Preparation, photophysical, and electrochemical properties of two tetranuclear ruthenium(II) polypyridyl complexes containing 4,5-diazafluorene

Feixiang Cheng \cdot Chixian He \cdot Hongju Yin \cdot Ning Tang

Received: 20 November 2012/Accepted: 18 December 2012/Published online: 9 January 2013 © Springer Science+Business Media Dordrecht 2013

Abstract Two tetrapodal ligands L^1 and L^2 containing 4,5-diazafluorene units have been synthesized and characterized. Both ligands are composed of two kinds of nonequivalent coordinating sites: one involves the 4-(4, 5-diazafluoren-9-ylimino)phenoxy moiety, and the other one involves the 2-(4,5-diazafluoren-9-ylimino)phenoxy moiety. The Ru(II) complexes [(bpy)₈Ru₄(L¹)](PF₆)₈ and [(bpy)₈Ru₄(L²)](PF₆)₈ (bpy = 2,2'-bipyridine) have been obtained by refluxing Ru(bpy)₂Cl₂·2H₂O and each ligand in 2-methoxyethanol. Both complexes exhibit metal-to-ligand charge transfer (MLCT) absorptions at around 443 nm and emission at around 574 nm. Electrochemical studies of both complexes display one Ru(II)-centered oxidation at around 1.33 V and three ligand-centered reductions.

Introduction

There is at present a great interest in the chemistry of polypyridyl complexes of ruthenium because of their outstanding photophysical and electrochemical properties and their extensive use in luminescence sensing, solar energy conversion, DNA intercalation, pH switching, etc. [1–3]. Polynuclear Ru(II) polypyridyl complexes have received special attention in recent years in connection with the development of artificial multicomponent systems for

F. Cheng $(\boxtimes) \cdot C$. He \cdot H. Yin

N. Tang

photoinduced electron or energy transfer and other related photonic devices [4-7]. In the design of such Ru(II) systems, the bridging ligands that are used to link two or more metal polypyridine subunits are crucial because the interactions between the bridged units, and thereby the ground and excited state properties of the polynuclear complex, are strongly dependent on the size, shape, and electronic nature of the bridging ligands [8, 9]. Thus, the synthesis of appropriate bridging ligands is the most important factor in realizing molecular devices based on polynuclear Ru(II) complexes. A wide range of bridging ligands have been prepared in order to assemble Ru(II) polypyridine building blocks over the past decade. However, the vast majority of such studies have focused on systems containing symmetric bridging ligands. The study of polynuclear Ru(II) complexes, bridged with ligands containing two kinds of nonequivalent coordinating sites, has attracted less attention [10–13]. Toward the aim of synthesizing new polynuclear Ru(II) complexes with interesting photophysical and electrochemical properties, herein, we describe the synthesis and characterization of two tetrapodal ligands incorporating two kinds of nonequivalent chelating sites: one involving the 4-(4,5-diazafluoren-9-ylimino)phenoxy moiety, and the other involving the 2-(4,5-diazafluoren-9ylimino)phenoxymethyl moiety. The absorption and emission spectra, and electrochemical properties of both complexes are also presented and discussed.

Experimental

2,2'-Bipyridine, 1,10-phenanthroline, 4-aminophenol, 2-aminophenol, p-toluenesulfonyl chloride, pentaerythritol, tetrabutylammonium perchlorate (TBAP), ethyl acetate, RuCl₃·3H₂O, NH₄PF₆, K₂CO₃, CH₃CN, CH₂Cl₂, EtOH, and DMF were

College of Chemistry and Chemical Engineering, Qujing Normal University, Qujing 655011, People's Republic of China e-mail: chengfx2010@163.com

College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China

purchased from the Tianjin Chemical Reagent Factory. Solvents and raw materials were of analytical grade and used as received, apart from CH_3CN , which was filtered over activated alumina and distilled from P_2O_5 immediately prior to use. 4,5-Diazafluoren-9-one [14], 9-(4-hydroxy)phenyl-imino-4,5-diazafluorene [15], 9-(2-hydroxy)phenylimino-4,5-diazafluorene [15], pentaerythrityl tetratosylate [16], and Ru(bpy)₂Cl₂·2H₂O [17] were prepared according to literature procedures.

