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A Novel, Highly Bent p-Benzoquinone
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Multiple introduction of phosphonate groups around the
quinone oxygen greatly deforms the p-benzoquinone ring
through the steric and electronic repulsion. The repulsion
produces not a boat but a chair conformation with a bent angle as
large as 17.8°.

The chemistry of highly bent benzene derivatives such as
short-bridged cyclophanes has been intensively investigated in
recent years,' as exemplified by the work reported by Tobe er al.®
in which ingenious valence isomerization of Dewar benzene
precursors was employed to obtain highly strained cyclophanes.
On the other hand, the structurally related quinone ring is more
flexible than the benzene ring. Hence, quinone rings are easily
deformed to release the steric energy in the sterically congested
quinone systems, > although the planar quinone ring is quite
normal.” Some interesting examples of quinone structures bent
primarily due to steric effect have already been reported. The
transition-metal complexes of p-benzoquinone have the boat
conformation® and the p-quinone skeleton in a natural product,
Conacytone, deviates from planarity.* On the other hand, the chair
conformation was found in the p-benzoquinone skeleton of
2,3,5,6-tetrakis(phenylthio)benzoquinone® and in 2,3,5,6-tetra-
phenyl-p-benzoquinone ®

We now propose a new approach for obtaining a bent
quinone system. Introducing sterically bulky groups with
electronegative atoms such as oxygen as close as possible to the
quinone oxygen would give a bent quinone ring structure by the
mutual steric and electrostatic repulsion between quinone oxygens
and electronegative functional groups such as phosphoryl ones.
The steric bulk of alkyl groups introduced would also contribute
to the stabilization of such a bent quinone structure, since the
quinone ring is embedded deeply into the lipophilic environment
constructed by bulky alkyl groups. Our first target compound to
test this proposal is p-benzoquinone 2,3,5,6-tetrakis(diisopropyl
phosphonate) (1),® since, judging from an examination of
molecular models, P = O oxygen atoms are placed very close to
the quinone oxygen atoms and eight bulky isopropyl groups
obviously construct the steric barrier surrounding the quinone
ring. Herein, we wish to report the molecular structures of 1 and
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P20 § on @
(Pro),P. PO'Ps  (Pro),P. PO'PY),
(iPrO)glFl’ ﬁ(oipr)z (iPro),P P(O'PY),
o O o g oH o

1 2

(diisopropyl phosphonate) (2), by X-ray crystal structure
analysis.

Reaction of chloranil with triisopropyl phosphite in benzene
under reflux gave 1 (30%), which was hydrogenated to give 2
(99%). Single crystals of 1 and 2 were obtained by
recrystallization from the mixed solvent of ethyl acetate and
hexane (1:1). Molecular structures of 1 and 2 are shown in
Figures 1 and 2, respectively.”"

Figure 1. ORTEP drawings of 1 with 30% probability
thermal ellipsoids. A: top view. B: side view, isopropyl
groups of peripheral were omitted for clarity.

Since the center of the quinone ring of 1 is located at a
center of symmetry, only half of the structure is
crystallographically independent (Figure 1). Two types of bond
distances were observed in the six-membered ring; the bond
distances C1-C2 (1.494(5) A) and C3-C1* (1.493(5) A) are
longer than that of C2-C3 (1.349(5) A). As expected, the
benzoquinone skeleton is deformed from the normal planar
structure to give a chair conformation (Figure 1B). The P-O
oxygen atoms O(3) and O(5*) are located below the quinone
ring, while the P-O oxygen atoms O(2) and O(7*) above it. The
interatomic distances O(1)--O(3) (2.929(4) A) and O(1)--O(5%)
(2.898(4) A) are shorter than O(1)--0(2) (3.302(4) A) and O(1)--
O(7%) (3.356(4) A), indicating that the oxygen atoms O(3) and
O(5*) push quinone oxygen atom O(1) upward. The O(1)--O(3)
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and O(1)--O(5*) distances are slightly longer than the total of
two van der Waals radii of oxygen atoms (2.8 A), suggesting
repulsion between the oxygen atoms. The deformation angle (o)
of the quinone ring (the angle between the planes defined by C1-
C2-C3* and C2-C3-C2*-C3*) is 17.8°. This value is quite
bigger than that of 2,3,5,6-tetraphenyl-p-benzoquinone (7.0°)
which has simple steric bulkiness by four phenyl groups.® The
deformation angle (B) (the angle between the C(1)-O(1) bond and
the C1-C2-C3* plane) of 1 is 1.3°, suggesting that O(1) atom is
pushed away by O(3) and O(5*) atoms. The peripheral eight
isopropyl groups construct a remarkable lipophilic outer shell and
the chair quinone structure is embedded deeply into the lipophilic
environment (Figure 1A).

Similar to compound 1, the center of the benzene ring of 2
is also located at a center of symmetry and therefore half of the
structure is crystallographically independent (Figure 2). In sharp
contrast to the quinone counterpart described above, the C-C bond
lengths of the six-membered ring of 2 are essentially equivalent
(C(1)-C(2) 1.413(3) A, C(2)-C(3) 1.412(3) A, C(1)-C(3%)
1.415(3) A) and the benzene ring is planar within 0.015 A (Figure
2B). In addition, the P = O oxygen atom O(2) is hydrogen-
bonded to the hydroxyl group O(1)-H(1) (O(1)---O(2) 2.457(2)

Figure 2. ORTEP drawings of 2 with 30% probability
thermal ellipsoids. A: top view. B: side view, isopropyl
groups of peripheral were omitted for clarity.
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A), eventually releasing the electrostatic repulsion between O(1)
and O(2).

We may conclude that the proposed approach works indeed
at least with the quinone and produces the unusual chair
conformation of quinone skeleton by steric and electrostatic
repulsion between the quinone oxygen and phosphonate groups
in the adjacent substituent. The clear chair structure with such a
large distortion angle is rarely seen for simple p-benzoquinone in
the literature. This kind of structural alternation between
benzoquinone and hydroquinone is quite interesting and atiractive
and could be employed as a tool for controlling the physical and
chemical properties of quinone derivatives." Works along this
line are currently in progress.
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