View Article Online View Journal

CossMark Cick for updates Chemical Science

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: X. Zhang, X. Xie and Y. Liu, *Chem. Sci.*, 2016, DOI: 10.1039/C6SC01191H.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemicalscience

Xingjie Zhang, Xin Xie and Yuanhong Liu*

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Nickel-Catalyzed Cyclization of Alkyne-Nitriles with Organoboronic Acids Involving *anti*-Carbometalation of Alkynes

A nickel-catalyzed regioselective addition/cyclization of o-(cyano)phenyl propargyl ethers with arylboronic acids has been developed, which provides an efficient protocol for the synthesis of highly functionalized 1-naphthylamines with a wide range of structural diversity. The reaction is characterized by a regioselective and anti-addition of the arylboronic acids to the alkyne and subsequent facile nucleophilic addition of the resulting alkenylmetal to the tethered cyano group. Mechanistic studies reveal that Ni(I) species might be involved in the catalytic process.

Introduction

Transition-metal-catalyzed cascade reactions consisting of multiple carbometalation steps have attracted considerable attention in organic synthesis since these processes enable the rapid assembly of complex structures in an efficient, atomeconomical and green manner.^[1] Among these reactions, organoboron compounds are one of the most widely used reagents not only due to their chemical stability and easy availability, but also due to that they can undergo a series of addition reactions to unsaturated compounds such as alkynes, dienes, enones, aldehydes/ketones, nitriles and isocyanates etc. in the presence of a transition metal catalyst, especially a Rh, Pd or Ni complex.^[2] The development of cascade reactions by combining of the different types of these elemental reactions is undoubtedly important and attractive. In this regard, the cascade reactions involving the addition of organoboron compounds to alkynes as the initial step have been realized mainly through Rh-^[1b-c,3] or Pd-catalysis^[4] reported by Murakami, Hayashi, Lu and other groups. These catalytic reactions generally proceed by syn-1,2-addition of organometal species generated through transmetalation between organoboron and metal complex across the carboncarbon triple bond, followed by nucleophilic attack of the resulting alkenylmetal on the remained electrophiles (Scheme 1, eq 1). So far most of the reported reactions proceed via formation of regioisomer **A** in which R^2 group of $R^2B(OH)_2$ locates on a carbon adjacent to alkyne terminus R¹, leading to an *exo*-alkene upon cyclization^[3,4] (Scheme 1, eq 1).

Cyclizations involving the regioselective formation of alkenylmetal with a metal α -to the R¹ substituent such as syn-**B** are quite rare^[5] (Scheme 1, eq 2), possibly due to that the subsequent cyclization process will evoke a highly strained transition state. Thus the development of new cyclization systems with controlled regiochemistry towards B is highly challenging. During our studies on nickel-catalyzed reactions, we found such transformation could be achieved by addition of organoborons to benzene-tethered alkyne-nitriles utilization of nickel as the catalyst, possibly through the isomerization of syn-B to anti-B. Herein, we report the first example of nickelcatalyzed carboarylative cyclization of alkyne-nitriles with organoboronic acids involving regioselective and anticarbonickelation of alkynes, which provides an efficient protocol for the synthesis of highly functionalized 1naphthylamines. In addition, mechanistic studies revealed that Ni(I) species^[6] rather than Ni(II) species was involved as key intermediates, which has not been reported in Ni-catalyzed boron addition reactions.

Scheme 1. Metal-catalyzed cascade addition/cyclization reactions

Results and discussion

View Article Online DCI: 10.1039/C6SC01191H

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032. E-mail: yhliu@sioc.ac.cn

⁺ Electronic Supplementary Information (ESI) available. CCDC 1440646 and 1440647. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/x0xx00000x.

