Halo Derivatives of 2,4-Dinitrothiolene 1,1-Dioxides: Synthesis and Structure

V. M. Berestovitskaya, I. A. Litvinov, I. E. Efremova, L. V. Lapshina, D. B. Krivolapov, and A. T. Gubaidullin

Herzen Russian State Pedagogical University, St. Petersburg, Russia Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan, Russia

Received February 14, 2001

Abstract—Procedures were developed for preparing representatives of a new type of halonitrothiolene 1,1-dioxides: mono- and dihalo derivatives of 2,2,4-tri- and 2,4-dinitro-3-thiolene 1,1-dioxides. An X-ray diffraction study showed that 2,5-dinitro-2,3-dichloro-3-thiolene 1,1-dioxide molecules exist in the crystal as enantiomeric pairs; the five-membered rings have the *envelope* conformation, with deviation of the sulfur atom from the ring plane; the halogen atom and nitro group at the multiple bond are essentially coplanar with the ring.

2,2,4-Trinitrothiolene 1,1-dioxides [1] containing fragments of polynitroalkanes, CH acids, nitroethenes, and five-membered heterocycles are interesting polyfunctional objects. Owing to the presence in their molecules of several reaction centers, diverse reaction pathways are possible, allowing synthesis of previously unknown or difficultly accessible groups of compounds: dinitrothiolene 1,1-dioxides [2], arylaminodinitrobutadienes [3], substituted nitroquinoxalines [4], and also stable molecular complexes of dinitrothiophene 1,1-dioxides with pyridine ad its derivatives [5]. In view of the fact that introduction of a halogen atom into a nitrothiolene 1,1-dioxide ring considerably expands the synthetic potential of this class of compounds [1], it seemed interesting to prepare halo derivatives of di- and trinitrothiolene 1,1-dioxides and to reveal their structural features.

With the aim to prepare halogenated polynitrothiolene 1,1-dioxides, we studied nitration of 4-nitro-3chloro-2- and -3-thiolene 1,1-dioxides I and II, and also of 2-hydroximino-3-chloro-3-thiolene 1,1-dioxide III. Nitration of I–III with 55% HNO₃ yielded 2,2,4trinitro-3-chloro-3-thiolene 1,1-dioxide IV, but its yield did not exceed 8%. Along with the desired product IV, we obtained large amounts (~40%) of oxalic acid crystal hydrate, the well-known product of oxidative cleavage of haloethenes in nitration reactions [6, 7].

1070-3632/02/7207-1111 \$27.00 © 2002 MAIK "Nauka/Interperiodica"

When varying the conditions of nitration of **II** with the aim to increase the yield of the desired product **IV**, we obtained unexpected results. With 100% nitric acid as nitrating agent (under these conditions, apparently, radical nitration is inhibited), we obtained a precursor of IV, 2,4-dinitro-3-chloro-3-thiolene 1,1-dioxide V. Under conditions of gradual increase in the nitrating agent concentration (the reaction was started in 55% HNO₃, and then 100% HNO₃ was added), we isolated 2,4-dinitro-2,3-dichloro-3-thiolene 1,1-dioxide VI in 6% yield, and also oxalic acid crystal hydrate. Apparently, compound VI formed under these conditions is a product of destructive nitration [8] associated with the effect of halogenating agents arising under the action of concentrated HNO₃ as oxidant on halogenated alkenes [9, 10].

A convenient route to dichlorodinitrothiolene 1,1-dioxide VI and to its structural analogs, 2-chloroand 2-bromo-3-methyl-2,4-dinitro-3-thiolene 1,1-dioxides XI and XII, is halogenation of thiolenylnitronates [11]. Chlorination and bromination of 4(2)-nitro-1,1-dioxo-1 λ^6 -thiolenyl-2(4)-nitronates IX and X, which are prepared from di- and trinitro-containing precursors V, VII, and VIII [2], occurs under mild conditions and gives halo derivatives VI, XI, and XII in 25-34% yields as final products. The selectivity of the electrophilic attack of the C^2 position of IX and X, observed in these reactions, is characteristic of ambident thiolenylnitronate anions [11] and is probably due to the electron-withdrawing effect of the sulfonyl group on the electron density distribution:

 $R = Cl (V, VI, IX), CH_3 (VII, VIII, X-XII); Kat = Na (IX), K (X).$

The spectral characteristics of 2,2,4-trinitro-3-cloro-3-thiolene 1,1-dioxide **IV** prepared by nitration of **I** and **III** are in agreement with published data [12] for the sample prepared by us from chloronitrothiolene 1,1-dioxide **II**; compounds **VII** and **X** were characterized in part in [2]. The structure of previously unknown compounds **V**, **VI**, **IX**, **XI**, and **XII** was determined spectroscopically (Table 1).

