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An efficient route to deoxygenation of sulphoxides to sulphides 

with PCl3 under mild reaction condition was developed. PCl3 was 

used as a reducing agent for the first time to convert sulphoxides 

to sulphides. The mild conditions, use of cheap and readily 

available reagent, and broad substrate scope render it a useful 

strategy for preparing sulphides. 

The reduction of sulphoxides to their corresponding sulphides 

is an important transformation in organic synthesis. Traditional 

methods to reduce sulphoxides to sulphides involve the use of 

low-valent metallic species,
1
 metal hydride reagents,

2
 halide 

ions,
3
 phosphorus compounds,

4
 Woollin’s reagent,

5
 and 

phosphines
6
 (Scheme 1). However, most of the methods have 

the following disadvantages: 1) the use of expensive reagents, 

2) functional group incompatibility, and 3) difficult work-up 

procedures or harsh reaction conditions. Therefore, 

development of an efficient and improved atom economy 

method for the reduction of sulfoxides to the corresponding 

sulphides is highly desirable. 

As we are interested in developing efficient methods to 

construct C–S bonds,
7
 we recently developed a sodium 

trifluoromethanesulphinate (CF3SO2Na)-based transition 

metal-free trifluoromethylthiolation of electron-rich aromatics 

in the presence of trichlorophosphane (PCl3).
8
 While studying 

the mechanism of this transformation, we found that PCl3 

could reduce trifluoromethylsulphoxide to the corresponding 

trifluoromethylthioether. PCl3 is an important bulk chemical 

used in industry to prepare many phosphorus-containing 

compounds. We investigated the possibility of using PCl3 as a 

reductant to convert a normal sulphoxide to its corresponding 

sulphide. We found that this was indeed the case, and herein 

report the deoxygenation of sulphoxides to sulphides with PCl3. 
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Scheme 1 Representative deoxygenation of sulfoxides to sulphides by phosphorus-

containing reagents 

First, we treated 1-(butylsulfinyl)-4-methylbenzene 1a with 

PCl3 in 1,4-dioxane at 25 °C, which gave the desired 

deoxygenation product 3a in 70% yield (Table 1, Entry 1).To 

optimize the reaction conditions, various solvents such as 

ethanol (EtOH), toluene, N,N-dimethylformamide (DMF), 

CH2Cl2, and acetonitrile (CH3CN) (Table 1, Entries 2–6) were 

first examined. It was found that CH3CN gave the best result 

(Table 1, Entry 6). Next, the reaction temperature and 

concentration were optimized. The result showed that 

increasing the reaction temperature to 40 °C or decreasing it 

to 10 °C diminished the yield (Entries 7 and 8). However, 

increasing the concentration of 1a to 0.5 M or decreasing it to 

0.17 M did not affect the yield much (Entries 9 and 10). Finally, 

the equivalent amount of PCl3 was examined; 1.05 equiv. of 

PCl3 was sufficient for the reaction, giving 97% product yield 

(Table 1, Entries 11-12). Thus, the optimal reaction conditions 

were as follows: 1.05 equiv. PCl3 in CH3CN (0.25 M) at 25 °C. 

With the optimized conditions in hand, we extended the 

reaction by using a series of sulphoxides (Table 2). First, aryl-

alkyl, aryl-cyclopropyl, aryl-allylic, aryl-propargyl, aryl-alkene, 

and aryl-benzyl sulphoxides were examined, and the 

corresponding sulphides (3b–3g) were obtained in good yields. 

