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Rh(III)-Catalyzed Three-Component Cascade Annulation to 
Produce N-oxopropyl Chain of Isoquinolone Derivatives
Yuan He,a Xian-Zhang Liao,a Lin Dong a,* and Fen-Er Chen a,b,c*

Developing powerful methods to introduce the versatile functional groups at the N-substituents of isoquinolone scaffolds 
is still a great challenge. Herein, we report a novel three-component cascade annulation reaction to efficiently construct N-
oxopropyl chain of isoquinolone derivatives via rhodium(III)-catalyzed C−H activation/cyclization/nucleophile attack, with 
oxazoles using both as the directing group and potential functionalized reagents.

Isoquinolones are an attractive class of structural units, and their 
extensive prevalence in various biologically active compounds, 
alkaloids and natural products, such as dorianine, ruprechstyril, 
protoberberines and benzo[c]phenanthridines.1 Meanwhile, 
isoquinolone derivatives as versatile intermediates have widely 
access to a large variety of chemical molecules and drug structures.2 
Due to these properties, a large number of strategies have paved 
the way to the formation of different isoquinolone derivatives.3

In recent years, transition-metal-catalyzed C−H bond 
functionalization has received increasing attention because of high 
atom-economic, activity, selectivity together with great practical 
worth.4 Therefore, these highly efficient synthetic methods have 
been directed to construct the useful isoquinolone skeletons. Most 
strategies utilized various types of benzamide derivatives direct 
working with coupling partners such as alkynes, diynes and diazo 
compounds (Scheme 1, eq 1).5 Some other reports have appeared 
on the establishment of the motifs from benzohydrazines, acyl 
azides and nitriles, etc.6 Despite these achievements, the further 
introducing the versatile functional groups at the N-substituents of 
isoquinolone scaffolds during the C−H functionalization/cascade 
reaction aroused our great interest. Very recently, Cui and Kapur 
separately featured beautiful oxazoline-directed aromatic C−H 
activation approaches to build N-(2-acetoxyalkyl)isoquinolones 
from alkynes or diazo compounds (eq 2).7 Nevertheless, oxazoles 
serving as a directing group are still very limited, and only one 
example provided anthracene skeletons from 5-aryl-2-
phenyloxazole (eq 3).8 Therefore, we describe a novel three-
component cascade annulation reaction to generate N-oxopropyl 
chain of isoquinolone derivatives via rhodium(III)-catalyzed C−H 

activation/cyclization/nucleophile attack by using oxazoles as the 
directing group as well as potential functionalized reagents (eq 4). 
      At the outset of our studies, 5-methyl-2-phenyloxazole (1a) and 
diphenylacetylene (2a) were chosen as model substrates to 
optimize the reaction conditions (Table 1). Initially, no desired 
product was observed when choosing AgOAc or Cu(acac)2 as the 
oxidant (entries 1 and 2). To our delight, the desired N-oxopropyl 
chain product 3aa could be isolated in 57% yield by using 
Cu(OAc)2·H2O as the oxidant (entries 3 and 4). Silver salt screening 
showed that AgNTf2 gave the increased result (entries 4-8). Notably, 
reaction efficiency was increased by adding trace amount of H2O 
(entry 9). The addition of pivalic acid can effectively promote the 
reaction activity (entries 10-14). The solvent effect is still obvious in 
the cascade reaction (entries 15-20). Delightedly, decreasing the 
loading of catalyst resulted in a higher yield (entry 21). Further 
decreasing the loading of 2a, AgNTf2 and PivOH could facilitate the 
cascade reaction (entry 22). Scaling up the reaction still led to good 
isolated yield (entry 23).       
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Scheme 1 Strategies to Form Isoquinolone Skeletons via C−H Bond 
Functionalization

With the optimized reaction conditions in hand, we explored the 
substrate scope of 2-aryloxazolines. As revealed in Scheme 2, in 
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general, 2-aryloxazolines bearing electron-donating substituents at 
para-position of phenyl ring were well tolerated, affording the 