2,4-Dinitro-3-chloro-3-thiolene 1,1-dioxide V is a colorless crystalline substance; its ¹H NMR spectrum in DMSO- d_6 contains signals of the methylene (4.44 ppm) and nitromethine (8.39 ppm) protons. The downfield location of the latter signal is typical of similar dinitro compounds [13], including previously described 3-methyl-2,4-dinitro-3-thiolene 1,1-dioxide VII (8.50 ppm) [2], and is indicative of the increased CH acidity of dinitrothiolene 1,1-dioxides. The IR spectrun of V contains, along with the absorption bands of conjugated and nonconjugated nitro groups, also the bands of the ionized nitro group, indicating that the ionic structure contributes to the ground state of V (Table 1). The spectral characteristics of sodium 4(2)-nitro-3chloro-1,1-dioxo-1 λ^6 -thiolenyl-2(4)-nitronate **IX** agree with those of the previously described potassium salt of 3-methyl-2,4-dinitrothiolene 1,1-dioxide **X** [2]. The electronic absorption spectrum of **IX** in aqueous solution is characterized by a long-wave absorption band at λ_{max} 360 nm (ϵ 6000 l mol⁻¹ cm⁻¹) corresponding to the conjugated heterocyclic dinitro anion. The IR spectrum contains absorption bands belonging to the ionized nitro group (1590, 1510, 1230, 1180 cm⁻¹) [14], sulfonyl group (1350, 1130 cm⁻¹), and multiple bond (1610 cm⁻¹).

2-Halo-2,4-dinitro-3-thiolene 1,1-dioxides VI, XI, and XII are light yellow crystalline substances with similar IR spectra (Table 1) containing bands of the C=C bond and nitro and sulfonyl groups. According to published data [14–16], the bands at 1590–1580 and 1310–1300 cm⁻¹ can be assigned to vibrations of the *gem*-halonitromethyl group, the bands at 1540– 1530 and 1360–1350 cm⁻¹, to vibrations of the conjugated nitro group, and the absorption in the range Table 1. Physicochemical and spectral characteristics of substituted 2,4-dinitro-3-thiolene 1,1-dioxides IV-VII, XI, and XII

np. no.	R	х	eld, %	mp, °C	IR spectrum, ^a v, cn	IR spectrum, ^a v, cm ⁻¹				
Con			Yie	C	=CNO ₂ , C=NO ₂ , C(NO ₂)X	SO ₂	C=C	CH ₃	CH ₂	CHNO ₂
IV V VI VII XI XII	Cl Cl Cl CH ₃ CH ₃ CH ₃ CH ₃	NO ₂ H Cl H Cl Br	8 25 34 ^c 50 30 25	83–84 141–142 84–85 76–77 101–102 103–105	1600, 1590, 1550, 1390, 1330, 1320 1590, 1520, 1350, 1310, 1240, 1160 1590, 1540, 1350, 1310, 1200, 1160 1580, 1500, 1340, 1320, 1220, 1180 1590, 1530, 1350, 1300, 1220, 1200 1580, 1540, 1360, 1300, 1210, 1170	1330, 1170 1350, 1130 1340, 1130 1340, 1120 1350, 1150 1360, 1130	1640 1620 1620 1630 1600 1610	 2.30 2.20 2.40	4.93 4.44 4.93 4.24 4.27 4.30	8.39 - 8.50 - -

^a For measuring the IR spectra, samples of IV and VII were prepared as Nujol mulls, and samples of V, VI, XI, and XII, as KBr pellets. ^b The ¹H NMR spectra of V and VII were taken in DMSO-*d*₆, and those of IV, VI, XI, and XII, in acetonitrile-*d*₃. ^c The yield of IV is given for the synthesis by halogenation of IX.

Table 2. Atomic coordinates in the structure of VI, equivalent isotropic temperature factors of nonhydrogen atoms $B = 4/3\sum_{i=1}^{3} \sum_{j=1}^{3} (a_i a_j)B(i, j)$ (Å²), and isotropic temperature factors of hydrogen atoms B_{iso} (Å²)

		VIa				VI	b	
Atom	x	у	z	B, B _{iso}	x	у	z	B, B _{iso}
Cl ²	-0.3489(4)	0.0556(8)	0.1443(2)	4.8(1)	0.2597(4)	0.3793(8)	-0.0086(2)	4.7(1)
Cl ³	-0.2600(3)	-0.3894(8)	0.0922(1)	4.26(9)	0.1098(3)	-0.0689(8)	0.0157(2)	4.1(1)
S^1	-0.2238(3)	-0.1194(7)	0.2288(1)	3.05(8)	0.3470(3)	0.3662(7)	0.0892(2)	3.30(9)
O ¹	-0.3010(8)	-0.129(2)	0.2676(4)	3.7(2)	0.4730(8)	0.393(2)	0.0905(4)	3.7(2)
O^2	-0.1522(8)	0.081(2)	0.2182(3)	3.6(2)	0.2671(9)	0.560(2)	0.0909(5)	5.7(3)
O^3	-0.4089(9)	-0.485(2)	0.2091(5)	6.7(4)	0.4430(9)	-0.080(2)	0.0508(4)	6.1(3)
O^4	-0.5257(8)	-0.223(2)	0.1847(5)	7.9(5)	0.4516(9)	0.080(3)	-0.0163(3)	5.4(3)
O^5	0.0421(7)	-0.614(2)	0.1820(4)	3.9(3)	0.135(1)	-0.115(2)	0.1684(4)	7.0(3)
O ⁶	-0.061(1)	-0.664(2)	0.1207(4)	4.4(3)	0.0216(9)	-0.164(2)	0.1100(5)	5.9(4)
N^2	-0.4330(9)	-0.305(2)	0.1897(4)	3.6(3)	0.414(1)	0.061(2)	0.0215(5)	3.4(3)
N ⁴	-0.0482(8)	-0.580(2)	0.1582(4)	2.2(3)	0.110(1)	-0.098(2)	0.1262(5)	4.0(3)
C^2	-0.314(1)	-0.189(3)	0.1756(5)	3.7(4)	0.298(1)	0.204(2)	0.0367(4)	2.0(3)
C^3	-0.229(1)	-0.341(2)	0.1488(5)	1.7(3)	0.198(1)	0.065(2)	0.0544(5)	2.1(3)
C ⁴	-0.140(1)	-0.421(2)	0.1754(5)	2.6(3)	0.197(1)	0.039(3)	0.1017(5)	3.1(4)
C^5	-0.127(1)	-0.373(3)	0.2241(5)	2.8(3)	0.292(1)	0.172(3)	0.1296(5)	3.2(4)
H ⁵¹	-0.0183	-0.3279	0.2380	6	0.2373	0.2135	0.1631	6
H ⁵²	-0.1449	-0.5027	0.2430	3	0.3656	0.0999	0.1436	4