Notably, ester, carboxylic acid, amide, trifluoromethyl and 

difluoromethyl  groups (1h–1l) were tolerant during this 

transformation. Thereafter, sulphinyldibenzene (1m), diphenyl 

sulphoxides with electron-withdrawing (1n) and electron-

donating group (1o and 1p), diphenyl sulphoxides with phenol 

and acetate group (1q and 1s) as well as cyclic phenyl-phenyl 
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and phenyl-heterocyclic sulphoxides (1r and 1t) were 

examined, and the corresponding sulphides (3m–3t) were 

obtained in good to excellent yields. Notably, when the tetra 

ortho-methyl phenyl-phenyl sulfoxide (1p) was used as a 

substrate, the steric effect did not affect the yield. Finally, the 

alkyl-alkyl and benzyl-benzyl sulphoxides were examined, and 

the corresponding sulphides (3u and 3v) were obtained in 

good yield. 

 

Table 1 Optimization of conditions for deoxygenation 1a with PCl3.
a
 

 

Entry 2 (eq.)  Solvent  
Concentration 

of 1a (M) 

Temperature

 (°C) 
Yield (%) 

1 1.0 1,4-Dioxane 0.25 25 70 

2 1.0 EtOH 0.25 25 7 

3 1.0 Toluene 0.25 25 87 

4 1.0 DMF 0.25 25 14 

5 1.0 CH2Cl2 0.25 25 92 

6 1.0 CH3CN 0.25 25 95 

7 1.0 CH3CN 0.25 10 92 

8 1.0 CH3CN 0.25 40 91 

9 1.0 CH3CN 0.5 25 93 

10 1.0 CH3CN 0.17 25 93 

11 1.05 CH3CN 0.25 25 97 

12 1.1 CH3CN 0.25 25 97 
a
 Reaction conditions: 1a (0.5 mmol, 1.0 equiv), PCl3 (0.5-0.55 

mmol), solvent (1.0-3.0 mL) at indicated temperature.  

 

Table 2 Deoxygenation of sulfoxides to sulfides with 

trichlorophosphane.
a 

CH3CN,25 oC

1 3

+

2

a Reaction conditions: 1b-1v (0.5 mmol), 2 (0.525 mmol), CH3CN (2.0 mL), 25 oC for 0.5 h
b The reaction was carried out in 0 oC. c The reaction was stirred for 6 h d The reaction was

carried out in -15 oC
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Based on literature,
6k

 a possible mechanism of this 

transformation is proposed in Scheme 2. Initially, PCl3 (2) 

should be attacked by the oxygen of sulfoxide 1 to generate 

the salt 4, which was decomposed to sulphide 3 and 

phosphoryl trichloride 5.  
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Scheme 2 Proposed reaction pathway 

To support our mechanism, 1a was treated with PCl3 under 

the optimized condition and the reaction was quenched with 

excess of pyrrolidine. GC-MS showed that tri(pyrrolidin-1-

yl)phosphine oxide was one of the major components of the 

residue.
9
 

Finally, to illustrate the potential practical application of this 

deoxygenation protocol, the reaction was scaled-up using 2 g 

of the substrate 1m. As shown in Scheme 3, the desired 

product 3m was obtained in 97% yield. 

  

 

Scheme 3 Scale-up of the trifluoromethylthiolation reaction 

Experimental 

1) General methods and material 

All solvents were distilled prior to use. The solvents for reaction 

were refluxed over and distilled from Na (for toluene and 1,4-

dioxane) or CaH2 (for DCE，DMF and MeCN) or Mg (for EtOH) under 

a nitrogen atmosphere. Unless otherwise noted, chemicals were 

used as received without further purification. For chromatography, 

200−300 mesh silica gel was employed. 
1
H, 

19
F{

1
H} and 

13
C{

1
H} NMR 

spectra were recorded at 400 MHz, 376 MHz and 100 MHz 

respectively. Chemical shifts are reported in ppm using 

tetramethylsilane as internal standard. HRMS was performed on an 

FTMS mass instrument. Melting points are reported as uncorrected. 

General Procedure for Deoxygenation of Sulfoxides (Table 2).  

Add a sulphoxide (0.5 mmol) to dry CH3CN (2 mL) in a flame-dried 

Schlenk tube. Then the trichlorophosphane (0.525 mmol) was 

added into the solvent by syringe at indicated temperature. The 

mixture was stirred at indicated temperature for 0.5 hour or 6 

hours. Then, the solvent was evaporated under reduced pressure 

and the residue was purified by silica gel column chromatography 

to afford the pure product. 

