.06, H 5.89.

(5R)-5-(2,4-Dichlorophenyl)-2-diethoxyphosphoryl-3-oxotetrahydrofuran (3k): Colorless oil; yield: 94%. $[\alpha]_D^{25} = +91.0$ (c = 1.2, CHCl₃). IR (film): $\tilde{v} = 2985, 2913, 1764, 1253, 1048, 1022, 977$ cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.81 (d, J = 8.7 Hz, 1 H, Ar*H*), 7.56 (d, *J* = 8.7 Hz, 0.5 H, Ar*H*), 7.41–7.28 (m, 2 H, Ar*H*), 5.91 (dd, J = 7.2, 7.5 Hz, 0.5 H, ArCH), 5.58 (dd, J = 6.0, 6.3 Hz, 0.5 H, , ArCH), 4.61 (d, J = 14.1 Hz, 0.5 H, OCHCO), 4.42 (d, $J = 13.8 \text{ Hz}, 0.5 \text{ H}, \text{ OCHCO}, 4.33 - 4.14 \text{ (m, 4 H, OCH}_2\text{CH}_3),$ $3.26 (dd, J = 7.1, 18.3 Hz, 0.5 H, CHCH_2CO), 3.11 (dd, J = 6.1, 3.26 Hz)$ 17.7 Hz, 0.5 H, CHCH₂CO), 2.54–2.35 (m, 1 H, CHCH₂CO), 1.45–1.34 (m, 6 H, OCH₂CH₃) ppm. ³¹P NMR (120 MHz, CDCl₃): $\delta = 14.01$, 13.23 ppm. EI-MS: m/z = 366 (2.54) [M⁺], 338 (29.32), 332 (29.79), 331 (87.52), 303 (20.27), 296 (41.90), 275 (12.98), 212 (36.26), 179 (62.28), 174 (67.78), 167 (61.54), 151 (36.26), 137 (54.01), 123 (37.71), 111 (38.74), 102 (37.24), 91 (29.20), 65 (21.63). C₁₄H₁₇Cl₂O₅P (367.16): calcd. C 45.80, H 4.67; found C 46.02, H 4.82.

General Procedure for Preparation of 2-(1-Methylethylidene)-3-oxo-5-aryl(or -alkyl)tetrahydrofurans 4: A solution of compound 3 (0.5 mmol), K_2CO_3 (0.2 g, 1.5 mmol), acetone (2 mL) and H_2O (2 mL) was refluxed for 2 h. The mixture was cooled to room temperature and the solvents evaporated in vacuo. Brine (5 mL) was added to the residue which was then extracted with ethyl acetate (3×5 mL). The combined extracts were dried, the solvents evaporated under reduced pressure and the residue subjected to flash chromatography to furnish the corresponding compound 4.

(55)-5-Methyl-2-(1-methylethylidene)-3-oxotetrahydrofuran (4a): Colorless oil; yield: 66%. $[\alpha]_D^{25} = -14.2 \ (c = 0.9, \text{CHCl}_3)$. IR (film): $\tilde{v} = 2978, 2912, 1724, 1646, 1275, 1153 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl_3): $\delta = 4.56-4.49 \ (m, 1 \text{ H}, \text{OCHCH}_2), 2.75 \ (dd, J = 7.1, 17.4 \text{ Hz}, 1 \text{ H}, \text{CHCH}_2\text{CO}), 2.30 \ (dd, J = 7.9, 17.7 \text{ Hz}, 1 \text{ H}, \text{CHCH}_2\text{CO}), 2.08 \ (s, 3 \text{ H}, \text{C=CCH}_3), 1.81 \ (s, 3 \text{ H}, \text{C=CCH}_3), 1.41 \ (d, J = 6.0 \text{ Hz}, 3 \text{ H}, \text{CHCH}_3) \text{ ppm}$. ¹³C NMR (75.5 MHz, CDCl_3): $\delta = 199.5, 143.6, 120.5, 72.1, 45.2, 22.0, 19.8, 17.0 \text{ ppm}$. EI-MS: $m/z = 140 \ (1.94) \ [M^+], 109 \ (10.33), 87 \ (9.40), 82 \ (9.96), 73 \ (14.02), 70 \ (65.59), 69 \ (80.44), 59 \ (39.75), 43 \ (73.41), 42 \ (10.00), 41 \ (42.15).$ HR-MS Calcd. for $C_8H_{12}O_2 \ [M^+]: 140.0837;$ found 140.0830.

(5*S*)-5-Ethyl-2-(1-methylethylidene)-3-oxotetrahydrofuran (4b): Colorless oil; yield: 68%. $[\alpha]_D^{25} = -25.0 \ (c = 0.8, \text{CHCl}_3)$. IR (film): $\tilde{\nu} = 2966, 2930, 1726, 1647, 1276, 1208, 1152 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl_3): $\delta = 4.35-4.31 \ \text{(m}, 1 \text{ H}, \text{OCHCH}_2)$, 2.72 (dd, $J = 7.2, 17.7 \text{ Hz}, 1 \text{ H}, \text{CHCH}_2\text{CO}$), 2.33 (dd, $J = 7.2, 18.0 \text{ Hz}, 1 \text{ H}, \text{CHCH}_2\text{CO}$), 2.07 (s, 3 H, C=CCH₃), 1.81 (s, 3 H, C=CCH₃), 1.78-1.59 (m, 2 H, CH₂CH₃), 1.02 (t, $J = 7.5 \text{ Hz}, 3 \text{ H}, \text{CH}_2\text{CH}_3$) ppm. EI-MS: $m/z = 154 \ (8.09) \ [\text{M}^+]$, 125 (5.00), 111 (7.62), 97 (11.92), 85 (20.45), 83 (30.98), 71 (43.73), 70 (41.08), 57 (100.00), 55 (42.68), 43 (75.76), 41 (66.62). HR-MS calcd. for C₉H₁₄O₂ [M⁺]: 154.0994; found 154.1008.