1540-1530 and 1220-1160 cm⁻¹, apparently, to vibrations of the ionized nitro group.

The ¹H NMR spectrum of 2,4-dinitro-2,3-dichloro-3-thiolene 1,1-dioxide **VI** cosists of a single signal of methylene protons at 4.93 ppm. The spectra of 2-chloro- and 2-bromo-3-methyl-2,4-dinitro-3-thiolene 1,1dioxides **XI** and **XII** contain signals of methyl (2.20, 2.40 ppm) and methylene (4.27, 4.30 ppm) protons. The UV spectrum of bromodinitrothiolene 1,1-dioxide **XII** contains an absorption band at λ_{max} 370 nm (ϵ 6000 l mol⁻¹ cm⁻¹) characteristic of the 3-methyl-2,4-dinitro-3-thiolene 1,1-dioxide anion (λ_{max} 370 nm, ϵ 8000 l mol⁻¹ cm⁻¹ [2]). This fact suggests ready heterolytic rupture of the C–Br bond, which is consistent with published data for bromotrinitromethane [15] and for other *gem*-bromonitro derivatives [14, 16].

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 72 No. 7 2002

Bond	VIa	VIb	Bond	VIa	VIb	Bond	VIa	VIb
$\begin{array}{c} Cl^2 - C^2 \\ Cl^3 - C^3 \\ S^1 - O^1 \\ S^1 - O^2 \\ S^1 - C^2 \end{array}$	$1.77(2) \\ 1.68(1) \\ 1.40(1) \\ 1.47(1) \\ 1.86(2)$	1.72(1) 1.68(1) 1.388(9) 1.46(1) 1.87(1)	$\begin{array}{c} S^{1}\!\!-\!\!C^{5} \\ O^{3}\!\!-\!\!N^{2} \\ O^{4}\!\!-\!\!N^{2} \\ O^{5}\!\!-\!\!N^{4} \\ O^{6}\!\!-\!\!N^{4} \end{array}$	1.87(2) 1.25(2) 1.14(1) 1.22(1) 1.20(2)	1.75(2) 1.23(2) 1.17(2) 1.24(2) 1.14(2)	$\begin{matrix} N^2-C^2 \\ N^4-C^4 \\ C^2-C^3 \\ C^3-C^4 \\ C^4-C^5 \end{matrix}$	1.53(2) 1.47(2) 1.52(2) 1.33(2) 1.43(2)	$1.59(2) \\ 1.44(2) \\ 1.47(2) \\ 1.36(2) \\ 1.54(2)$

Table 3. Bond lengths (d, A) in VIa and VIb

Table 4. Bond angles (0, deg) in VIa and VIb

Angle	VIa	VIb	Angle	VIa	VIb	Angle	VIa	VIb
$\begin{matrix} O^{1}S^{1}O^{2} \\ O^{1}S^{1}C^{2} \\ O^{1}S^{1}C^{5} \\ O^{2}S^{1}C^{2} \\ O^{2}S^{1}C^{5} \\ C^{2}S^{1}C^{5} \\ C^{3}N^{2}O^{4} \\ O^{3}N^{2}C^{2} \\ O^{4}N^{2}C^{2} \end{matrix}$	$121.2(6) \\108.7(6) \\111.5(6) \\107.4(7) \\110.9(6) \\93.3(7) \\128.0(1) \\110.0(1) \\122.0(1)$	119.9(7) 111.6(6) 113.5(7) 105.9(7) 108.0(7) 94.8(7) 128.0(1) 113.0(1) 119.0(1)	$\begin{array}{c} O^5 N^4 O^6 \\ O^5 N^4 C^4 \\ O^6 N^4 C^4 \\ Cl^2 C^2 S^1 \\ Cl^2 C^2 N^2 \\ Cl^2 C^2 C^3 \\ S^1 C^2 N^2 \\ S^1 C^2 C^3 \end{array}$	$122.0(1) \\118.0(1) \\120.0(1) \\109.9(9) \\109.5(9) \\112.0(1) \\110.0(1) \\102.8(9)$	$123.0(1) \\112.0(1) \\124.0(1) \\110.8(8) \\108.8(9) \\115.5(9) \\105.9(8) \\103.5(9)$	$\begin{array}{c} N^2 C^2 C^3 \\ Cl^3 C^3 C^2 \\ Cl^3 C^3 C^4 \\ C^2 C^3 C^4 \\ N^4 C^4 C^3 \\ N^4 C^4 C^5 \\ C^3 C^4 C^5 \\ S^1 C^5 C^4 \end{array}$	112.0(1) 118.0(9) 130.0(1) 112.0(1) 123.0(1) 113.0(1) 124.0(1) 100.3(9)	112.0(1) 118.0(1) 126.0(1) 115.0(1) 124.0(1) 119.0(1) 117.0(1) 104.0(1)