 

Butyl(p-tolyl)sulfane (3a):
10

 After purification by silica gel column 

chromatography (PE), compound 3a was isolated as a colorless oil 

(87 mg, 97%); Rf (PE) = 0.37. 
1
H NMR (400 MHz, CDCl3): δ 7.24-7.21 

(m, 2H), 7.06 (d, J = 8.0 Hz, 2H), 2.86 (t, J = 7.4 Hz, 2H), 2.28 (s, 3H), 

1.62-1.53 (m, 2H), 1.47-1.37 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H); 
13

C 

NMR (100 MHz, CDCl3): δ 135.7, 133.3, 129.7, 129.6, 34.0, 31.4, 

22.0, 21.0, 13.7. 
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Isopropyl(p-tolyl)sulfane (3b):
11

 After purification by silica gel 

column chromatography (N-Pentane), compound 3b was isolated as 

a colorless oil (78 mg, 95%); Rf (PE) = 0.36. 
1
H NMR (400 MHz, 

CDCl3): δ 7.32-7.29 (m, 2H), 7.11-7.09 (m, 2H), 3.34-3.24 (m, 1H), 

2.32 (s, 3H), 1.26 (d, J = 6.8 Hz, 6H); 
13

C NMR (100 MHz, CDCl3): δ 

137.1, 132.9, 131.8, 129.7, 38.8, 23.3, 21.2. 

Cyclopropyl(phenyl)sulfane (3c):
12

 After purification by silica gel 

column chromatography (PE), compound 3c was isolated as a 

colorless oil (66 mg, 88%); Rf (PE) = 0.45. 
1
H NMR (400 MHz, CDCl3): 

δ 7.37-7.34 (m, 2H), 7.26 (t, J = 7.2 Hz, 2H), 7.13-7.09 (m, 1H), 2.20-

2.14 (m, 1H), 1.06-1.01 (m, 2H), 0.70-0.65 (m, 2H); 
13

C NMR (100 

MHz, CDCl3): δ 138.9, 128.8, 126.8, 125.1, 12.3, 8.6. 

Allyl(p-tolyl)sulfane (3d):
13

 After purification by silica gel column 

chromatography (PE), compound 3d was isolated as a yellow solid 

(72.8 mg, 89%); Rf (PE) = 0.44. 
1
H NMR (400 MHz, CDCl3): δ 7.27-

7.26 (m, 1 H), 7.26-7.24 (m, 1H), 7.10 (d, J = 8.0 Hz, 2H), 5.92-5.81 

(m, 1H), 5.11-5.06 (m, 1H), 5.06-5.02 (m, 1H), 3.52-3.49 (m, 2H), 

2.31 (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ 136.6, 134.0, 132.3, 

130.9, 129.7, 117.5, 38.1, 21.2.  

Prop-2-yn-1-yl(p-tolyl)sulfane (3e):
14

 After purification by silica gel 

column chromatography (PE), compound 3e was isolated as a 

yellow oil (59 mg, 73%); Rf (PE) = 0.45. 
1
H NMR (400 MHz, CDCl3): δ 

7.39-7.36 (m, 2H), 7.14 (d, J = 8.0 Hz, 2H), 3.55 (d, J = 2.8 Hz, 2H), 

2.34 (s, 3H), 2.22 (t, J =1.2 Hz, 1H); 
13

C NMR (100 MHz, CDCl3): δ 

137.5, 131.4, 131.3, 129.9, 80.2, 71.6, 23.5, 21.2. 