Journal Name

ARTICLE

We chose the nickel-catalyzed reaction of o-(cyano)phenyl propargyl ether^[7] **1a** and phenylboronic acid as a model reaction for the optimization of the reaction conditions. Initially, we examined the reactions in the presence of $Ni(cod)_2$ and various phosphine ligands such as PPh₃ in 1,4-dioxane at 90 °C. However, only trace of the desired cyclization product was observed, along with some byproducts (Table 1, entry 1). Replacing of Ni(cod)₂ with Ni(II) complex Ni(acac)₂·2H₂O (acac = acetylacetonate) could afford a cyclized product of 4-OTBSsubstituted 1-naphthylamine 2a, albeit in only 17-18% yields (entries 2-3). To our delight, the addition of 10 mol% of ^tBuOK as a base improved the yield of 2a dramatically to 66% within a short reaction time (entry 4). The results suggest that a base is necessary for this reaction possibly for promoting the transmetalation step by formation of a borate^[8] with organoboronic acid. The structure of 2a also revealed that arylation in the initial step occurred regioselectively on the alkyne carbon closer to the OTBS group. Subsequently, the effects of bases, phosphine ligands and solvents were evaluated. Among various bases, Cs₂CO₃ gave the best result (73%, entry 5). Increasing the catalytic loading of Cs₂CO₃ to 20 mol% had little effect on the yield of 2a (entry 8). However, when stoichiometric amount of Cs₂CO₃ was used, the yield was reduced rapidly (entry 9). It was remarkable that unlike the use of more than one equivalent of bases in most of the transition metal-catalyzed reactions involving organoborons, here only

Ĺ	OTBS CN Ph +		5 mol% cata 5 mol% ligan 10 mol% bas solvent, 90 %	$\frac{\text{lyst}}{\frac{3e}{2C}} \xrightarrow{\text{TE}}$		'n
Entry	Catalyst	Ligand	Base	Solvent	Time [h]	Yield [%] ^[a]
1	Ni(cod) ₂	PPh3 ^[b]	-	1,4-dioxane	3	trace
2	Ni(acac) ₂ · 2H ₂ O	PPh ₃	-	1,4-dioxane	24	18
3	Ni(acac) ₂ · 2H ₂ O	$P(p-CF_{3}C_{6}H_{4})_{3}$	-	1,4-dioxane	24	17
4	Ni(acac) ₂ · 2H ₂ O	$P(p-CF_{3}C_{6}H_{4})_{3}$	^t BuOK	1,4-dioxane	4	66
5	Ni(acac) ₂ · 2H ₂ O	$P(p-CF_3C_6H_4)_3$	Cs ₂ CO ₃	1,4-dioxane	3	73
6	Ni(acac) ₂ · 2H ₂ O	$P(p-CF_{3}C_{6}H_{4})_{3}$	CsF	1,4-dioxane	6	67
7	Ni(acac) ₂ · 2H ₂ O	$P(p-CF_3C_6H_4)_3$	K ₂ CO ₃	1,4-dioxane	10	31
8	Ni(acac) ₂ · 2H ₂ O	$P(p-CF_{3}C_{6}H_{4})_{3}$	Cs ₂ CO ₃ ^[c]	1,4-dioxane	3	68
9	Ni(acac) ₂ · 2H ₂ O	$P(p-CF_3C_6H_4)_3$	Cs ₂ CO ₃ ^[d]	1,4-dioxane	10	8 (59)
10 ^[e]	Ni(acac) ₂ · 2H ₂ O	$P(p-CF_3C_6H_4)_3$	Cs_2CO_3	1,4-dioxane	3	74
11	Ni(acac) ₂ · 2H ₂ O	PPh ₃	Cs ₂ CO ₃	1,4-dioxane	5	69
12	Ni(acac) ₂ · 2H ₂ O	$P(p-MeC_6H_4)_3$	Cs_2CO_3	1,4-dioxane	4	68
13	Ni(acac) ₂ · 2H ₂ O	$P(C_6F_5)_3$	Cs_2CO_3	1,4-dioxane	5	63
14	Ni(acac) ₂ · 2H ₂ O	PPh ₂ Me	Cs ₂ CO ₃	1,4-dioxane	7	45
15	Ni(acac) ₂ · 2H ₂ O	PCy ₃	Cs ₂ CO ₃	1,4-dioxane	17	55
16	Ni(acac) ₂ · 2H ₂ O	IPr	Cs ₂ CO ₃	1,4-dioxane	6	64
17	Ni(acac) ₂ · 2H ₂ O	IPr	^t BuOK	1,4-dioxane	7	62
18	Ni(acac) ₂ · 2H ₂ O	P(p-CF ₃ C ₆ H ₄) ₃	Cs ₂ CO ₃	THF	8	64
19	Ni(acac) ₂ · 2H ₂ O	P(p-CF ₃ C ₆ H ₄) ₃	Cs ₂ CO ₃	toluene	3	68
20 ^[f]	Ni(acac) ₂ · 2H ₂ O	P(p-CF ₃ C ₆ H ₄) ₃	Cs ₂ CO ₃	1,4-dioxane	6	57
21	Ni(acac) ₂	P(p-CF ₃ C ₆ H ₄) ₃	Cs ₂ CO ₃	1,4-dioxane	3	72
22	Ni(cod) ₂	P(p-CF ₃ C ₆ H ₄) ₃ ^[b]	Cs ₂ CO ₃	1,4-dioxane	9	trace
23	Ni(acac) ₂ · 2H ₂ O	-	Cs ₂ CO ₃	1,4-dioxane	5	65
24	-	$P(p-CF_3C_6H_4)_3$	Cs ₂ CO ₃	1,4-dioxane	10	(99)