(5*R*)-2-(1-Methylethylidene)-3-oxo-5-vinyltetrahydrofuran (4c): Colorless oil; yield: 67%. $[\alpha]_D^{25} = -6.8 \ (c = 0.9, \text{CHCl}_3)$. IR (film): $\tilde{v} = 2990, 2985, 2870, 1726, 1645, 1273, 1208, 1150 \text{ cm}^{-1}$. ¹H NMR

(300 MHz, CDCl₃): $\delta = 6.00-5.88$ (m, 1 H, CH=CH₂), 5.47 (dt, J = 0.9, 17.1 Hz, 1 H, CH=CH₂), 5.26 (dt, J = 0.9, 10.2 Hz, 1 H, CH=CH₂), 4.90-4.83 (m, 1 H, OCHCH₂), 2.83 (dd, J = 7.8, 17.7 Hz, 1 H, CHCH₂CO), 2.48 (dd, J = 7.7, 18.0 Hz, 1 H, CHCH₂CO), 2.09 (s, 3 H, C=CCH₃), 1.84 (s, 3 H, C=CCH₃) ppm. EI-MS: m/z = 152 (5.92) [M⁺], 145 (0.89), 82 (7.65), 81 (6.48), 70 (37.39), 59 (8.17), 55 (10.39), 54 (100.00), 43 (26.91), 42 (28.70). HR-MS calcd. for C₉H₁₂O₂ [M⁺]: 152.0837; found 152.0806.

(5*R*)-2-(1-Methylethylidene)-3-oxo-5-phenyltetrahydrofuran (4d): Colorless oil; yield: 67%. $[a]_{25}^{25} = +135.7$ (c = 0.6, CHCl₃). IR (film): $\tilde{v} = 3034$, 2913, 2855, 1726, 1647, 1274, 1215, 1201, 1147 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.40-7.26$ (m, 5 H, Ar*H*), 5.43 (t, J = 8.1 Hz, 1 H, ArC*H*), 3.06 (dd, J = 7.5, 17.7 Hz, 1 H, CHC*H*₂CO), 2.68 (dd, J = 8.2, 17.7 Hz, 1 H, CHC*H*₂CO), 2.13 (s, 3 H, C=CC*H*₃), 1.88 (s, 3 H, C=CC*H*₃) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 198.4$, 143.6, 141.2, 128.8, 128.3, 125.7, 121.5, 77.6, 45.9, 20.0, 17.1 ppm. EI-MS: m/z = 202 (39.8) [M⁺], 184 (5.09), 131 (5.41), 118 (2.64), 105 (8.39), 104 (47.88), 103 (18.75), 78 (15.52), 77 (15.80), 70 (100.00), 51 (10.47), 42 (33.37), 41 (19.29). C₁₃H₁₄O₂ (202.25): calcd. C 77.20, H 6.98; found C 77.34, H 7.26.

(5*R*)-2-(1-Methylethylidene)-5-(4-methylphenyl)-3-oxotetrahydrofuran (4e): Colorless oil; yield: 59%. $[a]_{D}^{25} = +100.6$ (c = 0.5, CHCl₃). IR (film): $\tilde{v} = 2924$, 2856, 1726, 1647, 1274, 1209, 1199, 1147 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.26$ (d, J = 7.5 Hz, 2 H, ArH), 7.20 (d, J = 7.9 Hz, 2 H, ArH), 5.39 (t, J = 7.8 Hz, 1 H, ArCH), 3.03 (dd, J = 7.7, 17.8 Hz, 1 H, CHCH₂CO), 2.68 (dd, J = 8.0, 17.8 Hz, 1 H, CHCH₂CO), 2.36 (3 H,s, ArCH₃), 2.18 (s, 3 H, C=CCH₃), 1.86 (s, 3 H, C=CCH₃) ppm. EI-MS: m/z = 216 (46.88) [M⁺], 201 (5.59), 183 (4.12), 173 (4.60), 145 (10.15), 132 (10.33), 118 (100.00), 117 (44.46), 105 (9.50), 91 (16.49), 70 (42.94), 42 (19.71). C₁₄H₁₆O₂ (216.28): calcd. C 77.75, H 7.46; found C 77.45, H 7.62.

(5*R*)-5-(4-Ethylphenyl)-2-(1-methylethylidene)-3-oxotetrahydrofuran (4f): Colorless oil; yield: 59%. $[\alpha]_D^{25} = +115.2$ (c = 0.5, CHCl₃). IR (film): $\tilde{v} = 2967$, 2931, 2912, 2875, 1726, 1647, 1274, 1203, 1147 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.29$ (d, J = 8.1 Hz, 2 H, Ar*H*), 7.22 (d, J = 7.8 Hz, 2 H, Ar*H*), 5.93 (t, J = 8.1 Hz, 1 H, Ar*CH*), 3.03 (dd, J = 7.7, 18.0 Hz, 1 H, CHCH₂CO), 2.74–2.62 (m, 3 H, CHCH₂CO, Ar*CH*₂CH₃), 2.12 (s, 3 H, C=CC*H*₃), 1.86 (s, 3 H, C=CC*H*₃), 1.24 (t, J = 8.1 Hz, 3 H, Ar*CH*₂C*H*₃) ppm. EI-MS: m/z = 230 (47.56) [M⁺], 201 (6.83), 183 (5.59), 160 (8.05), 132 (89.90), 117 (100.00), 103 (6.17), 91 (21.35), 77 (10.54), 70 (67.64), 42 (56.93), 41 (56.01). C₁₅H₁₈O₂ (230.31): calcd. C 78.23, H 7.88; found C 78.40, H 7.97.

