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The b-glycosyl esters of cis-cinnamic acid were synthesized directly using Hannesian’s unprotected gly-
cosyl donor and the carboxylic acid in toluene. This protocol does not require protecting groups on the
glycosyl donors, and high stereoselectivity was achieved. The first synthesis of a potent allelochemical,
1-O-cis-cinnamoyl-b-D-glucopyranose, is also described.
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1-O-cis-Cinnamoyl-β-D-glucopyranose (1)
Some plants are known to produce growth-regulating com-
pounds, which when released into the environment, affect the
growth and development of other plants. This phenomenon is de-
fined as allelopathy and the related bioactive compounds are called
allelochemicals. Allelochemicals are expected to be an integral part
of the design of potent, environmentally safe herbicides in the
future.1 In 2004, Hiradate and Fujii isolated 1-O-cis-cinnamoyl-
b-D-glucopyranose (1) and identified it as a potent allelochemical
derived from Spiraea thunbergii.2 They proposed that the cis-cin-
namic acid (2) might be an essential structure for inhibition, since
both 2 and the glycoside 1 inhibit the lettuce root growth at a com-
parable level (Fig. 1). The glycoside 1 would be readily transformed
into 2 in soil and/or by microorganisms due to the lability of the
glycosyl ester moiety.

For the confirmation of the structure, a structure–activity rela-
tionship study, and a plant physiological study of the natural prod-
uct, the chemical synthesis of a sufficient amount of the glycosyl
ester and its derivatives would be required. Although many kinds
of glycosyl esters are present in nature, their chemical synthesis
has been problematic, because the glycosyl esters are much more
labile than glycosyl ethers. To achieve a regioselective, efficient syn-
thesis of the glycosides, suitable protection of the hydroxyl groups,
which do not participate in the glycosylation, is usually required,
but subsequent deprotection under acidic or basic conditions
would likely cause the cleavage of the glycosyl ester. Furthermore,
in the present case, catalytic hydrogenation or Birch-type reduction
ll rights reserved.

ndo).
for the removal of the benzylic protecting groups cannot be em-
ployed since the carbon–carbon double bond of the cinnamate
might be damaged in the process. Appropriate deprotection condi-
tions, namely mild enough so as not to cleave and/or migrate the es-
ter, have not been developed for this particular system. After
numerous unsuccessful attempts to deprotect the protected glyco-
syl ester 3 to give the unprotected b-glycosyl cis-cinnamic acid ester
1 (Scheme 1), we decided to use the unprotected glycosyl donors,
cis-Cinnamicacid (2)

Figure 1. The natural allelochemical 1 and the proposed essential structure 2 for its
bioactivity.
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Scheme 1. Attempts to deprotect the b-D-glycosyl ester.
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very few of which have been reported.3 For example, Hannesian and
coworkers reported the stereoselective synthesis of the a-glycosyl
esters using 2-(methoxypyridyl) D-hexopyranoside 4 as an unpro-
tected glycosyl donor (Scheme 2).4 However, they only briefly de-
scribed the b-glycosylation that was employed with benzoic acid
and a-2-methoxypyridyl galactopyranoside 6 in nitromethane to
provide a 1:3 (a:b) ratio.4f Although the key point seems to be
suppression of the a�b interconversion of the glycosyl donor by
the solvent, the selective synthesis of the b-glycosyl esters using
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unprotected glycosyl donors has not been established so far. Herein,
we report the first selective synthesis of the glycoside 1 via the
b-glycosyl esterification of an unprotected glycosyl donor via a
modified Hannesian protocol.

In order to obtain the b-glycosyl esters selectively, the
a-2-(methoxypyridyl) D-glucopyranoside 4 was prepared accord-
ing to the literature. As shown in Scheme 3, tetra-O-acetyl-b-D-glu-
copyranose 8 was converted into the glycosyl a-chloride 9,5 which
was then treated with silver 3-methoxy-2-pyridoxide 10, prepared
from the 2-hydroxypyridine and silver nitrate, to afford the
b-D-glucopyranosyl donor 11 in a good yield.4e The anomerization
of b-11 was carried out using HgBr2 at high temperature to give the
a-donor (a-11).4a,4d,6 Deacetylation was effected via methanolysis
to afford a-2-methoxypyridyl glucopyranoside 4 in a good yield.6