[a] Isolated yields. The yields of the recovered **1a** were shown in parentheses. [b] 10 mol% of the ligand was used. [c] 20 mol% of Cs_2CO_3 was used. [d] 1.0 equiv of Cs_2CO_3 was used. [e] 10 mol% Ni(acac)_2·2H_2O, 10 mol% P(p-CF₃C₆H₄)₃ and 20 mol% Cs₂CO₃ were used. [f] One equiv of H₂O was added.

catalytic amounts of base were enough. Increasing the catalyst loading did not improve the yield of the produce (entry 140)! Triarylphosphine ligands and N-heterocyclic carbene ligand IPr (IPr =1,3-bis(2,6- diisopropylphenyl)imidazole-2-ylidene) were also effective, while the ligands such as PPh₂Me and PCy₃ were less efficient (entries 11-17). Changing the solvent to THF or toluene afforded 2a in satisfied yields of 64-68% (entries 18-19). Addition of one equivalent of H_2O as a promoter or proton source did not afford a better result (entry 20). Ni(acac)₂ also catalyze the reaction efficiently (entry 21). When $Ni(cod)_2$ was used as the catalyst, only trace amounts of 2a were obtained (entry 22). Without the phosphine ligand, the reaction also proceeded to afford 2a in 65% yield, however, with a longer reaction time (entry 23). Without nickel catalyst, no reaction occurred (entry 24). On the basis of the above optimization studies, the reaction conditions shown in Table 1, entry 5 were chosen as the best conditions.

Next, we proceeded to investigate the scope of this new addition/cyclization reaction cascade catalvzed by Ni(acac)₂·2H₂O. The reactivity of various organoboronic acids was first examined using 1a as a reaction partner (Table 2). During this process, we found that the 5 mol% catalyst loading was not effective in some cases, thus 10 mol% Ni(acac)₂·2H₂O, 10 mol% $P(p-CF_3C_6H_4)_3$ and 20 mol% Cs_2CO_3 were used in most of the cases to achieve the better product yields. As shown in Table 2, a wide range of diversely substituted aryl- or heteroaryl-boronic acids were suitable for this reaction, leading to the desired 1-naphthylamines 2a-2s in generally good to high yields. Arylboronic acids bearing the electrondonation groups such as p-Me, p-^tBu and p-MeO or electronwithdrawing groups such as p-F, p-Cl, p-CF₃, p-CN, p-CO₂Et and p-Ac on the aryl rings underwent the cyclization smoothly to provide the corresponding 1-naphthylamines 2b-2j in 64-77% yields, and these functional groups were well tolerated during the reaction. Of note is that a CN and Ac group remained intact under the reaction conditions, and no nickel-catalyzed boron additions to these groups were observed. The results indicated that electron-poor or -rich aryl substituents on arylboronic acids had little influence on the yields of products 2. Sterically demanding o-MeO substituted arylboronic acid afforded 2k with a longer reaction time in lower yield of 47%, indicating that the reaction is markedly influenced by steric effect. Arylboronic acids with -MeO or -Cl substituents at 3-, 3,4- or 3,5-positions of the phenyl ring, or with a biphenyl or 2naphthyl ring transformed into products 2l-2m and 2o-2r efficiently in good yields. The use of 2-fluorophenylboronic acid gave 2n in 41% yield. 2-Thienylboronic acid also participated in this cascade reaction, albeit with a lower yield of 2s. However, when alkylboronic acid such as n-butylboronic acid was employed, no desired product was obtained.