Table 1 Optimization of the Reaction Conditionsa

N

O
+

1a 2a

N

O

Ph
Ph

O

3aa

Ph Ph
oxidant, solvent
100 oC, 12 h, air

catalyst, additive

Entry Oxidant Additive Solvent Yieldb

1 AgOAc AgNTf2 CH3OH ND
2 Cu(acac)2 AgNTf2 CH3OH ND
3 Cu(OAc)2 AgNTf2 CH3OH Trace
4 Cu(OAc)2•H2O AgNTf2 CH3OH 57%
5 Cu(OAc)2•H2O AgOTf CH3OH 14%
6 Cu(OAc)2•H2O AgSO3CH3 CH3OH 40%
7 Cu(OAc)2•H2O AgBF4 CH3OH 51%
8 Cu(OAc)2•H2O AgSbF6 CH3OH 52%
9 Cu(OAc)2•H2O AgNTf2/H2O CH3OH 65%
10 Cu(OAc)2•H2O AgNTf2/Na2CO3/H2O CH3OH 40%%
11 Cu(OAc)2•H2O AgNTf2/HOAc/H2O CH3OH 42%
12 Cu(OAc)2•H2O AgNTf2/PhCOOH/H2O CH3OH 65%
13 Cu(OAc)2•H2O AgNTf2/1-AdCOOH/H2O CH3OH 66%
14 Cu(OAc)2•H2O AgNTf2/PivOH/H2O CH3OH 74%
15 Cu(OAc)2•H2O AgNTf2/PivOH/H2O THF 56%
16 Cu(OAc)2•H2O AgNTf2/PivOH/H2O DCE 41%
17 Cu(OAc)2•H2O AgNTf2/PivOH/H2O CH3CN 57%
18 Cu(OAc)2•H2O AgNTf2/PivOH/H2O Toluene Trace
19 Cu(OAc)2•H2O AgNTf2/PivOH/H2O 1,4-Dioxane 42%
20 Cu(OAc)2•H2O AgNTf2/PivOH/H2O EtOH 64%
21c Cu(OAc)2•H2O AgNTf2/PivOH/H2O CH3OH 53%
22d Cu(OAc)2•H2O AgNTf2/PivOH/H2O CH3OH 52%
21e Cu(OAc)2•H2O AgNTf2/PivOH/H2O CH3OH 80%
22f Cu(OAc)2•H2O AgNTf2/PivOH/H2O CH3OH 86%
23g Cu(OAc)2•H2O AgNTf2/PivOH/H2O CH3OH 64%

aUnless otherwise stated, reaction conditions are as follows: 1a (0.05 mmol), 
2a (2 equiv), [Cp*RhCl2]2 (5 mol%), oxidant (2.1 equiv), silver salt (20 mol%), 
acid (1 equiv), solvent (0.5 mL), H2O (50 L), 100 C, 12 h, under air. b Isolated 
yield. c80 oC. d120 oC. e[Cp*RhCl2]2 (4 mol%). f2a (1.5 equiv), [Cp*RhCl2]2 (4 
mol%), AgNTf2 (10 mol%), PivOH (0.5 equiv). g1a (1 mmol).

corresponding products (3ba-3fa) in higher yields than electron- 
poor ones (3ha-3ja), except 3ga, probably because trifluoromethyl 
groups are more stable than other electron-absorbing groups in 
catalytic system. Due to the influence of steric hindrance, ortho 
substituted substrates were sluggish in the catalytic system, giving 
the products (3ka-3ma) ranging from 21% to 51% yields. Excellent 
regioselectivity was isolated because of steric reasons, when meta-
substituted substrates (3na and 3oa) were used under the 
conditions. Naphthalene ring and dimethoxy substituted substrates 
were also compatible, affording 3pa and 3qa in 66% and 50% yields, 
respectively. Aryl group substituted oxazole proceeded successfully, 
providing N-acetophenone chain products in acceptable yields (3ra-
3va). Tertiary butyl group substituted oxazole also gave 3wa in 
useful yield. In particular, Csp2-H still showed good reactivity, 
affording triphenylpyridin (3xa-3za) in modest yields, while dialkyl 
substituted olefin 1A nullified reactivity.

Subsequently, diverse alkynes coupling with 5-methyl-2-
phenyloxazole 1a were explored, and the results were showed in 
Scheme 3. Pleasingly, moderate to good yields from symmetrical 
diarylacetylenes (3ab-3ak) were obtained, whether the substituent 
was electron-rich or -poor. Dialkyl alkynes were excellent coupling 
partners in the reaction (3al and 3am). Dithiophene alkyne could 
also react with 1a to give the heteroaryl product 3an in 52% yield. 
To our delight, the unsymmetrical alkynes could work smoothly 
with 1a to give the products 3ao-3ar in good yields together with 

high regioselectivity. 

Scheme 2 Substrate Scope of 2-Aryloxazolineaa
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aReaction conditions: 1 (0.05 mmol), 2a (1.5 equiv), [Cp*RhCl2]2 (4 mol%), 
Cu(OAc)2·H2O ( 2.1 equiv), AgNTf2 (10 mol%), PivOH (0.5 equiv), CH3OH (0.5 
mL), H2O (50 L), 100 C, 12 h, under air, isolated yield. b2a (1.2 equiv). c10 h. 
d (E)-5-methyl-2-styryloxazole was used.