Table 5. Torsion angles (o, deg) in VIa and VIb

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Angle	VIb	Angle VIa	VIb	Angle	Angle VIa
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} O^{1}S^{1}C^{2}Cl^{2}\\ O^{1}S^{1}C^{2}N^{2}\\ O^{1}S^{1}C^{2}C^{3}\\ O^{2}S^{1}C^{2}Cl^{2}\\ O^{2}S^{1}C^{2}Cl^{2}\\ O^{2}S^{1}C^{2}Cl^{2}\\ C^{5}S^{1}C^{2}Cl^{2}\\ C^{5}S^{1}C^{2}Cl^{2}\\ C^{5}S^{1}C^{2}C^{3}\\ O^{1}S^{1}C^{5}C^{4}\\ O^{2}S^{1}C^{5}C^{4}\\ O^{3}N^{2}C^{2}Cl^{2}\\ O^{3}N^{2}C^{2}Cl^{3}\\ O^{3}N^{2}C^{2}Cl^{2}\\ O^{3}N^{2}C^{2}Cl^{2}\\ O^{3}N^{2}C^{2}Cl^{2}\\ O^{4}N^{2}C^{2}Cl^{2}\\ O^{4}N^{2}C^{2}Cl^{2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccccc} O^4 N^2 C^2 C^3 & -134(2) \\ O^5 N^4 C^4 C^3 & 167(1) \\ O^5 N^4 C^4 C^5 & -17(2) \\ O^6 N^4 C^4 C^5 & 167(1) \\ Cl^2 C^2 C^3 Cl^3 & -46(1) \\ Cl^2 C^2 C^3 Cl^3 & -164.5(7) \\ S^1 C^2 C^3 Cl^3 & -164.5(7) \\ S^1 C^2 C^3 C^4 & 17(1) \\ N^2 C^2 C^3 C^4 & 17(1) \\ N^2 C^2 C^3 C^4 & -101(1) \\ Cl^3 C^3 C^4 N^4 & -1(2) \\ Cl^3 C^3 C^4 N^4 & -1(2) \\ Cl^3 C^3 C^4 C^5 & -177(1) \\ C^2 C^3 C^4 C^5 & 1(2) \\ N^4 C^4 C^5 S^1 & 165.0(9) \\ r^3 r^4 r^4 r^5 r^4 & r^5 r^5 r^5 \\ \end{array}$	$\begin{array}{c} -94.0(8)\\ 24(1)\\ 141.6(9)\\ 38.1(8)\\ 155.9(8)\\ -86(1)\\ 148.5(7)\\ -93.8(9)\\ 24(1)\\ -137.4(9)\\ 87(1)\\ -21(1)\\ -176(1)\\ 65(1)\\ -47(2)\\ -4(2)\\ 142(1)\end{array}$	$\begin{array}{c} O^{1}S^{1}C^{2}Cl^{2}\\ O^{1}S^{1}C^{2}N^{2}\\ O^{1}S^{1}C^{2}C^{3}\\ O^{2}S^{1}C^{2}Cl^{2}\\ O^{2}S^{1}C^{2}Cl^{2}\\ O^{2}S^{1}C^{2}C^{3}\\ C^{5}S^{1}C^{2}Cl^{2}\\ C^{5}S^{1}C^{2}Cl^{2}\\ C^{5}S^{1}C^{2}C^{3}\\ O^{1}S^{1}C^{5}C^{4}\\ O^{2}S^{1}C^{5}C^{4}\\ O^{3}N^{2}C^{2}Cl^{2}\\ O^{3}N^{2}Cl^{2}Cl^{2}\\ O^{3}N^{2}Cl^{2}Cl^{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Reliable information on the structure of 2,4-dinitro-2,3-dichloro-3-thiolene 1,1-dioxide **VI**, formed by this unusual pathway, is furnished by single crystal X-ray diffraction (Tables 2–5). We found that compound **VI** exists in the crystal as an enantiomeric pair of molecules **VIa** and **VIb** (Fig. 1) with the *R* and *S* configuration of C^2 , respectively. The respective bond lengths and bond angles in crystallographically independent molecules **VIa** and **VIb** are equal within experimental error (Tables 3, 4).¹

¹ Because of the small size of the available crystal of **VI**, the number of the measured intensities was insufficient for full structure refinement, and the molecular geometries were determined with large errors. Therefore, we discuss only the molecular conformations.