The scope of *o*-(cyano)phenyl propargyl ethers was then examined (Table 3). A variety of electron-donating and withdrawing groups on the aryl rings at the alkyne terminus were found to be compatible, such as *p*-Me, *p*-OMe, *p*-F, *p*-Cl, *p*-CF₃ and *p*-CO₂Me substituents, and the corresponding products **2t-2y** were formed in 61-76% yields. Interestingly, in contrast to the results of the reaction of **1a** with 2-

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence

Open Access Article. Published on 19 May 2016. Downloaded on 26/05/2016 21:18:59.

Table 2. Scope of the reaction with respect to arylboronic

[a] The yields given are for the isolated products. [b] 5 mol% Ni $(acac)_2 \cdot 2H_2O$, 5 mol% $P(p-CF_3C_6H_4)_3$ and 10 mol% Cs_2CO_3 were used. [c] THF was used as the solvent.

thienylboronic acid, the presence of 2-thienyl or 3benzothienyl ring as the alkyne terminals did not give much influence to the reaction, and the corresponding products 2z and 2za were obtained in high yields of 80% and 74%, respectively. A 9H-fluorene substituent, which is a very useful unit in organofunctional materials, was also successfully incorporated into the product 2zb in 70% yield. Alkenyl or alkyl-substituted alkynes, such as cyclohexenyl, cyclopropyl and propyl-substituted one, however, afforded the desired products 2zc-2ze in low yields of 23-35%. The structure of 1naphthylamine products was unambiguously confirmed by Xray crystallographic analysis of **20**.^[9] 1-Naphthylamines are important structural motifs found in a variety of biologically active substances. They are also acted as useful building blocks in synthetic chemistry and dyestuffs industry. However, efficient methods for their synthesis are quite limited.^[10] Our reaction provides a convenient route to 1-naphthylamines.

To understand the reaction mechanism, we tried to isolate the possible reaction intermediates. First, a stoichiometric reaction of Ni(acac)₂ (1 equiv), IPr (1 equiv), PhB(OH)₂ (2 equiv) and ^rBuOK (2 equiv) was carried out (Scheme 2, eq 1). It was found that in addition to a biphenyl product, a red crystalline

[a] The yields given are for the isolated products.

compound IPrNi(acac) 3 was also isolated in 62% yield. Complex 3 is paramagnetic as indicated by the appearance of broad signals in ¹H NMR. The X-ray crystal analysis of **3**^[9] clearly shows a rare, three-coordinate distorted T-shape Ni(I) structure. $^{\rm [6e,f]}$ When $\rm Cs_2\rm CO_3$ was used instead of $^{\rm r}\rm BuOK$, the same Ni(I) complex was also observed, however, in a low yield of 14%. In this case, a large amount of precipitate could be observed. The precipitate was assumed to be PhB(OH)₂-Cs₂CO₃ adduct. It might be due to the formation of this low soluble adduct, thus preventing their further reaction with the nickel complex. In fact, stirring a 1:1 mixture of PhB(OH)₂ and Cs₂CO₃ in 1,4-dioxane at 90 $^{\circ}$ C resulted in the formation of a large amount of white precipitate. This might also explain why the use of 1 equivalent of Cs₂CO₃ provided the cyclized product 2a in low yield (Table 1, entry 9). Complex 3 might be formed by the comproportionation of Ni(0) and Ni (II) species.^[6c,d] To confirm this point, the stoichiometric reaction of Ni(COD)₂ with

Journal Name

Science Accepted Mar

Scheme 2. Mechanistic studies

Ni(acac)₂ in the presence of IPr was carried out. To our delight, the same complex 3 was formed in moderate yield (Scheme 2, eq 2). This Ni(I) complex 3 was found to catalyze the cyclization of 1a with PhB(OH)₂ to 2a (Scheme 2, eq 3), implying that Ni(I) species was likely involved in the catalytic process. Recently, Ni(I) species was proposed to be relevant in Ni-catalyzed crosscoupling reactions.^[6] Our results demonstrate that Ni(I) may also be involved in Ni-catalyzed addition reactions of organoboron reagents to the alkynes. In addition, reaction of allene 4 with PhB(OH)₂ under Ni-catalyzed conditions afforded indeno[1,2-b]quinoline 5 via base-promoted cyano-Schmittel cyclization,^[7] while the desired **2a** was not observed (Scheme 2, eq 4), indicating that the reaction does not involve the allene intermediate.

