Synthesis of a Fully Functionalized CD Ring System of Taxol

K. C. Nicolaou,* a,b J. J. Liu, a C.-K. Hwang, a W.-M. Dai a and R. K. Guy a

^a Department of Chemistry, The Scripps Research Institute, 10666 N. Torrey Pines Road, La Jolla, California 92037, USA ^b Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA

Key building blocks **16** and **17** related to taxol *CD* ring system have been synthesized in racemic form *via* a stereocontrolled and efficient sequence featuring a novel Diels–Alder reaction and oxetane formation.

In the preceding communication we outlined a plausible convergent strategy for the total synthesis of taxol 1^2 and a convenient synthesis of a suitable ring A equivalent, one of the two requisite fragments. In this communication we report a stereocontrolled and expedient entry into fully functionalized systems corresponding to the CD ring system which represents the other requisite segment for a projected taxol synthesis.

Scheme 1 summarizes the construction of the oxetane-

containing fragments 16 and 17 in racemic forms. This approach is based on a Diels-Alder reaction of dienophile 2†

[†] Dienophile 2 was prepared in *ca*. 70% overall yield from allyl alcohol by the following sequence: (*i*) silylation with Bu^{*i*}Ph₂SiClimidazole; (*ii*) ozonolysis; (*iii*) condensation with Ph₃P=CH(Me)-CO₂Et; and (*iv*) desilylation using Buⁿ₄NF.

and 3-hydroxy-2-pyrone 3³ and made intramolecular through the action of phenylboronic acid according to a procedure recently reported from the Narasaka group.4 The presumed intermediacy of 4 ensures the desired regiochemical outcome of this cycloaddition reaction leading, initially, to product 5 which apparently rearranges under the reaction conditions to compound 6‡§ (61% yield). The structure of 6 was supported by chemical and spectroscopic data (Scheme 2). Thus, acetylation of 6 (Scheme 2) gave a diacetate 18, the ¹H NMR spectrum of which exhibited downfield shifts for protons H_a and H_b [300 MHz, CDCl₃, δ (6): H_a 4.59; H_b 3.10; (18): H_a 5.90; $H_b = 3.95$] as expected. Furthermore, oxidation of 6 led to enone 20 (Scheme 2), whereas persilylation afforded bis(silyl) ether 19 from which the crystalline diol 22 was prepared. An X-ray crystallographic analysis of 22 confirmed its structure and those of its precursors (assuming no skeletal changes under the conditions of the reactions shown in Scheme 2; exposure of 6 to DMAP or CSA in CDCl₃ resulted in no changes in its ¹H NMR spectrum). Dibenzylation of 6 (Scheme 2) under the influence of KH was accompanied by

‡ All new compounds exhibited satisfactory spectral and analytical and/or exact mass data. Yields refer to chromatographically and spectroscopically homogeneous materials.

§ Selected data for 6: pale-yellow oil; R_f 0.25 (silica, 70% diethyl ether in light petroleum); IR (neat) v_{max}/cm^{-1} 3441, 2979, 1777 and 1727; 1 H NMR (300 MHz, CDCl₃): δ 6.09 (dd, J 4.0, 10.0 Hz, 1 H, C H=CH), 5.82 (br d, J 10.0 Hz, 1 H, CH=CH), 4.63–4.58 [m, 2 H, CH-OH, $-CH_2$ O-C(O)-], 4.45 [dd, J 8.2, 9.3 Hz, 1 H, $-CH_2$ O-C(O)-], 4.18 (q, J 7.1 Hz, 2 H, CH_2 CH₃), 3.70 (br, 1 H, OH), 3.10 [dd, J 7.7 Hz, 1 H, -CHCH₂O-C(O)-], 2.55 (br, 1 H, OH), 1.29 (s, 3 H, Me) and 1.26 (t, J 7.1 Hz, 3 H, CH_2 CH₃): HRMS(FAB+): Calcd for C_{12} H $_{16}$ O $_6$ Cs (M⁺ + Cs⁺): 389.0001, found m/z 389.0005.