Fig. 1. Geometry of independent molecules (a) VIa and (b) VIb in the crystal.

Fig. 2. Molecular packing of VI in the crystal (projection along the 0x axis). The C-H··O hydrogen bonds are shown.

The five-membered rings in **VIa** and **VIb** have the *envelope* conformation: The $C^2C^3C^4C^5$ fragments are planar within 0.005(14) (in **VIa**) and 0.02(2) Å (in **VIb**), and the sulfur atom deviates from this plane by 0.560(4) (in **VIa**) and -0.510(4) Å (in **VIb**). The O² atoms at sulfur and the nitro groups at C² are axial, and the O¹ and Cl² atoms are equatorial. The double bond in the rings of **VIa** and **VIb** has a usual planar structure, despite the eclipsed location of such bulky substituents as Cl and NO₂ [torsion angle Cl³C³C⁴N⁴ $-1(2)^{\circ}$ in **VIa** and $-5(2)^{\circ}$ in **VIb**] (Table 5). The nitro group at C⁴ is also virtually coplanar with the double bond [torsion angle C³C⁴N⁴O⁶ $-10(2)^{\circ}$ in **VIa** and $-16(2)^{\circ}$ in **VIb**; dihedral angle between the C²C³C⁴C⁵ and C⁴N⁴O⁵O⁶ planes $12(2)^{\circ}$ in **VIa** and $14(2)^{\circ}$ in

VIb]. There are short intramolecularr contacts between Cl^3 and O^6 [2.85(1) Å in **VIa** and 2.92(1) Å in **VIb**; sum of the van der Waals radii 3.27 Å]. The C^3 – Cl^3 and C^4 – N^4 bonds are appreciably shorter than the corresponding bonds at C^2 , which is consistent with variation of the carbon covalent radius depending on the carbon valence state.

The molecular packing in the crystal (Fig. 2) is determined by $C-H\cdots O$ hydrogen bonds:

(1) $C^{5a}-H^{51a}\cdots O^{2a}$ (-*x*, -1/2 + *y*, 1/2 - *z*), $C^{5a}-H^{51a}$ 1.28, $H^{51a}\cdots O^{2a}$ 2.31, $C^{5a}\cdots O^{2a}$ 3.481(15) Å, angle $C^{5a}-H^{51a}\cdots O^{2a}$ 150°;

(2) $C^{5b}-H^{51b}\cdots O^{1a}$, $C^{5b}-H^{51b}$ 1.16, $H^{51b}\cdots O^{1a}$ 2.31, $C^{5b}\cdots O^{1a}$ 3.181(19) Å, angle $C^{5b}-H^{51b}\cdots O^{1a}$ 130°;

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 72 No. 7 2002

(3) $C^{5b}-H^{51b}\cdots O^{5a''}$ (-*x*, 1/2 + *y*, -1/2 - *z*), $C^{5b}-H^{51b}$ 1.16, $H^{51b}\cdots O^{5a''}$ 2.43, $C^{5b}\cdots O^{5a''}$ 3.377(16) Å, angle $C^{5b}-H^{51b}\cdots O^{5a''}$ 137°;

(4) $C^{5b}-H^{52b}\cdots O^{4a^{''}}(1 - x, -1/2 + y, 1/2 - z),$ $C^{5b}-H^{52b}$ 1.00, $H^{52b}\cdots O^{4a^{''}}$ 2.57, $C^{5b}\cdots O^{4a^{''}}$ 3.481(19) Å, angle $C^{5b}-H^{52b}\cdots O^{4a^{''}}$ 153°.

Along with these hydrogen bonds, in the crystal of **VI** there are numerous short contacts (shorter than the sum of the van der Waals radii) between the Cl, O, and N atoms. As a result, the molecular packing is fairly close, which is manifested in the high density of **VI**, 1.95 g cm^{-3} .

Thus, we have developed new procedures for preparing mono- and dihalo derivatives of 2,2,4-trinitroand 2,4-dinitro-3-thiolene 1,1-dioxides and characterized their structure by UV, ¹H NMR, and IR spectroscopy. The molecular geometry and structural parameters of 2,4-dinitro-2,3-dichloro-3-thiolene 1,1-dioxide have been determined by single crystal X-ray diffraction.

EXPERIMENTAL

The IR spectra were taken on Specord IR-75 and UR-20 spectrophotometers (LiF and NaCl prisms). Samples of **IV** and **VII** were prepared as Nujol mulls, and samples of **V**, **VI**, **XI**, and **XII**, as KBr pellets.

The electronic absorption spectra were taken on a Specord M-40 double-beam spectrophotometer (dismountable quartz cells) with automatic recording of the spectrum and on an SF-46 spectrophotometer (quartz cells). The solvents were water (for **IX**) and acetonitrile (for **XII**).

The ¹H NMR spectra were measured on a Tesla BS-487C spectrometer (80 MHz). The solvents were acetonitrile- d_3 for IV, VI, VII, IX, and XII, and DMSO- d_6 for V. The chemical shifts were determined relative to internal and external HMDS (accuracy ± 0.5 Hz, δ scale).