(5*R*)-5-(4-Methoxyphenyl)-2-(1-methylethylidene)-3-oxotetrahydrofuran (4g): Colorless oil; yield: 60%. $[\alpha]_{D}^{25} = +82.5$ (c = 0.8, CHCl₃). IR (film): $\tilde{\nu} = 3003$, 2958, 2911, 2839, 1724, 1646, 1516, 1274, 1251, 1201, 1146 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.22$ (d, J = 9.0 Hz, 2 H, Ar*H*), 6.84 (d, J = 8.7 Hz, 2 H, Ar*H*), 5.29 (t, J = 7.8 Hz, 1 H, ArC*H*), 3.74 (s, 3 H, OC*H*₃), 2.93 (dd, J = 7.7, 18.0 Hz, 1 H, CHC*H*₂CO), 2.61 (dd, J = 8.1, 17.7 Hz, 1 H, CHC*H*₂CO), 2.05 (s, 3 H, C=CC*H*₃), 1.78 (s, 3 H, C=CC*H*₃) ppm. EI-MS: m/z = 232 (17.30) [M⁺], 161 (5.63), 134 (100.00), 121 (20.23), 119 (21.51), 91 (20.69), 77 (5.77), 70 (17.08), 65 (11.66), 42 (15.60), 41 (15.78). C₁₄H₁₆O₃ (232.28): calcd. C 72.39, H 6.94; found C 72.23, H 7.21.

(5S)-5-(2-Furyl)-2-(1-methylethylidene)-3-oxotetrahydrofuran (4h): Colorless oil; yield: 70%. [α]_D²⁵ = +39.7 (c = 0.7, CHCl₃). IR (film): \tilde{v} = 2912, 1725, 1647, 1274, 1204, 1146 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.45 (s, 1 H, Ar*H*), 6.40–6.37 (m, 2 H, Ar*H*), 5.42 (t,

FULL PAPER

J = 7.5 Hz, 1 H, ArC*H*), 2.95 (t, J = 2.7 Hz, 2 H, 7.5 Hz, CHC*H*₂CO), 2.10 (s, 3 H, C=CC*H*₃), 1.81 (s, 3 H, C=CC*H*₃) ppm. EI-MS: m/z = 192 (15.70) [M⁺], 174 (3.74), 164 (8.56), 121 (5.31), 94 (100.00), 81 (5.34), 70 (20.98), 66 (14.16), 42 (11.91). HR-MS calcd. for C₁₁H₁₂O₃ [M⁺]:192.0786; found 192.0779.

(5*R*)-5-(2-Bromophenyl)-2-(1-methylethylidene)-3-oxotetrahydrofuran (4i): Colorless oil; yield: 63%. $[a]_{25}^{25} = +172.3$ (c = 0.8, CHCl₃). IR (film): $\tilde{v} = 3069$, 2988, 2911, 2854, 1726, 1647, 1441, 1274, 1214, 1198, 1147, 1027 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.56$ (d, J = 7.8 Hz, 1 H, Ar*H*), 7.49 (d, J = 6.9 Hz, 1 H, Ar*H*), 7.36 (t, J = 6.9 Hz, 1 H, 8.4 Hz, Ar*H*), 7.18 (d, J = 7.8 Hz, 1 H, Ar*H*), 7.18 (d, J = 7.8 Hz, 1 H, Ar*H*), 7.36 (d, J = 7.8 Hz, 1 H, Ar*CH*), 3.29 (dd, J = 8.3, 18.0 Hz, 1 H, CHCH₂CO), 2.51 (dd, J = 7.1, 18.0 Hz, 1 H, CHCH₂CO), 2.15 (s, 3 H, C=CCH₃), 1.93 (s, 3 H, C=CCH₃) ppm. EI-MS: m/z = 282 (15.63 [M⁺]), 280 (16.08) [M⁺], 201 (5.24), 184 (8.08), 182 (7.97), 103 (17.60), 102 (8.81), 98 (4.52), 77 (15.44), 70 (100.00), 51 (7.95), 42 (25.87). C₁₃H₁₃BrO₂ (281.15): calcd. C 55.54, H 4.66; found C 55.83, H 4.81.

(5*R*)-5-(4-Fluorophenyl)-2-(1-methylethylidene)-3-oxotetrahydrofuran (4j): Colorless oil; yield: 67%. [α]_D²⁵ = +89.9 (c = 0.7, CHCl₃). IR (film): \tilde{v} = 2913, 2856, 1726, 1647, 1513, 1274, 1235, 1222, 1200, 1146 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.34 (dd, J = 5.7 Hz, 2 H, Ar*H*), 7.08 (t, J = 8.4 Hz, 2 H, Ar*H*), 5.41 (t, J = 7.8 Hz, 1 H, ArC*H*), 3.05 (dd, J = 7.5, 18.0 Hz, 1 H, CHCH₂CO), 2.65 (dd, J = 8.1, 17.7 Hz, 1 H, CHCH₂CO), 2.13 (s, 3 H, C=CC*H*₃), 1.87 (s, 3 H, C=CC*H*₃) ppm. EI-MS: m/z = 220 (82.69) [M⁺], 202 (10.27), 174 (6.24), 149 (6.86), 122 (63.90), 121 (20.57), 101 (15.74), 96 (14.67), 75 (8.56), 70 (100.00), 42 (27.53). HR-MS calcd. for C₁₃H₁₃FO₂ [M⁺]: 220.0900; found 220.0895.

(5*R*)-5-(2,4-Dichlorophenyl)-2-(1-methylethylidene)-3-oxotetrahydrofuran (4k): Colorless oil; yield: 64%. $[a]_{D}^{25} = +144.4$ (c = 0.6, CHCl₃). IR (film): $\tilde{v} = 2962$, 2928, 1724, 1647, 1278, 1201, 1138, 1059 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.45$ (d, J = 8.1 Hz, 1 H, Ar*H*), 7.40 (d, J = 2.1 Hz, 1 H, Ar*H*), 7.29 (dd, J = 1.8, 8.4 Hz, 2 H, Ar*H*), 5.68 (t, J = 7.5 Hz, 1 H, Ar*CH*), 3.24 (dd, J = 8.3, 18.0 Hz, 1 H, CHCH₂CO), 2.49 (dd, J = 7.2, 18.3 Hz, 1 H, CHCH₂CO), 2.14 (s, 3 H, C=CCH₃), 1.91 (s, 3 H, C=CCH₃) ppm. EI-MS: m/z = 272 (29.26) [M⁺], 270 (36.02) [M⁺], 235 (10.17), 181 (6.16), 137 (13.65), 102 (10.63), 101 (10.72), 75 (7.60), 65 (11.66), 70 (100.00), 42 (21.92), 41 (11.37). C₁₃H₁₂Cl₂O₂ (271.14): calcd. C 57.59, H 4.46; found C 57.77, H 4.71.