¹H NMR spectra were obtained on a Mercury Plus 300 spectrometer and a Mercury Plus 400 spectrometer using TMS as internal standard. ESI-HRMS spectra were obtained on a Bruker Daltonics APEXII47e mass spectrometer and ESI-MS spectra with a Bruker Daltonics Esquire 6000 mass spectrometer. Elemental analyses were obtained using a Perkin-Elmer 240C analytical instrument. Absorption spectra were obtained on a Varian Cary-100 UV-Visible spectrophotometer and emission spectra with a Hitachi F-4600 spectrophotometer. Emission quantum yields were calculated relative to Ru(bpy)₃²⁺ ($\Phi_{std} = 0.376$) in EtOH:MeOH (4:1) glassy matrix [18]. Electrochemical measurements were carried out at room temperature using a CHI 660B electrochemical workstation. Cyclic voltammetry and differential pulse voltammetry were performed in CH₃CN and DMF solutions using a micro cell equipped with a platinum disk working electrode, a platinum auxiliary electrode, and a saturated potassium chloride calomel reference electrode with 0.1 mol/L TBAP as supporting electrolyte. All samples were purged with nitrogen prior to measurement.

Synthesis of 1,1'-di[4-(4,5-diazafluoren-9-ylimino)phenoxymethyl]-1",1"'-di(p-tosyloxymethyl)-methane (compound 1)

A mixture of pentaerythrityl tetratosylate (652 mg, 0.87 mmol), 9-(4-hydroxy)phenylimino-4,5-diazafluorene (486 mg, 1.78 mmol), and K₂CO₃ (273 mg, 1.98 mmol) in DMF (20 mL) was heated to 80 °C for 24 h under nitrogen atmosphere. The solution was poured into 200 mL of water after cooling down to room temperature, and a red precipitate which formed was collected by filtration. The crude product was chromatographed on silica, being eluted first with CH₂Cl₂-ethyl acetate (2:1, v/v) to remove impurities, then with CH₂Cl₂-EtOH (25:1, v/v) to afford the desired product as a red solid. Yield: 233 mg (28.2 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.44$ (s, 6H), 4.09 (s, 4H), 4.31 (s, 4H), 6.84 (d, J = 8.7 Hz, 4H), 6.97 (d, J =9.0 Hz, 4H), 7.06 (d, J = 3.0 Hz, 4H), 7.31 (d, J = 8.1 Hz, 4H), 7.41 (dd, J = 7.5, 4.8 Hz, 2H), 7.76 (d, J = 8.4 Hz, 4H), 8.25 (d, J = 7.5 Hz, 2H), 8.67 (d, J = 3.6 Hz, 2H), 8.81 (d, J = 4.8 Hz, 2H). ESI-MS: m/z 955.4 (M + H)⁺.

Found: C, 66.5; H, 4.3; N, 8.6. Calcd for $C_{53}H_{42}N_6O_8S_2$: C, 66.7; H, 4.4; N, 8.8.