Benzyl(p-tolyl)sulfane (3f):
5
 After purification by silica gel column 

chromatography (PE : EA = 100 : 1), compound 3f was isolated as a 

white solid (105 mg, 99%); Rf (PE) = 0.28. 
1
H NMR (400 MHz, CDCl3): 

δ 7.25-7.18 (m, 7H), 7.04 (d, J = 8.0 Hz, 2H), 4.04 (s, 2H), 2.28 (s, 

3H); 
13

C NMR (100 MHz, CDCl3): δ 138.0, 136.7, 132.7, 130.9, 129.7, 

129.0, 128.6, 127.2, 40.0, 21.2. 

1-benzyl-2-(benzylthio)-1H-benzo[d]imidazole (3g):
15

 After 

purification by silica gel column chromatography (PE : EA = 10 : 1), 

compound 3g was isolated as a white solid (156 mg, 95%); Rf (PE : 

EA = 10 : 1 ) = 0.41; 
1
H NMR (400 MHz, CDCl3): δ 7.74 (d, J = 8.0 Hz, 

1H), 7.41-7.37 (m, 2H), 7.31-7.26 (m, 3H), 7.26-7.20 (m, 4H), 7.17-

7.15 (m, 2H), 7.10-7.08 (m, 2H), 5.23 (s, 2H), 4.62 (s, 2H); 
13

C NMR 

(100 MHz, CDCl3): δ 151.8, 143.8, 136.9, 136.3, 135.8, 129.2, 128.9, 

128.8, 128.0, 127.8, 127.0, 122.3, 122.2, 118.6, 109.4, 47.7, 37.7. 

Ethyl 2-(p-tolylthio)acetate (3h):
16

 After purification by silica gel 

column chromatography (PE : EA = 10 : 1), compound 3h was 

isolated as a white oil (85mg, 81%); Rf (PE : EA = 10 : 1) = 0.44; 
1
H 

NMR (400 MHz, CDCl3): δ 7.34-7.31 (m, 2H), 7.10 (d, J = 8.0 Hz, 2H), 

4.15 (q, J =7.2 Hz, 2H), 3.57 (s, 2H), 2.31 (s, 3H), 1.22 (t, J = 7.2 Hz, 

3H); 
13

C NMR (100 MHz, CDCl3): δ 169.9, 137.4, 131.4, 131.1, 129.9, 

61.5, 37.6, 21.1, 14.2. 

2-(p-tolylthio)acetic acid (3i):
17
 after purification by silica gel 

column chromatography (EA), compound 3i was isolated as a yellow 

solid (74 mg, 81%);  Rf (EA) = 0.26; 
1
H NMR (400 MHz, CDCl3): δ 

11.17 (s, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 3.60 (s, 

2H), 2.32 (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ 175.6, 137.6, 131.1, 

131.0, 130.1, 37.5, 21.2. 

N,N-diethyl-2-(p-tolylthio)acetamide (3j):
18  

after purification by 

silica gel column chromatography (PE : EA = 3 : 1), compound 3j was 

isolated as a colorless oil (78 mg, 66 %); Rf (PE : EA = 5 : 1) = 0.24; 
1
H 

NMR (400 MHz, CDCl3): δ 7.36 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 

2H), 3.68 (s, 2H). 3.36 (q, J = 7.2 Hz, 2H), 3.31 (q, J = 7.2 Hz, 2H), 2.32 

(s, 3H), 1.18 (t, J = 7.2 Hz 3H), 1.10 (t, J = 7.2 Hz, 3H); 
13

C NMR (100 

MHz, CDCl3): δ 167.7, 137.3, 131.5, 131.4, 129.8, 42.6, 40.4, 37.8, 

21.1, 14.5, 13.0. 

1-methyl-3-((trifluoromethyl)thio)-1H-indole (3k):
8
 After 

purification by silica gel column chromatography (PE : EA = 20 : 1), 

compound 3k was isolated as a yellow solid (86.5mg, 75%); Rf (PE : 

EA = 10 : 1) = 0.50; 
1
H NMR (400 MHz, CDCl3): δ 7.79 (d, J = 7.6 Hz, 

1H), 7.38-7.25 (m, 4H), 3.83 (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ 

137.4, 137.1, 130.4, 129.6 (q, J = 308.0 Hz, 1C), 123.1, 121.4, 119.6, 

110.0, 93.3 (q, J = 2.0 Hz, 1C), 33.4; 
19

F NMR (376 MHz, CDCl3): δ -

44.96 (s, 3F). 