General Procedure for Preparation of 2-[(Z)-Benzylidene(or -propylidene)]-3-oxo-5-aryl(or -alkyl)tetrahydrofurans 5 and 2-[(E)-Benzylidene(or -propylidene)]-3-oxo-5-aryl (or -alkyl)tetrahydrofurans 6: A solution of 3 (0.5 mmol), K_2CO_3 (0.2 g, 1.5 mmol), THF (2 mL), H₂O (2 mL) and aldehyde (1 mmol) was stirred for 2.5 h. Then brine (5 mL) was added to the mixture and it was extracted with ethyl acetate. The organic phase was dried and the solvents evaporated under reduced pressure. The residue was subjected to flash chromatography giving compounds 5 and 6.

(55)-2-[(*Z*)-Benzylidene]-5-ethyl-3-oxotetrahydrofuran (5b): Colorless oil; yield: 41%. [α]_D²⁵ = +6.3 (c = 0.7, CHCl₃). IR (film): \tilde{v} = 2970, 2937, 2881, 1769, 1731, 1243, 1222, 1170 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.71 (d, J = 7.5 Hz, 2 H, Ar*H*), 7.38–7.25 (m, 3 H, Ar*H*), 6.30 (s, 1 H, C=CHAr), 4.55–4.45 (m, 1 H, OCHCH₂), 2.86 (dd, J = 7.2, 18.0 Hz, 1 H, CHCH₂CO), 2.48 (dd, J = 7.2, 18.6 Hz, 1 H, CHCH₂CO), 1.86–1.69 (m, 2 H, CH₂CH₃), 1.03 (t, J = 7.5 Hz, 3 H, CH₂CH₃) ppm. EI-MS: m/z = 202 (56.46) [M⁺], 173 (2.62), 147 (4.33), 119 (15.61), 118 (100.00), 107 (15.07), 105 (13.84), 90 (49.91), 89 (29.00), 77 (5.65), 56 (7.16). HR-MS calcd. for C₁₃H₁₄O₂ [M⁺]: 202.0994; found 202.0986. (5*R*)-2-[(*E*)-Benzylidene]-5-ethyl-3-oxotetrahydrofuran (6b): Colorless oil; yield: 18%. $[\alpha]_D^{25} = +19.5 (c = 0.6, CHCl_3)$. IR (film): $\tilde{v} =$ 3065, 2969, 2936, 2881, 1734, 1635, 1243, 1190, 1180 cm⁻¹. ¹H NMR (300 MHz, CDCl_3): $\delta = 7.77$ (d, J = 8.1 Hz, 2 H, Ar*H*), 7.30–7.25 (m, 3 H, Ar*H*), 6.28 (s, 1 H, C=CHAr), 4.74–4.65 (m, 1 H, OCHCH₂), 2.83 (dd, J = 7.8, 18.6 Hz, 1 H, CHCH₂CO), 2.41 (dd, J = 6.8, 18.3 Hz, 1 H, CHCH₂CO), 1.93–1.75 (m, 2 H, CH₂CH₃), 1.10 (t, J = 7.5 Hz, 3 H, CH₂CH₃) ppm. EI-MS: *m*/*z* = 202 (64.61) [M⁺], 173 (2.69), 147 (4.42), 119 (14.88), 118 (100.00), 90 (38.07), 89 (38.07), 63 (3.01). HR-MS calcd. for C₁₃H₁₄O₂ [M⁺]: 202.0994; found 202.0992.

(5*R*)-3-Oxo-2-[(*Z*)-propylidene]-5-vinyltetrahydrofuran (5c): Colorless oil; yield: 30%. [*a*]_D²⁵ = -11.3 (c = 0.8, CHCl₃). IR (film): $\tilde{v} = 2970$, 2935, 2880, 1770, 1192, 1192,983, 935 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 6.00-5.88$ (m, 1 H, CH=CH₂), 5.51-5.26 (m, 3 H, CH=CH₂, C=CH), 4.93-4.84 (m, 1 H, OCHCH₂), 2.88 (dd, J = 7.8, 18.3 Hz, 1 H, CHCH₂CO), 2.60-2.45 (m, 3 H, C= CHCH₂CH₃, CHCH₂CO), 1.02 (t, J = 7.8 Hz, 3 H, CH₂CH₃) ppm. EI-MS: m/z = 152 (28.01) [M⁺], 117 (7.02), 110 (3.57), 98 (12.13), 82 (11.19), 70 (46.19), 57 (23.01), 55 (83.31), 54 (100.00), 42 (16.28). HR-MS calcd. for C₉H₁₂O₂ [M⁺]: 152.0837; found 152.0835.

(5*R*)-3-Oxo-2-[(*E*)-propylidene]-5-vinyltetrahydrofuran (6c): Colorless oil; yield: 29%. $[a]_D^{25} = -8.5$ (c = 0.6, CHCl₃). IR (film): $\tilde{v} = 2967$, 2929, 2878, 2856, 1730, 1655, 1461, 1189, 1122, 1037, 977 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 6.00-5.88$ (m, 1 H, CH= CH₂), 5.49 (t, J = 7.8 Hz, 1 H, C=CH), 5.42–5.27 (m, 2 H, CH= CH₂), 4.99–4.92 (m, 1 H, OCHCH₂), 2.83 (dd, J = 7.4, 18.3 Hz, 1 H, CHCH₂CO), 2.46 (dd, J = 7.1, 18.0 Hz, 1 H, CHCH₂CO), 2.26–2.16 (m, 2 H, C=CHCH₂CH₃), 1.06 (t, J = 7.5 Hz, 3 H, CH₂CH₃) ppm. EI-MS: m/z = 152 (24.00) [M⁺], 151 (85.52), 137 (19.95), 123 (17.54), 110 (15.70), 99 (38.32), 95 (58.52), 83 (74.51), 70 (90.05), 69 (80.17), 57 (91.76), 55 (100.00), 43 (39.41), 41 (33.40). HR-MS calcd. for C₉H₁₂O₂ [M⁺]: 152.0837; found 152.0831.

