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Photoinduced Rearrangement of Vinyl Tosylates to ββββ-Ketosulfones 

Lili Xie, Xiaomeng Zhen, Shuping Huang*, Xiaolong Su, Mai Lin and Yi Li*

We developed a photoinduced radical fragmentation and 

rearrangement of vinyl tosylates that enables efficient formation 

of ββββ-ketosulfones. The process is based on photoinitiated 

homolysis of vinyl tosylate to release sulfinyl radical from the tosyl 

group of and subsequent addition of sulfinyl radical to another 

vinyl tosylate form the desired ββββ-ketosulfones. This simple 

protocol features board scope with both aromatic and aliphatic 

substrates, convenient reagents and operating system. 

Organo sulfones are of considerable importance in synthetic 

and medicinal chemistry.
1
 Particularly, β-ketosulfones have 

strongly attracted synthetic pursuit of chemists, not only due 

to their versatile synthetic applications in organic synthesis, 

but also because of their particular pharmaceutical relevance 

exhibiting an extensive and broad range of biological 

activities.
2
 Given their value in chemistry and biological 

systems, intensive efforts have been devoted to the synthesis 

of β-ketosulfones. The representative protocols to synthesize 

β-ketosulfones are acylation of alkyl sulfones with acid 

chlorides, esters or N-acyl benzotriazoles (Scheme 1, a);
3
 

alkylation of metallic arene sulfinates with α-halo- or α-

tosyloxy ketones (Scheme 1, b);
4
 and oxidation of  β-

ketosulfides or β-hydroxysulfones with stoichiometric oxidants 

(Scheme 1, c).
5
  

Recently, radical sulfonylation has drawn intense attention as 

a useful approach to β-ketosulfones. General strategies to 

synthesize β-ketosulfones were applying alkenes,
6
 alkynes,

7
 or 

activated alkenes
8
 to reactions with various radical 

sulfonylation reagents (Scheme 1, d). For examples, in 2013, 

Wang group reported a copper-catalyzed oxysulfonylation 

reaction of alkenes with sulfonylhydrazides for the synthesis of 

β-ketosulfones.
6a

 Lei et al. demonstrated an aerobic oxidative 

difunctionalization of alkynes with sulfonic acids to generate β- 

Scheme 1 Pathways of sulfonylation.
 

 

ketosulfones.
7a

 In 2016, Lei and co-workers also developed a 

direct approach to β-ketosulfones via aerobic oxysulfonylation 

of vinyl phosphates with aromatic thiols.
8b

 Recently, Wang et 

al. disclosed a sustainable synthetic approach to β-

ketosulfones with alkenes and sulfonic acids.
6d

 While 

impressive progresses have been made in this area, many of 

the reported examples generally required the addition of a 

large excess amount of sulfonylation reagents and external 

oxidants. Therefore, the development of new and efficient 

access to synthesize β-ketosulfones still remains highly 

desirable, especially with less or no use of oxidants, boarder 

substrate scopes, and milder reaction conditions. 

Recently, visible-light promoted photoredox has leveraged 

remarkable achievements.
9
 Among which, organic dyes as 

photosensitizers showed their superiority to transition metal 

catalysts, such as ruthenium and iridium complexes, with 

regard to their lower cost and less toxicity.
10

 Considering these 

advantages of reaction diversities and sustainable conditions, 

possible application of photoredox in designing and identifying 

useful paradigms for alternative β-ketosulfone synthesis is 

particularly appealing. As shown in Scheme 1 e, we anticipated 

that an oxidative fragmentation might be triggered on vinyl 

tosylate under visible-light promoted photoredox, thereby 

converting it into sulfinyl radical specie, which would 

subsequently undergo a sequence of radical addition and 

rearrangement to afford β-ketosulfone. 
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Table 1 Reaction optimization
a 

F3C

OTs

F3C

O

Ts
photoinitiator (1 mol%)

solvent, 12 h, rt.

5 W white LED

O

R

NaO

Br Br

R

O

R=Br, Eosin Y
R=NO2, Eosin B

CO2Na

O

I

NaO

I I

I

O

CO2NaCl

Cl

Cl

Cl

Rose Bengal (RB)

S

N

N
Me

Me

N
Me

Me Cl

Methylene Blue (MB)

1a 2a

 

entry initiator solvent conversion
b
 

1 eosin Y tBuOH:H2O 1:1 6% 

2 rose bengal tBuOH:H2O 1:1 3% 

3 9-fluorenone tBuOH:H2O 1:1 33% 

4 methylene blue tBuOH:H2O 1:1 43% 

5 fac-Ir(ppy)3 tBuOH:H2O 1:1 41% 

6 eosin B tBuOH:H2O 1:1 46% 

7 eosin B CH3CN 7% 

8 eosin B DMF 88% 

9 eosin B DMSO 96% (94%)
c
 

10 eosin B H2O 50% 

11 eosin B DMSO:H2O 1:1 78% 

12
d
 eosin B DMSO 95% 

13 - DMSO N.R. 