The origin of the regioselectivity in this reaction is not clear yet, possibly it is controlled by electronic factors in π -complex **12** (see Scheme 3).^[11] To understand the role of OTBS group, the alkyne-nitrile 6 without the OTBS group was synthesized. The Ni-catalyzed reaction of 6 with PhB(OH)₂ afforded only 10% of the desired naphthylamine 7, along with a small amounts of an unidentified byproduct (Scheme 2, eq 5). The results indicate that the presence of OTBS group is crucial for this reaction.

In addition, it was found that in the presence of a radical scavenger such as TEMPO, the desired 2a and an N-arylated product 8 were formed in 74% combined yield (Scheme 2, eq 6). 8 was possibly formed by Ni-catalyzed oxidative amination of arylboronic acid with amine 2a.^[12,13] The results indicated that the reaction was not inhibited by TEMPO, and this suggests that radical species is not involved in this system.

Based on the above results, we propose the following reaction mechanism (Scheme 3). Initially, transmetalation of arylboronic acid with Ni(II) complex promoted by a base provides diarylnickel(II) species **9**, together with HOBO, $HCsCO_3$ and Cs(acac).^[14] **9** undergoes reductive elimination to form a Ni(0) species. The observation of biphenyl^[15] in the catalytic reaction of 1a with PhB(OH)₂ also supported that Ni(II) was reduced in the reaction process. This Ni(0) species comproportionates with Ni(II) to afford Ni(I) complex 10, which undergoes transmetalation with arylboronic acid to give arylnickel(I) species 11. Regioselective 1,2-addition of arylnickel(I) species 11 to the alkyne moiety in a syn-fashion takes place to give an alkenylnickel(I) intermediate syn-13. Cisto-trans isomerization of **13**,^[16] possibly through a carbene-like zwitterionic resonance species^[17] yields alkenylnickel(I) intermediate anti-13 with a metal trans-to Ar substituent. It was noted that most of the metal-catalyzed reactions of

Scheme 3. Possible reaction mechanism

organoborons to alkynes gave the syn-addition product while few reactions produce the anti-addition product.^[2r, 17] The regio- and stereochemistry for addition process here are consistent with those observed by cobalt(II)-catalyzed hydroarylation of propargyl -alcohols or -carbamates with arylboronic acids.^[18] Cyano group may play a role in facilitating the cis-trans-isomerization by stabilizing the metal species and directing the subsequent addition reaction. Nucleophilic attack of alkenylmetal in anti-13 to the cyano group forms a cyclized intermediate 14. Subsequent protonation of 14 produces the N-H imine 15 and a nickel(I) species 16. Tautomerization of 15 affords the observed product 2. 16 undergoes transmetalation with $ArB(OH)_2$ to regenerate the arylnickel(I) catalyst **11**.

Conclusions

In summary, we have developed a nickel-catalyzed regioselective addition/cyclization o-(cyano)phenyl of propargyl ethers with arylboronic acids, which provides an efficient protocol for the synthesis of highly functionalized 1naphthylamines with a wide range of structural diversity. The reaction is characterized by a regioselective and anti-addition of the arylboronic acids to the alkyne and subsequent facile nucleophilic addition of the resulting alkenylmetal to the tethered cyano group. Mechanistic studies reveal that Ni(I) species might be involved in the catalytic process. Further mechanistic studies and the extension to alkynes tethered with a wide variety of electrophiles are currently ongoing in our laboratory.

Acknowledgements

We thank the National Natural Science Foundation of China (Grant Nos. 21125210, 21421091) for financial support.