(5*R*)-2-[(*Z*)-Benzylidene]-3-oxo-5-vinyltetrahydrofuran (5*c*'): Colorless oil; yield 39%. [α]_D²⁵ = +50.5 (*c* = 0.8, CHCl₃). IR (film): \tilde{v} = 2924, 1769, 1731, 1220, 1167 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.71 (d, *J* = 7.2 Hz, 2 H, Ar*H*), 7.44–7.26 (m, 3 H, Ar*H*), 6.36 (s, 1 H, ArC*H*), 6.04–5.95 (m, 1 H, C*H*=CH₂), 5.48–4.99 (m, 3 H, CH=C*H*₂, C=C*H*), 2.96 (dd, *J* = 7.5, 18.0 Hz, 1 H, CHC*H*₂CO), 2.62 (dd, *J* = 7.7, 18.0 Hz, 1 H, CHC*H*₂CO) ppm. EI-MS: *m*/*z* = 200 (40.82) [M⁺], 172 (0.96), 119 (9.57), 118 (100.00), 105 (13.73), 90 (62.19), 82 (9.61), 77 (7.54), 54 (28.33). HR-MS calcd. for C₁₃H₁₂O₂ [M⁺]: 200.0837; found 200.0804.

(5*R*)-2-[(*E*)-Benzylidene]-3-oxo-5-vinyltetrahydrofuran (6*c*'): Colorless oil; yield: 21%. $[\alpha]_D^{25} = +64.3$ (c = 0.6, CHCl₃). IR (film): $\tilde{v} =$ 3065, 3027, 2926, 2856, 1726, 1627, 1257, 1177 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.78$ (d, J = 7.8 Hz, 2 H, ArH), 7.40–7.26 (m, 3 H, ArH), 6.33 (s, 1 H, ArCH), 6.08–5.97 (m, 1 H, CH= CH₂), 5.46 (d, J = 16.5 Hz, 1 H, CH=*CH*₂), 5.33 (d, J = 10.2 Hz, 1 H, CH=*CH*₂), 5.22–5.15 (m, 1 H, OCHCH₂), 2.93 (dd, J =8.1, 18.3 Hz, 1 H, CHCH₂CO), 2.54 (dd, J = 7.0, 18.3 Hz, 1 H, CHCH₂CO) ppm. EI-MS: m/z = 200 (24.13) [M⁺], 172 (2.94), 143 (7.30), 128 (4.80), 118 (100.00), 105 (14.46), 91 (20.70), 90 (51.11), 89 (22.43), 81 (19.75), 77 (24.39), 53 (13.03). HRMS calcd. for C₁₃H₁₂O₂ [M⁺]: 200.0837; found 200.0844.

(5*R*)-3-Oxo-5-phenyl-2-[(*Z*)-propylidene]tetrahydrofuran (5d): Colorless oil; yield: 31%. [α]_D²⁵ = +24.3 (c = 0.6, CHCl₃). IR (film): \tilde{v} = 2965, 2928, 1717, 1261, 977 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.43-7.34 (m, 5 H, Ar*H*), 5.51-5.42 (m, 2 H, C= C*H*, OC*H*CH₂), 3.07 (dd, *J* = 7.5, 18.0 Hz, 1 H, CHC*H*₂CO),

2.75–2.57 (m, 3 H, CHC H_2 CO, C H_2 CH₃), 1.04 (t, J = 7.8 Hz, 3 H, CH₂C H_3) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 199.8$, 146.5, 140.5, 128.9, 128.4, 125.7, 115.5, 77.6, 45.4, 18.0, 14.5 ppm. EI-MS: m/z = 202 (6.96) [M⁺], 178 (3.14), 160 (4.23), 131 (16.61), 121 (11.93), 107 (24.43), 105 (26.31), 104 (100.00), 86 (13.59), 84 (58.87), 77 (23.54), 59 (10.80). HR-MS calcd. for C₁₃H₁₄O₂ [M⁺]: 202.0994; found 202.0994.

(5*R*)-3-Oxo-5-phenyl-2-[(*E*)-propylidene]tetrahydrofuran (6d): Colorless oil; yield: 29%. [α]₂₅²⁵ = +32.0 (c = 0.8, CHCl₃). IR (film): \tilde{v} = 2961, 2924, 2852, 1741, 1261 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.43–7.26 (m, 5 H, Ar*H*), 5.60–5.51 (m, 2 H, C= C*H*, OCHCH₂), 3.09 (dd, J = 7.9, 18.3 Hz, 1 H, CHCH₂CO), 2.67 (dd, J = 7.4, 18.3 Hz, 1 H, CHCH₂CO), 2.31–2.20 (m, 2 H, CH₂CH₃), 1.08 (t, J = 7.2 Hz, 3 H, CH₂CH₃) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 198.4, 148.0, 140.7, 128.9, 128.4, 125.6, 109.8, 78.0, 43.8, 29.6, 13.4 ppm. EI-MS: m/z = 202 (14.06) [M⁺], 160 (4.52), 149 (4.02), 131 (7.55), 107 (8.11), 104 (100.00), 85 (5.57), 77 (12.57), 55 (11.09). HR-MS calcd. for C₁₃H₁₄O₂ [M⁺]: 202.0994; found 202.0988.

(5*R*)-2-[(*Z*)-Benzylidene]-3-oxo-5-phenyltetrahydrofuran (5*d*'): Colorless oil; yield 41%. [α]₂₅²⁵ = +66.7 (c = 0.6, CHCl₃). IR (film): \tilde{v} = 3085, 3033, 2925, 1731, 1608, 1220, 1166, 1029, 915 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.76 (d, J = 6.9 Hz, 2 H, Ar*H*), 7.45–7.26 (m, 8 H, Ar*H*), 6.44 (s, 1 H, C=CHAr), 5.59 (t, J = 7.8 Hz, 1 H, OCHCH₂), 3.20 (dd, J = 7.8, 18.0 Hz, 1 H, CHCH₂CO) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 198.7, 148.0, 133.1, 130.0, 128.7, 128.5, 128.2, 128.0, 125.7, 125.5, 113.8, 78.7, 62.5 ppm. EI-MS: m/z = 250 (23.86) [M⁺], 180 (5.94), 131 (17.69), 118 (100.00), 104 (23.44), 90 (44.70), 84 (26.18), 77 (23.08). HR-MS calcd. for C₁₇H₁₄O₂ [M⁺]: 250.0994; found 250.1006.