4-Nitro-3-chloro-2-thiolene 1,1-dioxide I [17], 4-nitro-3-chloro-3-thiolene 1,1-dioxide II [18], 4-nitro-2-hydroximino-3-chloro-3-thiolene 1,1-dioxide III [19], and 3-methyl-2,2,4-trinitro-3-thiolene 1,1-dioxide VIII [20] were prepared by published procedures.

Light yellow crystals of **VI** were grown from the reaction solution. Rhombic system; at 20°C: *a* 10.930(5), *b* 6.030(5), *c* 28.642(8) Å; *V* 1888(1) Å³, d_{calc} 1.95 g cm⁻³, *Z* 8, space group $P2_12_12_1$ (two independent molecules **VIa** and **VIb**). The unit cell parameters and intensities of 4307 reflections, of which

1812 had $I \ge 3\sigma$, were measured on an Enraf-Nonius CAD-4 automatic four-circle diffractometer at 20°C in the reciprocal space quadrant (Cu K_{α} radiation, graphite monochromator, $\omega/2\theta$ scanning, $\theta \leq 70^{\circ}$). The intensities of three check reflections did not decrease in the course of the experiment. The absorption (μ Cu 85.66 cm⁻¹) was not taken into account empirically, because we found no sufficiently strong reflections with $\chi \ge 80^\circ$. The structure was solved by the direct method using SIR program [21] and refined first in the isotropic and then in the anisotropic approximation. All the hydrogen atoms were subsequently revealed from the differential electron density series, and their contribution to the structural amplitudes was taken into account with fixed positional and isotropic temperature parameters. To elucidate the absolute structure, we refined the direct and inverted structures. For the direct structure, R 0.07276, $R_{\rm W}$ 0.07388; for the inverted structure, R 0.07523, $R_{\rm W}$ 0.07839. A total of 271 parameters were refined from 1322 reflections. According to the Hamilton test [22], the direct structure corresponds to the absolute structure with 90% probability. The final divergence factors are R 0.073, R_w 0.074 for 1322 unique reflections with $F^2 \ge 3\sigma$. All calculations were performed on an Alpha Station 200 computer using MolEN program package [23]. The figures were plotted and the intermolecular contacts analyzed using PLATON program [24].

2,2,4-Trinitro-3-chloro-3-thiolene 1,1-dioxide IV. a. Dinitrogen tetroxide (1 ml) was added to a solution of 1 g of 4-nitro-3-chloro-2-thiolene 1,1-dioxide I in 6 ml of 55% HNO₃. The mixture was left for 70 h, after which the solution was evaporated in the cold until light yellow crystals of **IV** formed; these crystals were filtered off and dried. Yield 0.11 g (7%), mp 83-84°C (from chloroform). Mixing with an authentic sample prepared according to $[12]^2$ gave no melting point depression. Found, %: C 16.92, 16.91; H 0.90, 0.89; N 14.56, 14.56. C₄H₂ClN₃O₈S. Calculated, %: C 16.70; H 0.70; N 14.61. The mother liquor was further evaporated in the cold, and the residue was dried in a vacuum desiccator. Oxalic acid crystal hydrate was obtained; yield 0.53 g (42%), mp 100-102°C (from methanol) {mp $101.5^{\circ}C$ (from water) [25]}.

b. Compound **IV** was prepared from 4-nitro-3-chloro-3-thiolene 1,1-dioxide **II** according to [12] in the absence of paraform. Yield 8%, mp $83-84^{\circ}C$ (from chloroform).

² The melting point of 2,2,4-trinitro-3-chloro-3-thiolene 1,1-dioxide **IV** prepared according to [12] is also 83-84°C and not 108°C as erroneously indicated in [12].

c. Dinitrogen tetroxide (1 ml) was added with stirring to a solution of 2.0 g of 4-nitro-2-hydroximino-3-chloro-3-thiolene 1,1-dioxide **III** in 10 ml of 55% HNO₃. The mixture was left for 1 h, after which the solution was evaporated in the cold until light yellow crystals of **IV** formed; these crystals were filtered off and dried. Yield 0.23 g (8%), mp 83-84°C (from chloroform). Mixing with the samples prepared by procedures *a* and *b* gave no melting point depression. The mother liquor was further evaporated in the cold, and the residue was dried in a vacuum desiccator. Oxalic acid crystal hydrate was obtained; yield 0.98 g (44%), mp 100-102°C (from methanol).

2,4-Dinitro-3-chloro-3-thiolene 1,1-dioxide V. A 2-g portion of II was dissolved in 20 ml of 100% HNO₃. The solution was left for 10 days, after which it was evaporated in the cold until colorless crystals of the initial 4-nitro-3-chloro-3-thiolene 1,1-dioxide II started to form; these crystals were filtered off and dried. A 0.26-g portion of II (13%) was recovered; mp 159-160°C. Mixing with the initial sample gave no depression of the melting point. The filtrate was further evaporated in the cold until light yellow plates of V formed; these were filtered off and dried in a vacuum desiccator. Yield of V 0.62 g (25%), mp 140-142°C. Found, %: C 19.89, 19.90; H 1.35, 1.40; N 9.69, 9.73. C₄H₃ClN₂O₆S. Calculated, %: C 19.79; H 1.24; N 9.90. The mother liquor was further evaporated in the cold, and the residue was dried in a vacuum desiccator. Oxalic acid crystal hydrate was obtained; yield 0.30 g (12%), mp 100-102°C (from methanol).