14
e
 eosin B DMSO N.R. 

a
Vinyl tosylate 1a (0.2 mmol), 5 W white LED, solvent (1 mL), and initiator (1 

mol%) at room temperature for 12 h. 
b
Determined by crude 

19
F NMR. 

c
Isolated 

yield was shown in parentheses. 
d
Reaction in 1 h. 

e
Reaction under daylight 

lamp. 

 

The feasibility of our exception was tested by exposing vinyl 

tosylate (1a) in a mixed solvent (tBuOH:H2O 1:1) under visible 

light irradiation from 5 W white light-emitting diodes (LEDs) 

(Table 1). Performing the transformation in the presence of 

the commercially available photosensitizer eosin Y (1 mol%) 

for 12 h at room temperature, we were delight to observe that 

the corresponding β-ketosulfone 2a was formed, albeit in 6% 

conversion (entry 1). Further screening of photoinitiators 

revealed that eosin B was the best for this transformation with 

moderate conversion of 46% (entry 6). A number of other 

photoinitiators, including rose bengal (RB), methylene blue 

(MB) and fac-Ir(ppy)3 were subsequently investigated (entries 

2-5), and they were found to be less effective than eosin B. 

Gratefully, of solvents tested, isolated yield of the desired 

product 2a dramatically enhanced to 94% when the reaction 

was performed in DMSO (entries 7-11). Furthermore, we were 

delighted to find that one hour turns out to be a sufficient 

reaction time with an equally matched conversion of 95% 

(entry 12). In the control experiments, this transformation was 

found to be completely suppressed in the absence of the 

photoinitiator or irradiated by a daylight lamp (entries 13, 14). 

 

 

Table 2 Reaction optimization for aliphatic vinyl tosylate
a 

 

entry initiator (X mol%) conversion
b
 

1 eosin B (1 mol%) 17% 

2 eosin Y (1 mol%) NR 

3 methylene blue (1 mol%) NR 

4 rose bengal (1 mol%) 22% 

5 fac-Ir(ppy)3 (1 mol%) NR 

6 benzophenone (5 mol%) NR 

7 acetophenone (5 mol%) NR 

8 9-fluorenone (5 mol%) 99% (95%) 

a
Vinyl tosylate 1ad (0.2 mmol), 5 W white LED, solvent (1 mL), and initiator (X 

mol%), under Ar at room temperature for 12 h. 
b
Determined by crude 

1
H NMR. 

c
Isolated yield was shown in parentheses. 

 

While aromatic vinyl tosylates underwent these 

transformations in excellent yields under optimized conditions 

in Table 1, aliphatic derivatives did not, as tert-butyl vinyl 

tosylate 1ad reacted to afford 2ad in a disappointing yield of 

17% (Table 2, entry 1). Therefore, we set out to further 

evaluate different photoinitiators for aliphatic substrates. To 

our delight, reaction with the use of 9-fluorenone
11

 as 

photoinitiator resulted 2ad in excellent yield (Table 2, entry 8). 

With the optimized reaction conditions in hand, we then 

evaluated the synthetic potential of this transformation. 

Table 3 Scope of aromatic vinyl tosylate
a, b 

 

 

2a R
1
 = CF3: 94%; 

2b R
1
 = H: 99%; 

2c R
1
 = F: 98%; 

2d R
1
 = Cl: 86%; 

2e R
1
 = Br: 82%; 

2f  R
1
 = I: 92% 

2g R
1
 = CN: 95% 

2h R
1
 = CO2Me:87% 

2i  R
1
 = Me: 99% 

 

 

2j  R
1
 = Cl: 93% 

2k R
1
 = Br: 94% 

2l  R
1
 = OMe: 99%  

2m R
1
 = Cl: 83% 

2n  R
1
 = F: 90% 

2o  R
1
 = Me: 87% 

 

2p R
1

n = 3-Br-4-F: 95% 

2q R
1

n = 3,4-Me2: 94% 

2r  R
1

n = 2,4-Cl2: 99% 

 

2s R = 2-naphthyl: 94% 

2t R = 4-pyridyl: 92% 

 

2u R
2
 = C6H5: 84% 

2v R
2
 = 4-ClC6H4: 88% 

2wR
2
 = 2,4-(Me)2C6H3: 99% 

2x R
2
 = Me: 93% 

2y R
2
 = Et: 85% 

2z R
2
 = 10-camphoryl: 87% 

 
2aa 92% 

 
2ab 95% 

a
Vinyl tosylate 1 (0.2 mmol), 5 W white LED, DMSO (1 mL), and eosin B (1 mol%), 

under Ar at room temperature for 12 h. 
b
Isolated yield. 
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Table 4 Scope of aliphatic vinyl tosylate
a, b 

 

 

O

Ts

   

2ac 97% 2ad 94% 2ae 93% 2af 89% 

 
   

2ag 80% 
2ah n = 3: 77% 

2ai  n = 9: 35% 
2aj 66% 

2ak 67% 

single isomer 

a
Vinyl tosylate 1 (0.2 mmol), 5 W white LED, DMSO (1 mL), and 9-fluoroenone (5 

mol%), under Ar at room temperature for 12 h. 
b
Isolated yield. 