(5*R*)-2-[(*E*)-Benzylidene]-3-oxo-5-phenyltetrahydrofuran (6d'): Colorless oil; yield: 21%. [α]_D²⁵ = +112.0 (c = 0.6, CHCl₃). IR (film): \tilde{v} = 3033, 2920, 2850, 1719, 1625, 1247, 1183, 1190, 1015, 971 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.81 (2 H,d, J = 7.5 Hz, Ar*H*), 7.46–7.26 (m, 8 H, Ar*H*), 6.41 (s, 1 H, C=CHAr), 5.77 (t, J = 7.5 Hz, 1 H, OCHCH₂), 3.18 (dd, J = 8.1, 18.0 Hz, 1 H, CHCH₂CO), 2.74 (dd, J = 7.4, 18.3 Hz, 1 H, CHCH₂CO) ppm. ¹³C NMR (75.5 MHz, CDCl₃): δ = 200.2, 147.4, 141.1, 139.5, 133.8, 128.7, 128.4, 127.3, 125.3, 115.1, 105.8, 78.8, 63.5 ppm. EI-MS: m/z = 250 (31.91) [M⁺], 180 (5.11), 131 (12.25), 118 (100.00), 104 (8.56), 90 (43.89), 89 (19.04), 77(5.80). HR-MS calcd. for C₁₇H₁₄O₂ [M⁺]: 250.0994; found 250.1018.

(5*R*)-5-(4-Methoxyphenyl)-3-oxo-2-[(*Z*)-propylidene]tetrahydrofuran (5g): Colorless oil; yield: 33%. [α]_D²⁵ = +64.5 (c = 0.6, CHCl₃). IR (film): \tilde{v} = 2968, 2937, 2840, 1739, 1613, 1515, 1254, 1175 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.23 (d, J = 6.9 Hz, 2 H, Ar*H*), 6.86 (d, J = 7.2 Hz, 2 H, Ar*H*), 5.40–5.30 (m, 2 H, C=C*H*, OC*H*CH₂), 3.76 (s, 3 H, C*H*₃), 2.95 (dd, J = 7.5, 18.0 Hz, 1 H, CHC*H*₂CO), 2.64 (dd, J = 8.1, 18.0 Hz, 1 H, CHC*H*₂CO), 2.56–2.50 (m, 2 H, C*H*₂CH₃), 0.97 (t, J = 7.5 Hz, 3 H, CH₂C*H*₃) ppm. EI-MS: m/z = 232 (3.52) [M⁺], 161 (30.04), 137 (37.96), 135 (100.00), 119 (15.79), 109 (6.10), 91 (12.84), 77 (11.13). HR-MS calcd. for C₁₄H₁₆O₃ [M⁺]: 232.1099; found 232.1088.

(5*R*)-5-(4-Methoxyphenyl)-3-oxo-2-[(*E*)-propylidene]tetrahydrofuran (6g): Colorless oil; yield: 29%. $[\alpha]_D^{25} = +80.0 \ (c = 0.8, \text{CHCl}_3)$. IR (film): $\tilde{\nu} = 2968, 2936, 2879, 2840, 1735, 1516, 1255, 1177, 1033,$ $833 cm⁻¹. ¹H NMR (300 MHz, CDCl_3): <math>\delta = 7.29 \ (d, J = 8.4 \text{ Hz}, 2 \text{ H}, \text{Ar}H), 6.93 \ (d, J = 9.0 \text{ Hz}, 2 \text{ H}, \text{Ar}H), 5.57-5.44 \ (m, 2 \text{ H}, C=CH, OCHCH_2), 3.82 \ (s, 3 \text{ H}, CH_3), 3.03 \ (dd, J = 7.8, 18.3 \text{ Hz}, 1 \text{ H}, \text{CHCH}_2\text{CO}), 2.66 \ (dd, J = 7.8, 18.3 \text{ Hz}, 1 \text{ H}, \text{CHCH}_2\text{CO}),$ 2.28–2.17 (m, 2 H, CH_2CH_3), 1.07 (t, J = 7.5 Hz, 3 H, CH_2CH_3) ppm. EI-MS: m/z = 232 (18.60) [M⁺], 203 (7.02), 190 (2.72), 162 (8.22), 134 (100.00), 119 (16.94), 119 (15.79), 91 (12.56), 77 (4.61), 65 (5.81), 55 (7.38). HR-MS calcd. for $C_{14}H_{16}O_3$ [M⁺]: 232.1099; found 232.1094.

(5*R*)-2-[(*Z*)-Benzylidene]-5-(4-methoxyphenyl)-3-oxotetrahydrofuran (5g'): Colorless oil; yield: 38%. $[\alpha]_{25}^{25} = +26.7 (c = 0.8, CHCl_3)$. IR (film): $\tilde{v} = 2932, 2839, 1730, 1613, 1515, 1251, 1172, 1031 cm^{-1}$. ¹H NMR (300 MHz, CDCl_3): $\delta = 7.75$ (d, J = 7.5 Hz, 2 H, Ar*H*), 7.37-7.25 (m, 5 H, Ar*H*), 6.94 (d, J = 7.2 Hz, 2 H, Ar*H*), 6.40 (s, 1 H, C=CHAr), 5.52 (t, J = 7.8 Hz, 1 H, OCHCH₂), 3.82 (s, 3 H, OCH₃), 3.14 (dd, J = 7.8, 18.3 Hz, 1 H, CHCH₂CO), 2.84 (dd, J = 7.8, 18.0 Hz, 1 H, CHCH₂CO) ppm. EI-MS: *m*/*z* = 280 (23.49) [M⁺], 210 (9.77), 161 (34.19), 134 (100.00), 118 (31.82), 105 (14.71), 90 (21.72), 86 (45.09) 84 (70.90), 77 (18.38). HR-MS calcd. for C₁₈H₁₆O₃ [M⁺]: 280.1099; found 280.1096.