Sodium 4(2)-nitro-3-chloro-1,1-dioxo- $1\lambda^6$ -thiolenyl-2(4)-nitronate IX. A solution of 0.33 g of sodium methylate in 5 ml of absolute methanol was added dropwise to a suspension of 0.72 g of 2,4-dinitro-3-chloro-3-thiolene 1,1-dioxide V in 25 ml of absolute ether. The solution was stirred for 15 min, after which the precipitate was filtered off, washed with absolute ether, and dried in a vacuum desiccator over alkali. Yield of sodium nitronate IX 0.63 g (78%), mp 165– 168°C (dec.).

2,4-Dinitro-2,3-dichloro-3-thiolene 1,1-dioxide VI. *a*. A 2-g portion of **II** was dissolved in 15 ml of 55% HNO₃. After 24 h, 5 ml of 100% HNO₃ was added, and the mixture was left for 10 days. After that, the mixture was evaporated in the cold until yellow needles of **VI** formed, which were filtered off and dried. Yield 0.17 g (6%), mp 84–85°C. Found, %: C 17.22, 17.25; H 0.70, 0.69; N 9.63, 9.88. C₄H₂Cl₂N₂O₆S. Calculated, %: C 17.33; H 0.72; N 10.14. The mother liquor was further evaporated in the cold, and the residue was dried in a vacuum desiccator. Oxalic acid crystal hydrate was obtained; yield 0.56 g (22%), mp $100-102^{\circ}C$ (from methanol).

b. Chlorine was passed through 0.79 g of a suspension of **IX** in 25 ml of absolute methanol. The salt gradually dissolved, and a white precipitate formed. After keeping for 30 min, the NaCl precipitate was filtered off, and the mother liquor was evaporated on a rotary evaporator. The light yellow oily residue was treated with chloroform to induce crystallization of **VI**. The light yellow crystals were filtered off and dried. Yield of **VI** 0.25 g (34%), mp 84–85°C (dec.). Mixing with the sample prepared by procedure *a* gives no melting point depression.

3-Methyl-2,4-dinitro-3-thiolene 1,1-dioxide VII. A 1-ml portion of 30% H₂O₂ was added to a suspension of 0.53 g of 3-methyl-2,2,4-trinitro-3-thiolene 1,1-dioxide VIII. The resulting mixture was cooled to -10°C, after which a solution of 0.27 g of sodium ethylate in 10 ml of absolute ethanol was added dropwise. After keeping for 20 min, the solvent was evaporated in the cold, and the residue was dried in a vacuum desiccator. The resulting colorless precipitate was treated with 5 ml of anhydrous acetonitrile; the sodium nitrite precipitate was separated by decanting, and the solution was evaporated on a rotary evaporator. The resulting colorless crystals were dried in a vacuum desiccator. Yield of crystal hydrate of VII 0.32 g (73%), mp 76-77°C (dec.). Compound VII is unstable; therefore, it was purified by reprecipitation with dry chloroform from absolute acetone. Found, %: C 20.72, 20.70; H 4.94, 4.91; N 10.01, 10.10. C₅H₆N₂O₆S · 4H₂O. Calculated, %: C 20.41; H 4.80; N 9.52.

Potassium 3-methyl-4(2)-nitro-1,1-dioxo-1 λ^6 -thiolenyl-2(4)-nitronate X. *a*. A 3-ml portion of 30% H₂O₂ was added to a solution of 0.53 g of VIII in 20 ml of methanol. The mixture was cooled to -10° C, and a solution of 0.80 g of KOH in 10 ml of methanol was added dropwise. After keeping for 10 min, the orange precipitate of nitronate X was filtered off. Yield 0.42 g (80%), decomposition point 170°C.

b. A solution of 0.17 g of KOH in 10 ml of methanol was added to a suspension of 0.88 g of crystal hydrate of **VII** in 10 ml of methanol. After keeping for 10 min, nitronate **X** was subjected to halogenation without intermediate isolation.

3-Methyl-2,4-dinitro-2-chloro-3-thiolene 1,1-dioxide XI. Chlorine was passed through a suspension of 0.78 g of X in 25 ml of absolute methanol. The red precipitate of the salt gradually dissolved, and a white

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 72 No. 7 2002

precipitate formed. After keeping for 30 min, the KCl precipitate was filtered off, and the mother liquor was treated with chloroform, after which colorless crystals of **XI** were separated and air-dried. Yield 0.23 g (30%), 101–102°C (dec.). Found, %: C 23.06, 23.09; H 2.27, 2.27; N 11.09, 11.06. $C_5H_5ClN_2O_6S$. Calculated, %: C 23.39; H 1.95; N 10.92.