Generally, reactions of aromatic vinyl tosylates containing 

either electron-withdrawing or electron-donating groups 

proceeded efficiently to provide the corresponding products in 

good to excellent yields (Table 3, 2a-2o). The nature of the 

substituents has almost no effect on the overall course of the 

reaction. A wide range of functionalities such as halogen 

(especially I (2f)), CN (2g), and ester (2h) groups were 

compatible with this reaction, which were suitable for further 

potential functionalization. Notably, bisubstitutional aromatic 

vinyl tosylates are tolerated as well as substrates with meta-

para- or ortho-para-substitutents on the aromatic rings (2p-

2r). Heterocyclic vinyl tosylates could also serve as suitable 

substrates in this procedure and gave the desired products (2s 

and 2t) in 94% and 92% yields. Furthermore, aromatic (2u-2w) 

or aliphatic substituents (2x-2z) on the sulfone-motifs were 

also amendable to this protocol, exhibiting equally reactivity 

and affording the expected products in mostly good to 

excellent yields (84%-99%). 

This protocol was next extended to the synthesis of aliphatic β-

ketosulfones (Table 4). Remarkably, the introduction of 

sterically hindered substituents, such as iso-propyl (2ac), tert-

butyl (2ad) or adamantly (2ae), had almost no impact on the 

reactivity; and the desired β-ketosulfones were well generated 

in good to excellent yields (93%-97%). In addition, substrates 

1af and 1ag, derived from cyclic ketones, also gave the 

expected products in 89% and 80% yields. Linear aliphatic vinyl 

tosylates with long chains reacted smoothly to give the 

corresponding β-ketosulfones in moderate to good yields 

(Table 4, 2ah, 2ai and 2aj). We also examined this protocol to 

the late-stage modification of natural product (2ak, 67%). 

To gain preliminary inspect into this transformation, we 

carried out radical-trapping experiments with 1b under the 

standard conditions. The addition of the radical scavenger 

TEMPO completely inhibited the reaction and 1b was 

recovered in 99% yield, suggesting the involvement of a radical 

mechanism (Scheme 2, a). The crossover experiment was 

performed by applying an equimolar amount of 1n and 1v to 

the standard conditions. As determined by the crude NMR, 

Scheme 2 Mechanistic studies. 

 

 
Figure 1 Proposed mechanism. 

 

 four possible crossover products (2n, 2al, 2v and 2b) were 

detected in a ratio of 1.4:1:1.4:1 (Scheme 2, b). Furthermore, 

the apparent quantum efficiency of the model transformation 

with 1a was calculated to be 9.4, which indicates that this 

protocol probably processed via photo-induced chain 

mechanism. In order to clarify the initiation mechanism, we 

applied DFT calculations on the triplet energy of 

photosensitizer and vinyl tosylate. 9-Fluorenone and (z)-but-2-

en-2-yl methanesulfonate were chosen as the simplified 

models. The calculated triplet energy of 9-fluorenone is 219 

kJ/mol (211 kJ/mol by literature)
12

 and the value of substrate is 

121 kJ/mol. These results supported the possibility of energy 

transfer between the initiator and the substrate. (more details 

found in the SI) 

On the basis of the above results and literature surveys, we 

proposed a putative reaction cycles as shown in Figure 1. 

Through energy transfer from the excited photosensitizer, 

vinyl tosylate underwent homolytic decomposition to generate 

enol radical and sulfinyl radical (initiation cycle). The addition 

of sulfinyl radical to another vinyl tosylate affords the 

intermediate I. Radical reconstruction of I would eventually 

form the desired product and another sulfinyl radical for next 

reaction cycle (chain propagation). 

Conclusions 

In conclusion, we have described a new strategy to form β-

ketosulfones through visible-light initiated radical 

rearrangement of vinyl tosylates. This protocol features mild 

sustainable reaction conditions, broad substrate scope for 

both aromatic and aliphatic compounds, and is compatible 
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with various cyclic or sterically bulky skeletons. Further studies 

to expand the applicability of the present reaction system are 

currently underway in our laboratory. 
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