ARTICLE

Journal Name

Notes and references

- For reviews, see: (a) E. Negishi, C. Copéret, S. Ma, S.-Y. Liou and F. Liu, *Chem. Rev.*, 1996, **96**, 365-393; (b) T. Miura and M. Murakami, *Chem. Commun.*, 2007, 217-224; (c) S. W. Youn, *Eur. J. Org. Chem.*, 2009, 2597-2605.
- 2 For selected papers, see: for Rh: (a) M. Sakai, M. Ueda and N. Miyaura, Angew. Chem. Int. Ed., 1998, 37, 3279-3281; (b) T. Hayashi, K. Inoue, N. Taniguchi and M. Ogasawara, J. Am. Chem. Soc., 2001, 123, 9918-9919; (c) C. G. Frost and K. J. Wadsworth, Chem. Commun., 2001, 2316-2317; (d) M. Murakami and H. Igawa, Chem. Commun. 2002, 390-391; (e) T. Matsuda, M. Makino and M. Murakami, Org. Lett., 2004, 6, 1257-1259; (f) H. Shimizu and M. Murakami, Chem. Commun., 2007, 2855-2857; (g) T. Miura, Y. Takahashi and M. Murakami, Chem. Commun., 2007, 3577-3579; (h) T. Matsuda, Y. Suda and A. Takahashi, Chem. Commun., 2012, 48, 2988-2990. For Pd, (i) T. Nishikata, Y. Yamamoto and N. Miyaura, Angew. Chem. Int. Ed., 2003, 42, 2768-2770; (j) C. H. Oh, T. W. Ahn and R. Reddy, V. Chem. Commun., 2003, 2622-2623; (k) Y. Bai, J. Yin, W. Kong, M. Mao and G. Zhu, Chem. Commun., 2013, 49, 7650-7652. For Ni: (I) E. Shirakawa, G. Takahashi, T. Tsuchimoto and Y. Kawakami, Chem. Commun., 2001, 2688-2689; (m) E. Shirakawa, G. Takahashi, T. Tsuchimoto and Y. Kawakami, Chem. Commun., 2002, 2210-2211; (n) K. Hirano, H. Yorimitsu and K. Oshima, Adv. Synth. Catal., 2006, 348, 1543-1546; (o) J. D. Sieber, S. Liu and J. P. Morken, J. Am. Chem. Soc., 2007, 129, 2214-2215; (p) K. Hirano, H. Yorimitsu and K. Oshima, Org. Lett., 2007, 9, 5031-5033; (q) Y.-C. Wong, K. Parthasarathy and C.-H. Cheng, Org. Lett., 2010, 12, 1736-1739; (r) D. W. Robbins and J. F. Hartwig, Science, 2011, 333, 1423-1427. So far only two reports involving Ni-catalyzed hydroarylation of alkynes with arylboronic acids have been known, see Ref. 21 and 2r.
- 3 (a) R. Shintani, K. Okamoto, Y. Otomaru, K. Ueyama and T. Hayashi, J. Am. Chem. Soc., 2005, 127, 54-55; (b) T. Miura, M. Shimada and M. Murakami, J. Am. Chem. Soc., 2005, 127, 1094-1095; (c) T. Matsuda, M. Makino and M. Murakami, Angew. Chem. Int. Ed., 2005, 44, 4608-4611; (d) T. Miura, M. Shimada and M. Murakami, Synlett, 2005, 667-669; (e) T. Miura, H. Nakazawa and M, Murakami, Chem. Commun., 2005, 2855-2856; (f) T. Miura, T. Sasaki, T. Harumashi and M. Murakami, J. Am. Chem. Soc., 2006, 128, 2516-2517; (g) T. Miura, Y. Takahashi and M. Murakami, Org. Lett., 2007, 9, 5075-5077; For Rh-catalyzed reaction of arylboronic acids with alkyne-nitriles to exo-alkenes, see Ref. 3e.
- 4 (a) J. Song, Q. Shen, F. Xu and X. Lu, Org. Lett., 2007, 9, 2947-2950; (b) T. Miura, T. Toyoshima, Y. Takahashi and M. Murakami, Org. Lett., 2008, 10, 4887-4889; (c) H. Tsukamoto, T. Suzuki, T. Uchiyama and Y. Kondo, Tetrahedron Lett., 2008, 49, 4174-4177; (d) X. Han and X. Lu, Org. Lett., 2010, 12, 108-111; (e) K. Shen, X. Han and X. Lu, Org. Lett., 2012, 14, 1756-1759.
- 5 For a Pd(0)-catalyzed cyclization of alkynals or alkynones involving formal *anti*-addition of organoboronic reagents via a different reaction mechanism, see: H. Tsukamoto, T. Ueno and Y. Kondo, *J. Am. Chem. Soc.*, 2006, **128**, 1406-1407.
- 6 (a) T. J. Anderson, G. D. Jones and D. A. Vicic, J. Am. Chem. Soc., 2004, 126, 8100-8101; (b) G. D. Jones, C. McFarland, T. J. Anderson and D. A. Vicic, Chem. Commun., 2005, 4211-4213; (c) G. Yin, I. Kalvet, U. Englert and F. Schoenebeck, J. Am. Chem. Soc., 2015, 137, 4164-4172; (d) L. M. Guard, M. Mohadjer Beromi, G. W. Brudvig, N. Hazari and D. J. Vinyard, Angew. Chem. Int. Ed., 2015, 54, 13352-13356. For Ni(I) complexes containing NHC ligands, see: Ni(IPr)₂Cl, (e) S. Miyazaki, Y. Koga, T. Matsumoto and K. Matsubara, Chem. Commun., 2010, 46, 1932-1934; Ni(IMes)₂X, (f) K. Zhang, M.