3-((difluoromethyl)thio)-1H-indole (3l):
7f

 After purification by silica 

gel column chromatography (PE : EA = 8 : 1), compound 3l was 

isolated as a brown solid (90 mg, 91%); Rf (PE : EA = 8 : 1) = 0.34; 
1
H 

NMR (400 MHz, CDCl3): δ 8.45 (s, 1H), 7.80-7.78 (m, 1H), 7.46 (d, J = 

2.8 Hz, 1H), 7.42-7.40 (m, 1H), 7.30-7.23 (m, 2H), 6.68 (t, J = 57.6 Hz, 

1H); 
13

C NMR (100 MHz, CDCl3): δ 136.2, 132.0,129.8, 123.4, 121.4, 

121.2 (t, J =274.0 Hz, 1C), 119.4, 111.8, 96.7 (t, J = 3.7 Hz, 1C); 
19

F 

NMR (376 MHz, CDCl3): δ = -91.96 (d, J = 60.1 Hz, 2F). 

Diphenylsulfane (3m):
4d

 After purification by silica gel column 

chromatography (PE), compound 3m was isolated as a colorless oil 

(92mg, 99 %); Rf (PE) = 0.40; 
1
H NMR (400 MHz, CDCl3): δ 7.34-7.31 

(m, 5H), 7.29-7.25 (m, 3H), 7.23-7.19 (m, 2H); 
13

C NMR (100 MHz, 

CDCl3): δ 136.0, 131.2, 129.3, 127.1.  

Bis(4-nitrophenyl)sulfane (3n):
4d

 After purification by silica gel 

column chromatography (PE : DCM = 2 : 1), compound 3n was 

isolated as a yellow solid (128 mg, 93 %); Rf (PE : DCM = 3 : 1) = 

0.33; 
1
H NMR (400 MHz, d6-DMSO): δ 8.25 (dd, J = 8.4, 1.6 Hz, 4H), 

7.64 (dd, J = 8.4, 2.0 Hz, 4H); 
13

C NMR (100 MHz, d6-DMSO): δ 146.7, 

142.2, 131.3, 124.8. 

Bis(4-methoxyphenyl)sulfane (3o):
4d

 After purification by silica gel 

column chromatography (PE : EA = 10 : 1), compound 3o was 

isolated as a white solid (121 mg, 99 %); Rf (PE : EA = 10 : 1) = 0.41; 
1
H NMR (400 MHz, CDCl3): δ 7.29-7.25 (m, 4H), 6.85-6.81 (m, 4H), 

3.78 (s, 6H); 
13

C NMR (100 MHz, CDCl3): δ 159.2, 132.9, 127.6, 

114.9, 55.5. 

Bis(2,6-dimethylphenyl)sulfane (3p):
19

 After purification by silica gel 

column chromatography (PE), compound 3p was isolated as a white 

solid (119 mg, 99 %); Rf (PE) = 0.61; 
1
H NMR (400 MHz, CDCl3): δ 

7.06-6.99 (m, 6H), 2.22 (s, 12H); 
13

C NMR (100 MHz, CDCl3): δ 140.5, 

134.5, 128.6, 127.0, 21.8. 

4,4'-thiodiphenol (3q)
20

 after purification by silica gel column 

chromatography (PE : EA = 1 : 1), compound 3q was isolated as a 

white solid (102 mg, 94%); Rf (PE : EA = 1 : 1) = 0.52; 
1
H NMR (400 

MHz, d6-DMSO): δ 9.62 (s, 2H), 7.14 (d, J = 8.4 Hz, 4H), 6.73 (d, J = 

8.4 Hz, 4H); 
13

C NMR (100 MHz, d6-DMSO): δ 157.0, 132.7, 124.7, 

116.3. 