(5*R*)-2-[(*E*)-Benzylidene]-5-(4-methoxyphenyl)-3-oxotetrahydrofuran (6g'): Colorless oil; yield: 16%. $[\alpha]_{D}^{25} = +327.5$ (c = 0.8, CHCl₃). IR (film): $\tilde{v} = 2956$, 2929, 2837, 1727, 1623, 1516, 1249,1178, 1031 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.79$ (d, J = 7.2 Hz, 2 H, Ar*H*), 7.38–7.25 (m, 5 H, Ar*H*), 6.94 (d, J = 8.7 Hz, 2 H, Ar*H*), 6.39 (s, 1 H, C=CHAr), 5.69 (t, J = 7.8 Hz, 1 H, OCHCH₂), 3.82 (s, 3 H, OCH₃), 3.13 (dd, J = 7.8, 18.3 Hz, 1 H, CHCH₂CO), 2.73 (dd, J = 7.5, 18.3 Hz, 1 H, CHCH₂CO) ppm. EI-MS: *m*/*z* = 280 (28.61) [M⁺], 210 (10.87), 161 (29.31), 134 (100.00), 118 (33.94), 90 (23.13), 77 (5.49), 65 (8.68). HR-MS calcd. for C₁₈H₁₆O₃ [M⁺]: 280.1099; found 280.1095.

(5*R*)-5-(4-Fluorophenyl)-3-oxo-2-[(*Z*)-propylidene]tetrahydrofuran (5j): Colorless oil; yield: 35%. $[\alpha]_D^{25} = +64.5$ (c = 0.6, CHCl₃). IR (film): $\tilde{v} = 2970$, 2934, 2877, 1734, 1514, 1228, 1190, 838 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.41-7.33$ (m, 2 H, Ar*H*), 7.13-7.17 (m, 2 H, Ar*H*), 5.51-5.44 (m, 2 H, C=C*H*, OC*H*CH₂), 3.07 (dd, J = 7.5, 18.0 Hz, 1 H, CHC*H*₂CO), 2.72-2.58 (m, 3 H, CHC*H*₂CO, C*H*₂CH₃), 1.05 (t, J = 7.5 Hz, 3 H, CH₂C*H*₃) ppm. EI-MS: m/z = 220 (8.83) [M⁺], 178 (3.12), 149 (7.68), 122 (100.00), 101 (7.22), 96 (7.44), 75 (2.57), 69 (3.67), 55 (3.78). HR-MS calcd. for C₁₃H₁₃FO₂ [M⁺]: 220.0900; found 220.0913.

(5*R*)-5-(4-Fluorophenyl)-3-oxo-2-[(*E*)-propylidene]tetrahydrofuran (6j): Colorless oil; yield: 34%. [α]_D²⁵ = +28.5 (c = 0.6, CHCl₃). IR (film): \tilde{v} = 2970, 2935, 2878, 1737, 1659, 1513, 1228, 838 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.37–7.28 (m, 2 H, Ar*H*), 7.13–7.06 (m, 2 H, Ar*H*), 5.61–5.49 (m, 2 H, C=C*H*, OC*H*CH₂), 3.08 (dd, J = 8.1, 18.3 Hz, 1 H, CHC*H*₂CO), 2.63 (dd, J = 7.5, 18.0 Hz, 1 H, CHC*H*₂CO), 2.30–2.20 (m, 2 H, C*H*₂CH₃), 1.09 (t, J = 7.5 Hz, 3 H, CH₂C*H*₃) ppm. EI-MS: m/z = 220 (5.66) [M⁺], 191 (1.54), 178 (2.37), 149 (6.46), 122 (100.00), 101 (7.31), 96 (8.20), 75 (2.84), 55 (2.91). HR-MS calcd. for C₁₃H₁₃FO₂ [M⁺]: 220.0900; found 220.0874.

(5*R*)-2-[(*Z*)-Benzylidene]-5-(4-fluorophenyl)-3-oxotetrahydrofuran (5j'): Colorless oil; yield 42%. $[\alpha]_D^{25} = +66.8$ (c = 0.8, CHCl₃). IR (film): $\tilde{v} = 3068$, 3033, 2928, 2855, 1754, 1730, 1608, 1513, 1226, 1158 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.76$ (d, J = 7.8 Hz, 2 H, Ar*H*), 7.40–7.29 (m, 5 H, Ar*H*), 7.10 (t, J = 8.4 Hz, 2 H, Ar*H*), 6.43 (s, 1 H, C=CHAr), 5.55 (t, J = 7.8 Hz, 1 H, OCHCH₂), 3.17 (dd, J = 7.5, 18.3 Hz, 1 H, CHCH₂CO), 2.79 (dd, J = 7.8, 18.3 Hz, 1 H, CHCH₂CO) ppm. EI-MS: m/z = 268 (2.33) [M⁺], 178 (3.67), 149 (27.74), 122 (100.00), 118 (63.17), 107 (44.14), 101 (31.60), 90 (58.45), 77 (70.99), 63 (15.51), 57 (24.71), 51 (23.89). HR-MS calcd. for C₁₇H₁₃O₂F [M⁺]: 268.0900; found 268.0889.

(5*R*)-2-[(*E*)-Benzylidene]-5-(4-fluorophenyl)-3-oxotetrahydrofuran (6j'): Colorless oil; yield: 24%. $[\alpha]_{25}^{25} = +240.5$ (c = 0.6, CHCl₃).