Conda-Sheridan, S. R. Cooke and J. Louie, *Organopatellics*, 2011, **30**, 2546-2552. DOI: 10.1039/C65C01191H

- For our recent results on cyano-Schmittel cyclization of (o-cyano)phenylpropargyl ethers, see: X. You, X. Xie, H. Chen, Y. Li and Y. Liu, *Chem. Eur. J.*, 2015, **21**, 18699-18705.
- 8 Y. Makida, E. Marelli, A. M. Z. Slawin and S. P. Nolan, *Chem. Commun.*, 2014, **50**, 8010-8013.
- 9 CCDC 1440646 (**2o**) and 1440647 (**3**) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
- 10 (a) P. Sagar, R. Fröhlich and E.-U. Würthwein, Angew. Chem. Int. Ed., 2004, 43, 5694-5697; (b) Q. Shen and J. F. Hartwig, J. Am. Chem. Soc., 2006, 128, 10028-10029; (c) S.-C. Zhao, X.-Z. Shu, K.-G. Ji, A.-X. Zhou, T. He, X.-Y. Liu and Y.-M. Liang, J. Org. Chem., 2011, 76, 1941-1944; (d) R. S. Reddy, P. K Prasad, B. B. Ahuja and A. Sudalai, J. Org. Chem., 2013, 78, 5045-5050; (e) P. Gao, J. Liu and Y. Wei, Org. Lett., 2013, 15, 2872-2875; (f) W. P. Hong, A. V. Iosub and S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 13664-13667.
- 11 A. Arcadi, M. Aschi, M. Chiarini, G. Ferrara and F. Marinelli, Adv. Synth. Catal. 2010, **352**, 493-498.
- 12 D. S. Raghuvanshi, A. K. Gupta and K. N. Singh, Org. Lett., 2012, 14, 4326-4329.
- 13 The reaction of amine **2a** with phenylboronic acid under the reaction conditions shown in Scheme 2, eq 6 gave **8** in 43% yield.
- 14 P.-S. Lin, M. Jeganmohan and C.-H. Cheng, *Chem. Asian J.*, 2007, **2**, 1409-1416.
- 15 Without ligand, only biphenyl was observed. With 10 mol% of $P(p-CF_3C_6H_4)_3$ as the ligand, in addition to biphenyl, 4,4'-bis(trifluoromethyl)biphenyl and 4-(trifluoromethyl)biphenyl were also observed, possibly due to the aryl transfer from the phosphine ligand. See: I. Colon and D. R. Kelsey, *J. Org. Chem.*, 1986, **51**, 2627-2637.
- 16 A. Yamamoto and M. Suginome, J. Am. Chem. Soc., 2005, 127, 15706-15707.
- 17 M. Murakami, T. Yoshida, S. Kawanami and Y. Ito, J. Am. Chem. Soc., 1995, **117**, 6408-6409.
- 18 P.-S. Lin, M. Jeganmohan and C.-H. Cheng, Chem. Eur. J., 2008, 14, 11296-11299.

This journal is © The Royal Society of Chemistry 20xx