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resolution of racemic, fully synthetic, art&&l glycals bearing a free hydroxyl group at C3 
through the more rapid acylation of the “D”-antipode with vinyl acetate as acyl donor and 
Pseudomonm cepacia as catalyst. 

The Lewis Acid Catalyzed Diene-Aldehyde Cyclocondensation (LACDAC) reaction,l though 

mechanistically diverse,ld provides a general route to dihydropyrones such as 1. High stereoselectivity can be 

attained in transforming 1 to hexose-like systems 3. A useful intermediate in this regard is the glycal-lie 

system 2. 
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Glycals are also valuable participants in the synthesis of glycoconjugates and oligosaccharides. 

Pioneenng efforts by Lemieux and Thiem were followed by the implementation of a broad range of “E”- 

glycosylation reactions (“E” halonium, mercurinium, sulfenium etc). 2 The convertability of glycals in one step 

to stable 1,2_anhydrohexoses,3 and, in two steps, to labile 1,2-sulfonylaziridine equivalents4 adds to their 

applicability. Furthermore, the recently demonstrated feasibility of using glycals as glycosyl acceptors5 has 

multiplied their usefulness. The total synthesis of ciclamycin 06 and the complete oligosaccharide domains of 

the enediyne antibiotics7 is suggestive of the power of glycal based methodology. 

For the novel, fully synthetic glycals to be valuable in the synthesis of “artificial” oligosaccharides and 

glycoconjugates, they must be available in enantiomencally pure form. While success has been attained in some 

cases through the use of chiral L+ agents alone,8 or in concert with chiral diene auxiliaries,9 a need existed for 
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broadly applmable, operationally simple, and mexpensive access to “arttfictal” glycals of high enantiomenc 

enrichment. 

The remarkable discovery of Wong and co-workers wherein a vinyl ester is used as an irreversible acyl 

donor in enzymattcally modulated transestenficatton reacttonsl” was central to our solution. Also suggestive 

was Holla’s report that Lipase PS-30 from Pseudomonas cepacra catalyzed the regiospectfic deacylation of the 3- 

posttion of 3,4,6-triacetyl-D-glucal 1 1 We therefore posed the question as to whether racemic artificial glycals 

bearing a free hydroxyl at C, could be resolved through enzymatic acylation. The substrate glycals were all 

available through the previously described protocols of the LACDAC reaction 1 

In the event, Lipase PS-30 displayed remarkably broad substrate specificity. For instance, both the fucal 

(4) and rhamnal (5) skeletons are efficiently acetylated by the lipase. Even mtroduction of a bulky phenyl group 

m place of the usual methyl or hydroxymethyl substttuent at the 5-posttion yields excellent substrates for the 

hpase. As is seen m Table I, those possessing either a benzoyloxy group at C-4 or a methyl group at C-2 are 

acylated more slowly by the enzyme. 

In several cases, enanttodiscrimmation IS essenttally perfect (see 5 and 6) or very nearly so (see 7). In 

only one case (see 8) was no selectivity observed. Furthermore, a stereoregular pattern emerges m that, m all 

cases where selecttvtty was realized, the “D”-enanttomer was preferentially acylated by Ltpase PS-30. The ideal 

glycal substrate would appear to be one m whtch C-l and C-2 bear hydrogens and substituents are disposed in a 

3,4,5-tns-pseudoequatonal fashion (as m 5 and 6) 
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Typical Kinetic Resolution Procedure: 

To a solution of racemlc 6 (1 00 g, 4 27 mmoi) m vmyl acetate (58 mL, 629 mmol)/dlmethoxyetbane (29 mL) was added 

Lipase PS-30 (2 0 g). and the resultmg suspension stuxd vtgorously m a stoppered round bottom flask for 11 h The reaction was 

stopped by addltlon of Et20 (100 mL) and fdtratlon through a mednnn (ASTM 10-15) fntted funnel. The filter cake was washed 

with Et20 (5 x 1M mL) and the combmed filtrates concentrated m vacua. Flash chromatography (ZO-80% EtZO/hexane) gave, m 

order of elutron, (-)-14 (561 mg, 47 5%. ~97% cc) and (+)-6 (474 mg, 47 4 %, 297% cc) 
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Table I. Enzymatically Mediated Resolutions of Glycals 
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aEnantiomeric excess determined by integration of the tH-NMR spectrum of the corresponding Mosher ester(s) 
(ref. 13). bEnantiomeric excess determined from chiral shift experiments using (+)-Eu(hfc)j (ref. 14). 
CEnantiomeric excess determined by conversion to the correspondmg diacetate (Ac20, NEt3, CH2C12, DMAP) 
and then incubation with (+)-Eu(hfc)g (ref. 14). dAbsolute configuration determined from the optical rotation of 
the corresponding dihydropyrone (ref. 9) obtained by oxidation (PDC, CH$!12, HOAC, 4A MS). eAbsolute 
configuration determined from the crystal structure of a glycoconjugate derived from this glycal and 
daunomycinone. fStarting glycal was completely consumed (TLC) and the product acetate displayed no optical 
rotation. gAbsolute configuration determined from the measured.optlcal rotation (ref. 15). hAbsolute 
configuration determined from the measured optical rotation (ref. 16). lAbsolute configuration determined from 
the measured optical rotation (ref. 17). JAbsolute configuration determined from the optical rotation of the 
corresponding dihydropyrone (ref. 8c) obtained by oxidation (PDC, CH2C12, HOAC, 4A MS). knantiomeric 
excess determined by conversion to (2S,SR)-methyl3-hydroxy-2-methyl-3-phenylpropanoate [(a) Dess-Martin 
periodinane (ref. 18), CH2C12 (b) 03, MeOH, -78°C (c) H202, KOH (d) H30+ (e) CH2N2] (ref. 19); and 
incubation with (+)-Eu(hfc)s (ref. 14). Absolute configuration determined from the optical rotation of this 
degradation product (ref. 20). lref. 21. “ref. 9. “ref. 22. Oref. 23. pref. 16. %ef. 24. 
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Since Lipase PS-30 currently sells for about $Ug, the methodology described herein is not unreasonably 

expensive. The sequence hetero-Diels-Alder reaction/Luche reduction/enzymatic acylation is perhaps the most 

operationally convenient route to unnatural optically pure D- and L-glycals yet described. The extension of the 

capability described in this Letter to the synthesis of artificial oligosacchatides and novel glycoconjugates has 

been achieved and will be described shortly.25 
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