Scheme 3 Substrate Scope of Alkynesa
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aReaction conditions: 1a (0.05 mmol), 2 (1.5 equiv), [Cp*RhCl2]2 (4 mol%), 
Cu(OAc)2·H2O ( 2.1 equiv), AgNTf2 (10 mol%), PivOH (0.5 equiv), CH3OH (0.5 
mL), 50 L H2O, 100 oC, 12 h, under air, isolated yield. b2 (1.2 equiv). c10 h. 
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d2o (2.0 equiv), Cu(OAc)2·H2O (3.0 equiv). eratio determined by 1H NMR of 
the crude reaction mixture, only the major isomer was shown. f(3,3-
diethoxyprop-1-yn-1-yl)benzene was used.

The intermolecular competition reaction between the F- and Me-
substituent on the para-position of aryl ring with 2a under standard 
conditions indicated that the electron-donating substituent 
exhibited a little bit better reaction activity in the one-pot 
competition reaction (Scheme 4, eq 1). While the yield of 3ga was 
higher than 3ba, which indicate that the special strong electron-
poor substituent CF3 exhibited better reaction activity in the one-
pot competition reaction (eq 2). Furthermore, 3ab and 3ae were 
obtained in a ratio of 1:1.1, which implied that there was no 
obvious reactivity difference in this reaction system (eq 3). 
Subsequently, some deuterium-labeling experiments were carried 
out to further investigate the catalytic mechanism. 90% deuterium 
was observed at both ortho-positions when the reaction was 
performed in the absence of 2a using CH3OD as the solvent, 
showing that the possibility of the reaction pathway via ortho-C−H 
bond activation (eq 4). In addition, a kinetic isotope effect (KIE) was 
determined to be 1.3, indicating that the cleavage of the ortho C–H 
bond might be not involved in the rate-determining step (eq 5). 
Then the reaction was performed in the presence of H2O18 (eq 6), 
which unambiguously proving the nucleophilic attack of water step 
and suggesting that the carbonyl oxygen on the oxopropyl chain of 
the isoquinolone derivative comes from the water used in the 
reaction conditions.
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Scheme 4 Study on Characteristics and Mechanism

The transformations of the products were undertaken in Scheme 
5. Compound 3aa could build the product 4 in 95% yield via second 
C−H functionalization with methyl acrylate (eq 7). Additionally, 
condensation of carbonyl functionalized long chain with formamide 
precursor generated the key ethenamine 5 in 68% yield, which 
could be further subjected cyclization to give pyrazole derivative 6 
(eq 8).9 Moreover, phenylhydrazone compound 7 introducing from 
N-carbonyl chain of 3aa, converted to novel heterocyclic compound 
8 using Vilsmeier–Haack reagent (DMF-POCl3) in 86% yield (eq 9).10

COOMe

PivOH (2 equiv)
CH3OH

130 oC, 16 h, air

[Cp*RhCl2]2 (5 mol%)
Cu(OAc)2 H2O ( 2.1 equiv)

AgSbF6 (20 mol%) N

O

Ph
Ph

O
COOMe

4, 95%

N

O

Ph
Ph

O
N

MeO

MeO
toluene,

110 oC, 24 h

N

O

Ph
Ph

O N
NHNH2

EtOH
N

O

Ph
Ph

5, 68% 6, 54%

EtOH
110 oC

overnight

N

O

Ph
Ph

N

O

Ph
Ph

7, 80% 8, 86%

NHNH2

NNHPh

POCl3
DMF

3aa

N N

CHO

Ph

N
N
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Scheme 5 Synthetic Applications

A plausible mechanism for the reaction were proposed in Scheme
6. First, a coordination of nitrogen of 1a by rhodium and C−H bond 
activation occurred to afford a rhodacyclic intermediate I. 
Subsequently, coordination of diphenylacetylene 2a to rhodacyclic 
intermediate I was followed by insertion of the C-Rh bond to give 
complex III, which underwent reductive elimination to generate 
oxazolinium salt IV. Then the reduced rhodium(I) was oxidized to 
regenerate rhodium(III) participating in the next catalytic cycle. 
Finally, H2O as a nucleophile attacked oxazolinium salt IV and living 
cationic ring-opening to afford the final product 3aa.

[RhIIICp*X2]

RhIII
N

O

Cp*

RhIII
N

O

X
Cp*

Ph
Ph

RhIII
N

O

Ph Ph
Cp*

N

O

Ph
Ph

1a

2a

H2O
3aa

I

II

III

IV

H+
[RhICp*]

CuII
CuI

Scheme 6 Plausible Mechanism

Conclusions
In summary, we highly efficiently synthesized isoquinolone 

derivatives bearing functional N-oxopropyl chain via chelation 
assistance of oxazoline ring. Novel three-component cascade 
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annulation involving rhodium(III)-catalyzed C−H 
activation/cyclization/ nucleophile attack has been well developed. 
In particular, oxazoles worked as the directing group as well as 
potential functionalized reagents. This approach showed excellent 
regioselective and a broad functional group tolerance. Further work 
is ongoing to form more complex isoquinolone derivatives.
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