For 10: amorphous foam; $R_{\rm f}$ 0.20 (silica, 50% diethyl ether in light petroleum); IR (neat) $v_{\rm max}/cm^{-1}$ 3398, 2924, 1453, 1369, 1219 and 1063; 1 H NMR (300 MHz, CDCl₃): δ 7.41–7.28 (m, 10 H, ArH), 4.66 and 4.39 (AB quartet, J 11.8 Hz, 2 H, $CH_{\rm 2}$ Ph), 4.64 and 4.56 (AB quartet, J 10.1 Hz, 2 H, $CH_{\rm 2}$ Ph), 4.10 and 3.52 (AB quartet, br, J 12.0 Hz, 2 H, $CH_{\rm 2}$ OH), 4.05 (dd, J 4.4, 12.6 Hz, 1 H, $CH_{\rm 2}$ OH), 3.86 (dd, J 2.2, 12.3 Hz, 1 H, $-CH_{\rm 2}$ OBn), 3.80 (dd, J 7.0, 12.3 Hz, 1 H, $-CH_{\rm 2}$ OBn), 3.71 and 3.40 (AB quartet, J 11.6 Hz, 2 H, $CH_{\rm 2}$ O-), 3.07 (dd, J 4.1, 11.5 Hz, 1 H, $CH_{\rm 2}$ O-), 2.47 (dd, J 4.1, 4.4, 12.2 Hz, 1 H, $CH_{\rm 2}$), 1.85 (ddd, J 12.2 Hz, 1 H, $CH_{\rm 2}$), 1.72 (dd, J 2.2, 7.0 Hz, 1 H, $CH_{\rm 2}$), 1.85 (ddd, J 13.4 (s, 3 H, Me), 1.32 (s, 3 H, Me) and 1.15 (s, 3 H, Me); HRMS (FAB+): Calcd for $C_{\rm 27}H_{\rm 36}O_{\rm 6}Cs$ (M + Cs^+): 589.1566, found mlz 589.1566.

For 17: oil; $R_{\rm f}$ 0.40 (80% diethyl ether in light petroleum); IR (neat) $v_{\rm max}/{\rm cm^{-1}}$ 3450, 2980, 2870, 1465 and 1072; $^{1}{\rm H}$ NMR (500 MHz, C_6D_6): δ 7.57–7.32 (m, 10 H, ArH), 5.09 (dd, J 3.2, 8.6 Hz, 1 H, CHO), 4.75 and 4.63 (AB quartet, J 7.5 Hz, 2 H, CH₂O), 4.70 and 4.55 (AB quartet, J 11.6 Hz, 2 H, benzylic), 4.70 and 4.54 (AB quartet, J 11.7 Hz, 2 H, benzylic), 3.94 and 3.64 (AB quartet, J 11.1 Hz, 2 H, CH₂O), 3.80 (dd, J 6.3, 10.7 Hz, 1 H, CHO), 3.70 (m, 2 H, CH₂O), 2.47 (t, J 5.9 Hz, 1 H, CH), 2.40 (m, 1 H, CH₂), 2.32 (m, 1 H, CH₂) and 1.36 (s, 3 H, Me); $^{13}{\rm C}$ NMR (125 MHz, C_6D_6) δ 139.36, 138.88, 128.67, 128.59, 128.30, 127.91, 127.87, 127.63, 82.39, 80.73, 76.69, 75.17, 71.84, 66.43, 65.15, 59.62, 43.97, 42.02, 32.85 and 12.14; HRMS (FAB+) Calcd for $C_{24}H_{30}O_5{\rm Cs}$ (M+ + Cs+): 531.1148, found m/z 531.1164.