IR (film): $\tilde{v} = 3058, 2958, 2927, 2856, 1733, 1636, 1513, 1237, 1187, 837 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): <math>\delta = 7.80$ (d, J = 7.5 Hz, 2 H, Ar*H*), 7.41–7.26 (m, 5 H, Ar*H*), 7.11 (t, J = 8.1 Hz, 2 H, Ar*H*), 6.41 (s, 1 H, C=CHAr), 5.74 (t, J = 7.5 Hz, 1 H, OCHCH₂), 3.17 (dd, J = 7.5, 18.0 Hz, 1 H, CHCH₂CO), 2.70 (dd, J = 7.5, 18.0 Hz, 1 H, CHCH₂CO), 2.70 (dd, J = 7.5, 18.0 Hz, 1 H, CHCH₂CO), 2.70 (dd, J = 7.5, 18.0 Hz, 1 H, CHCH₂CO), 2.10 (dd, J = 7.5, 18.0 Hz, 1 H, CHCH₂CO), 2.70 (dd, J = 7.5, 18.0 Hz, 1 H, 2.0 Hz, 1 H, 2.0 Hz, 1 H, 10.0 Hz, 10.0 H

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grant No. 20272075 and 20372076).

- ^[1] ^[1a] L. D. Buyck, N. Menke, J. Louagie, *Bull. Soc. Chim. Belg.* 1991, 100, 187–189. ^[1b] R. D. Guthrie, I. D. Jenkins, J. J. Watters, M. W. Wright, R. Yamasaki, *Aust. J. Chem.* 1982, 35, 2169–2173. ^[1c] T. Sakakibara, T. Takamoto, T. Matsuzaki, H. Omi, U. W. Maung, R. Sudoh, *Carbohydr. Res.* 1981, 95, 291–298.
- ^[2] U. Hacksell, G. D. Daves, *The Chemistry and Biochemistry of C-Nucleosides and C-Arylglycosides*, In *Process in Medicinal Chemistry*; Elsevier Science Publishers: London, **1985**, vol. 22, 1–65.
- ^[3] [^{3a]} A. M. Calter, C. Zhu, J. Org. Chem. 1999, 64, 1415–1419.
 ^[3b] A. M. Calter, C. Zhu, Tetrahedron Lett. 1997, 38, 3837–3840.
 ^[3c] P. Albert, S. Marcus, Tetrahedron Lett. 1997, 38, 5087–5090.
- ^[4] ^[4a] R. P. Newton, D. Chiatante, D. Ghosh, G. A. Brenton, T. J. Walton, *Phytochemistry* **1989**, *28*, 2243–2254. ^[4b] W. G. Bentrude, J. Tomasz, *Synthesis* **1984**, *1*, 27–29. ^[4c] A. Wolff, M. E. Burger, *J. Am. Pharm. Assoc.* **1959**, *48*, 56–59. ^[4d] K. Yoshino, T. Kohno, T. Morita, G. Tsukamoto, *J. Med. Chem.* **1989**, *32*, 1528–1532.

- ^[5] [^{5a]} F. Nicotra, L. Panza, G. Russo, A. Senaldi, N. Burlini, P. Tortora, *J. Chem. Soc., Chem. Commun.* **1990**, *20*, 1396–1397.
 ^[5b] W. Flitsch, F. Jerman, *Liebigs Ann. Chem.* **1985**, 307–311.
 ^[5c] R. D. Allan, J. R. Hanrahan, T. W. Hambley, G. A. R. Johnston, K. N. Mewett, A. D. Mitrovic, *J. Med. Chem.* **1990**, *33*, 2905–2915.
 ^[5d] K. Sasaki, *Bull. Chem. Soc. Jpn.* **1966**, *39*, 2703.
- ^[6] ^[6a] Y. H. Zhang, C. F. Xu, J. F. Li, C. Y. Yuan, *Tetrahedron:* Asymmetry **2003**, 14, 63–70. ^[6b] Y. H. Zhang, C. Y. Yuan, Z. Y. Li, *Tetrahedron* **2002**, 58, 2973–2978. ^[6c] Y. H. Zhang, Z. Y. Li, C. Y. Yuan, *Tetradedron Lett.* **2002**, 43, 3247–3249.
- [7] E. Wada, S. Kanemasa, O. Tsuge, Bull. Chem. Soc. Jpn. 1989, 62, 860–868.
- ^[8] ^[8a] N. Farrell, J. Inorg. Biochem. 1981, 14, 261–265. ^[8b] N. Petiniot, A. J. Anciaux, A. F. Noels, A. J. Hubert, P. Teyssie, *Tetrahedron Lett.* 1978, 14, 1239–1242. ^[8c] R. Pellicciari, R. Fringuelli, P. Ceccherelli, E. Sisani, J. Chem. Soc., Chem. Commun. 1979, 21, 959–960. ^[8d] I. N. Domnin, E. F. Zhuravleva, N. V. Pronina, Zh. Org. Khim. 1978, 14, 2323–2327.
- ^[9] [^{9a]} K. Lee, D. F. Wiemer, J. Org. Chem. **1993**, 58, 7808-7812.
 [^{9b]} K. Konno, K. Hashimoto, Y. Ohfune, H. Shirahama, T. Matsumoto, Tetrahedron Lett. **1986**, 27, 607-610. [^{9c]} K. Konno, K. Hashimoto, Y. Ohfune, H. Shirahama, T. Matsumoto, J. Am. Chem. Soc. **1988**, 110, 4807-4815. [^{9d]} T. Durand, O. Henry, A. Guy, A. Roland, J. P. Vidal, J. C. Rossi, Tetrahedron **2003**, 59, 2485-2496. [^{9e]} H. Kiyota, D. J. Dixon, C. K. Luscombe, S. Hettstedt, S. V. Ley, Org. Lett. **2002**, 4, 3223-3226. [^{9f]} Q. Zhang, A. Rivkin, D. P. Curran, J. Am. Chem. Soc. **2002**, 124, 5774-5781. [^{9g]} D. L. Boger, S. Ichikawa, W. Zhong, J. Am. Chem. Soc. **2001**, 123, 4161-4167.
- ^[10] [^{10a]} M. J. Davies, C. J. Moody, R. J. Taylor, J. Chem. Soc., Perkin Trans. 1 **1991**, 1, 1–7. [^{10b]} C. J. Moody, E. H. B. Sie, J. J. Kulagowski, J. Chem. Soc., Perkin Trans. 1 **1994**, 5, 501–506.
- ^[11] L. W. McElwee, D. A. Dougherty, J. Am. Chem. Soc. **1984**, 106, 3466-3474.

Received January 13, 2004