2-Bromo-3-methyl-2,4-dinitro-3-thiolene 1,1-dioxide XII. A solution of 0.21 ml of bromine in 5 ml of absolute methanol was added dropwise to a suspension of 0.78 g of X in 25 ml of absolute methanol, cooled to a temperature from -10 to -5° C. The mixture was stirred for an additional 30 min at the same temperature, after which the KBr precipitate was filtered off, and the mother liquor was evaporated in the cold. Light yellow crystals of XII formed, which were filtered off and dried in a vacuum desiccator over CaCl₂. Yield 0.48 g (54%), mp 103–105°C (dec.). Found, %: C 20.00, 20.04; H 2.00, 2.00; N 9.37, 9.40. C₅H₅BrN₂O₆S. Calculated, %: C 19.93; H 1.66; N 9.30.

REFERENCES

- 1. Berestovitskaya, V.M., Zh. Obshch. Khim., 2000, vol. 70, no. 9, p. 1512.
- Efremova, I.E., Khlytin, A.L., Berkova, G.A., and Berestovitskaya, V.M., *Zh. Org. Khim.*, 1996, vol. 32, no. 1, p. 150.
- Berestovitskaya, V.M., Efremova, I.E., Berkova, G.A., and Khlytin, A.L., *Zh. Org. Khim.*, 2000, vol. 36, no. 4, p. 592.
- Khlytin, A.L., Efremova, I.E., and Berestovitskaya, V.M., *Zh. Org. Khim.*, 1994, vol. 30, no. 9, p. 1434.
- Berestovitskaya, V.M., Efremova, I.E., Khlytin, A.L., Berkova, G.A., Pozdnyakov, V.P., and Gamazin, D.A., *Zh. Org. Khim.*, 1996, vol. 32, no. 1, p. 152.
- 6. FRG Patent 1103917, 1961, Chem. Abstr., 1962, vol. 56, no. 2.
- Vasil'ev, S.V. and Burdelev, O.T., *Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol.*, 1970, vol. 13, no. 1, p. 73.
- Golod, E.L., Kukushkin, I.K., Moiseev, I.K., and Tselinskii, I.V., *Zh. Vseross. Khim. O-va.*, 1997, vol. 41, no. 2, p. 22.

- 9. Zakharkin, L.I., *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk*, 1957, no. 9, p. 1064.
- Martynov, I.V., Kruglyak, Yu.L., and Makarov, S.P., *Zh. Obshch. Khim.*, 1963, vol. 33, no. 10, p. 3382.
- Efremova, I.E., Abzianidze, V.V., Berkova, G.A., and Berestovitskaya, V.M., *Zh. Obshch. Khim.*, 2000, vol. 70, no. 6, p. 1037.
- Berestovitskaya, V.M., Efremova, I.E., Pivovarov, A.B., Lapshina, L.V., and Nepomnyashchaya, N.B., *Zh. Org. Khim.*, 1998, vol. 34, no. 7, p. 1119.
- Terpigorev, A.N., Tselinskii, I.V., Makarevich, A.V., Frolova, G.M., and Mel'nikov, A.A., *Zh. Org. Khim.*, 1987, vol. 23, no. 2, p. 244.
- Novikov, S.S., Shvekhgeimer, G.A., Sevost'yanova, V.V., and Shlyapochnikov, V.A., *Khimiya alifaticheskikh i alitsiklicheskikh nitrosoedinenii* (Chemistry of Aliphatic and Alicyclic Nitro Compounds), Moscow: Khimiya, 1974.
- 15. Altukhov, K.V. and Perekalin, V.V., Usp. Khim., 1976, vol. 45, no. 11, p. 2050.
- 16. The Chemistry of the Nitro and Nitroso Groups, Feuer, H., Ed., New York: Interscience, 1969.
- Berestovitskaya, V.M., Bundule, M.F., Bleidelis, Ya.Ya., and Efremova, I.E., *Zh. Obshch. Khim.*, 1984, vol. 54, no. 5, p. 1182.
- Berestovitskaya, V.M., Lyamina, T.N., and Efremova, I.E., *Zh. Org. Khim.*, 1983, vol. 19, no. 8, p. 1767.
- 19. Efremova, I.E., Berestovitskaya, V.M., and Perekalin, V.V., *Zh. Org. Khim.*, 1984, vol. 20, no. 4, p. 890.
- 20. Khlytin, A.L., Efremova, I.E., Berestovitskaya, V.M., Gamazin, D.A., and Lapshina, L.V., *Zh. Org. Khim.*, 1997, vol. 33, no. 10, p. 1596.
- Altomare, A., Cascarano, G., Giacovazzo, C., and Viterbo, D., *Acta Crystallogr.*, *Sect. A*, 1991, vol. 47, no. 6, p. 744.
- 22. Hamilton, W.C., *Acta Crystallogr.*, 1965, vol. 18, no. 3, p. 502.
- Straver, L.H. and Schierbeek, A.J., *MolEN. Structure Determination System*, vol. 61: *Program Description*, Nonius, B.V., 1994.
- 24. Spek, A.L., Acta Crystallogr., Sect. A, 1990, vol. 46, no. 1, p. 34.
- 25. Rabinovich, V.A. and Khavin, Z.Ya., *Kratkii khimicheskii spravochnik* (Concise Chemical Handbook), St. Petersburg: Khimiya, 1994, p. 222.