9H-thioxanthen-9-one (3r):
4d

 After purification by silica gel column 

chromatography (PE : EA = 10 : 1), compound 3r was isolated as a 

yellow solid (104 mg, 99 %); Rf (PE : EA = 10 : 1) = 0.37; 
1
H NMR (400 

MHz, CDCl3): δ 8.64-8.61 (m, 2H), 7.65-7.57 (m, 4H), 7.51-7.47 (m, 

2H); 
13

C NMR (100 MHz, CDCl3): δ 180.1, 137.4, 132.4, 130.0, 129.5, 

126.4, 126.1. 

Thiobis(4,1-phenylene) diacetate(3s): after purification by silica gel 

column chromatography (PE : EA = 5 : 1), compound 3s was isolated 
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as a white solid (141 mg, 93 %); Rf (PE：EA = 5 : 1) = 0.41; Mp = 71-

68 
o
C; 

1
H NMR (400 MHz, CDCl3): δ 7.34 (d, J = 8.8 Hz, 4H), 7.04 (d, J 

= 8.8 Hz, 4H), 2.30 (s, 6H); 
13

C NMR (100 MHz, CDCl3): δ 169.3, 

150.1, 133.0, 132.3, 122.6, 21.2; HRMS (MS) e/z calcd for C16H14O4S 

(M+H)
+
 303.0686, found 303.0674. 

1-methyl-3-(p-tolylthio)-1H-indole(3t):
21

 After purification by silica 

gel column chromatography (PE : EA = 100 : 1), compound 3t was 

isolated as a white solid (86 mg, 70 %); Rf (PE : EA = 100 : 1) = 0.28; 
1
H NMR (400 MHz, CDCl3): δ 7.61 (dd, J = 7.6, 0.4 Hz, 1H), 7.38-7.35 

(m, 1H), 7.31 (s, 1H), 7.30-7.26 (m, 1H), 7.17-7.13 (m, 1H), 7.03-7.00 

(m, 2H), 6.97-6.95 (m, 2H), 3.82 (s, 3H), 2.24 (s, 3H); 
13

C NMR (100 

MHz, CDCl3): δ 137.6, 136.1, 134.9, 134.6, 130.0, 129.5, 126.3, 

122.6, 120.5, 119.9, 109.8, 101.4, 33.1, 20.9. 

Dibenzylsulfane (3u):
5
 After purification by silica gel column 

chromatography (PE : EA = 50 : 1), compound 3u was isolated as a 

white solid (99 mg, 93 %); Rf (PE : EA = 100 : 1) = 0.27; 
1
H NMR (400 

MHz, CDCl3): δ7.33-7.22 (m, 10H), 3.60 (s, 4H); 
13

C NMR (100 MHz, 

CDCl3): δ 138.3, 129.1, 128.6, 127.1, 35.8. 

Dibutylsulfane (3v):
4d

 After purification by silica gel column 

chromatography (N-Pentane), compound 3v was isolated as a 

colorless oil (60 mg, 82%); Rf (PE) = 0.8; 
1
H NMR (400 MHz, CDCl3): δ 

2.53-2.49(m, 4H), 1.61-1.53 (m, 4H), 1.46-1.36 (m, 4H), 0.92 (t, J = 

7.6 Hz, 6H); 
13

C NMR (100 MHz, CDCl3): δ 32.0, 22.2, 13.8. 

 

Conclusions 

In conclusion, we developed an efficient route for the 

deoxygenation of sulphoxides to sulphides with PCl3 under 

mild reaction conditions for the first time. Both aliphatic and 

aromatic sulphoxides could be reduced to the corresponding 

sulphides in moderate to excellent yields. Thus, the mild 

conditions and the use of cheap and readily available reagent 

in addition to the broad substrate scope render it a useful 

strategy for preparing sulphides.  
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