Scheme 1 Reagents and conditions: (a) 1.0 equiv. of PhB(OH)₂, PhH, 90 °C, 48 h; 1.0 equiv. of 2,2-dimethylpropane-1,3-diol, 25 °C, 30 min, 61%; (b) 2.5 equiv. of KH, 2.5 equiv. of PhCH₂Br, THF, 0.2 equiv. of Bun₄NI, 0 °C, 30 min then 25 °C, 1 h, 80%; (c) 5.0 equiv. of Red-Al, PhH-THF (9:1), reflux, 1 h, 90%; (d) excess of 2,2-dimethoxypropane, 0.1 equiv. of CSA, CH₂Cl₂, 100% (e) 10.0 equiv. of BH₃·THF, CH₂Cl₂, 25 °C, 1 h; excess of H₂O₂, excess of NaOH, 25 °C, 30 min, 60%; (f) excess of Ac₂O, 2.5 equiv. of DMAP, CH₂Cl₂, 25 °C, 30 min, 90%; (g) 0.2 equiv. of CSA, MeOH, 100%; (h) 2.4 equiv. of Bu'Me₂SiOTf, 2.6 equiv. of 2,6-lutidine, CH₂Cl₂, 25 °C, 30 min, 90%; (i) excess of NaOMe, MeOH, 25 °C, 2 h, 95%; (j) 1.2 equiv. of MeSO₂Cl, 2.0 equiv. of DMAP, CH₂Cl₂, 0 °C, 2 h, 80%; (k) 5.0 equiv. of NaH, Et₂O, 45 °C, 12 h, 95%; (l) 3.0 equiv. of Bun₄NF, THF, 25 °C, 3 h, 90%. THF = tetrahydrofuran; DMAP = 4-dimethyl-aminopyridine; CSA = camphorsulfonic acid; Tf = CF₃SO₂.

17; R = H

skeletal rearrangement back to a [2.2.2] bicyclic system, furnishing intermediate 7 (80%). The latter compound 7 was reduced with excess of Red-Al to the triol 8 (90%). Selective acetonide formation led to compound 9 in quantitative yield. Regio- and stereo-selective hydroboration of 9 was directed by the appropriately disposed hydroxymethyl group, leading to

Scheme 2 Reagents and conditions: (a) excess of Ac₂O, 2.5 equiv. of DMAP, CH₂Cl₂, 25 °C, 10 min, 100%; (b) 1.2 equiv. of PDC, 4 Å MS, CH₂Cl₂ 0°C, 30 min then 25°C, 30 min, 81%; (c) 5.0 equiv. of Bu'Me₂SiOTf, 6.0 equiv. of 2,6-lutidine, 25°C, 2.5 h, 67%; (d) 1.2 equiv. of LiAlH₄, Et₂O, 25°C, 30 min, 87%; (e) 1.0 equiv. of CSA, CH₂Cl₂–MeOH (1:1), 25°C, 20 min, 100%. PDC = pyridinium dichromate.

diol 10\s in 60\% yield. Acetylation of 10 followed by removal of the acetonide group and bis(silylation) gave derivative 13 via compounds 11 and 12 in 90 and 100% yields, respectively. Deacetylation of 13 under basic conditions resulted in the formation of diol 14 which was selectively converted to monomesylate 15 (80% yield) by the use of a slight excess of the requisite reagents (Scheme 1). Finally, treatment of 15 with NaH in diethyl ether at 45 °C for 12 h gave oxetane 16 (90% yield)⁵ from which the silyl groups were removed by the action of Bun₄NF (92%) to afford compound 17.§

The described chemistry may prove useful in studies directed toward the total synthesis of taxol 1 and analogues of

This work was financially supported by the National Institutes of Health and the Scripps Research Institute.

Received, 5th May 1992; Com. 2/02307E

References

- 1 K. C. Nicolaou, C.-K. Hwang, E. Sorensen and C. Clairborne J. Chem. Soc., Chem. Commun., 1992, preceding communication.
- 2 M. C. Wani, H. L. Hall, M. E. Wall, P. Coggon and A. T. McPhail, J. Am. Chem. Soc., 1971, 93, 2325.
- 3 R. H. Wiley and C. H. Jarboe, J. Am. Chem. Soc., 1956, 78, 2398. 4 K. Narasaka, S. Shimada, K. Osada and N. Iwasawa, Synthesis,
- 1991, 1171.
- 5 J. Lin, M. N. Nikaido and G. Clark, J. Org. Chem., 1987, 52, 3745.