With the unprotected a-glycosyl donor in hand, we then exam-
ined the glycosylation of cis-cinnamic acid (2) (Table 1). According
to the Hannesian’s protocol, the glycosylation was performed in
nitromethane as the solvent at 60 �C to give a 1:1 a/b mixture of
the glycoside 1 quantitatively (entry 1). In DMF as a polar solvent,
the undesired a-1 predominated (entry 2), since the reaction
probably proceeded through an intermediate such as an oxonium
CH3CN O
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Table 2
Synthesis of the b-D-glycosides of several carboxylic acids
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Table 2 (continued)
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Table 1
Synthesis of the b-D-glycoside of cis-cinnamic acid (2)
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Entry Solvent 2 (equiv) 4 (M) Temperature (�C) Time (h) a:b Yield (%)

1 MeNO2 20 0.035 60 3 1:1 >99
2 DMF 100 0.035 65 3 2:1 89
3 CH3CN 20 0.035 44 16 1:2 98
4 Dioxane 20 0.035 101 4 1:2.9 74
5 CH2Cl2 20 0.035 30 48 1:4.0 79
6 Toluene 20 0.035 100 0.25 1:3.5 65a

7 Toluene 20 0.035 70 3 1:8.5 52a

8 Toluene 100 0.0035 70 8 1:15 91

a The byproducts 12 and 13 were obtained.
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ion. However, with acetonitrile and dioxane as the solvent, the ra-
tio was reversed to 1:2 and 1:2.9, respectively, in favor of the de-
sired b-anomer (entries 3 and 4). In dichloromethane, although
the reaction was sluggish due to the low boiling point, the b/a ratio
increased up to 4 (entry 5). Less polar solvents would be expected
to improve the ratio because solvent participation could be mini-
mized. By using the much less polar solvent toluene at 100 �C,
the ratio was 1:3.5 (entry 6), and at the lower temperature of
70 �C, a better ratio (1:8.5) was obtained in modest yield (entry
7), in which disaccharides, such as 12 and 13, were detected by
ESI-MS as side products (entries 6 and 7). To avoid this dimeriza-
tion, the reaction was carried out under high-dilution conditions
using 100 equiv of 2 to achieve an excellent yield of b-1 and a
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much better ratio of 1:15 (entry 8),7 and the excess 2 was recov-
ered quantitatively. Due to the instability of the product, which
seems to decompose gradually in aqueous solution, the final puri-
fication was troublesome, for example, HPLC using an ODS column
resulted in decomposition, but using a normal phase HPLC column
with chloroform–methanol eluent to remove a mixture of the
a-isomer and other impurities, the pure compound was success-
fully obtained. The spectra of 1 were identical with those of the
natural product.

To show the generality of this method, several carboxylic acids
were subjected to the b-glycosylation to afford the b-glucopyrano-
syl esters. As shown in Table 2, the b-glucosides of benzoic acid
(entry 1), 3-phenylpropionic acid (entry 2), trans-cinnamic acid
(entry 3), and the cis-cinnamic acid analogues were obtained in
good yield with excellent b-selectivity (entries 4–6).

According to Hannesian’s description of the mechanism of the
glycosylation by 2-methoxypyridyl group as a leaving group,4f

the a-glycosyl esterification would be promoted by protonation
of the pyridyl moiety by the nucleophile (the carboxylic acid)
and a subsequent SN2-like reaction by the carboxylate would result
in the formation of the b-glycosyl ester (Scheme 4). When a
relatively polar solvent like acetonitrile was used, the intermediate
C would be partially generated through the transition state B, and
the resulting C and the anomer D would be in rapid equilibrium.
Since the a-anomer D would react with the nucleophile slower
than the b-anomer C, the a-glycosyl ester would also be generated
based on the Curtin–Hammett principle.

In conclusion, we have achieved the first efficient synthesis of
the potent allelochemical, the b-glycosyl ester of cis-cinnamic
acid, by means of the stereoselective glycosylation using unpro-
tected glycosyl donors via a modified Hannesian protocol. This
method has high generality and is very useful for the synthesis
of bioactive b-glycosyl esters in the structure–activity relation-
ship studies.
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