Synthesis of 1,1',1"-tris[4-(4,5-diazafluoren-9-ylimino)phenoxymethyl]-1"'-(p-tosyloxymethyl)-methane (compound 2)

A mixture of pentaerythrityl tetratosylate (815 mg, 1.08 mmol), 9-(4-hydroxy)phenylimino-4,5-diazafluorene (1,162 mg, 4.26 mmol), and K₂CO₃ (623 mg, 4.51 mmol) in DMF (20 mL) was heated to 80 °C for 24 h under nitrogen atmosphere. The solution was poured into 200 mL of water after cooling down to room temperature, and a red precipitate which formed was collected by filtration. The crude product was chromatographed on silica, being eluted first with CH₂Cl₂-ethyl acetate (2:1, v/v) to remove impurities, then with CH₂Cl₂-EtOH (20:1, v/v) to afford the desired product as a red solid. Yield: 193 mg (16.9 %). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.43$ (s, 3H), 4.38 (s, 6H), 4.55 (s, 2H), 6.94–7.12 (m, 18H), 7.29 (d, J = 7.5 Hz, 2H), 7.39 (dd, J = 8.1, 5.4 Hz, 3H), 7.80 (d, J = 8.1 Hz, 2H), 8.24 (dd, J = 7.8, 1.2 Hz, 3H), 8.66 (dd, J = 4.8, 1.2 Hz, 3H), 8.80 (dd, J = 6.3, 1.5 Hz, 3H). ESI-HRMS: m/z 1,056.3291 (M + H)⁺, 1,078.3136 (M + Na)⁺. Found: C, 71.3; H, 4.1; N, 11.7. Calcd for C₆₃H₄₅N₉O₆S: C, 71.6; H, 4.3; N, 11.9.

Synthesis of 1,1'-di[4-(4,5-diazafluoren-9ylimino)phenoxymethyl]-1'',1'''-di[2-(4,5-diazafluoren-9-ylimino)phenoxymethyl]-methane (L¹)

A mixture of compound 1 (641 mg, 0.67 mmol), 9-(2hydroxy)phenylimino-4,5-diazafluorene (613 mg, 2.25 mmol), and K₂CO₃ (330 mg, 2.39 mmol) in DMF (50 mL) was heated to 90 °C for 72 h under nitrogen atmosphere. The solution was poured into 500 mL of water after cooling down to room temperature, and a red precipitate which formed was collected by filtration. The crude product was purified twice by column chromatography on silica, being eluted with CH₂Cl₂-EtOH (20:1, v/v) to afford the desired product as a red solid. Yield: 202 mg (26.0 %). ¹H NMR (400 MHz, CDCl₃): $\delta = 3.66$ (s, 4H), 3.99 (s, 4H), 6.52 (d, J = 8.4 Hz, 4H), 6.75 (d, J = 7.6 Hz, 2H), 6.81–6.85 (m, 6H), 6.98-7.02 (m, 10H), 7.04-7.08 (m, 2H), 7.33 (dd, J = 7.6, 5.2 Hz, 2H), 7.41 (dd, J = 7.6, 5.2 Hz, 2H), 8.16 (dd, J = 7.6, 1.2 Hz, 2H), 8.26 (dd, J = 7.6, 1.2 Hz, 2H),8.51 (dd, J = 7.6, 1.2 Hz, 2H), 8.67 (dd, J = 4.0, 2.4 Hz, 2H), 8.75 (dd, J = 4.8, 1.6 Hz, 2H), 8.81 (dd, J = 4.8, 1.6 Hz, 2H). ESI-MS: m/z 1,157.4 (M + H)⁺. Found: C, 75.6; H, 4.1; N, 14.3. Calcd for C₇₃H₄₈N₁₂O₄: C, 75.8; H, 4.2; N, 14.5.

Synthesis of 1,1',1''-tris[4-(4,5-diazafluoren-9ylimino)phenoxymethyl]-1'''-[2-(4,5-diazafluoren-9ylimino)phenoxymethyl]-methane (L²)

L² was prepared by the same procedure as that described for L¹, except compound 2 (672 mg, 0.58 mmol) was used instead of compound 1 to react with 9-(2-hydroxy)phenylimino-4,5-diazafluorene (293 mg, 1.08 mmol). Yield: 281 mg (38.2 %) of a red solid. ¹H NMR (400 MHz, CDCl₃): δ = 4.12 (s, 6H), 4.47 (s, 2H), 6.81–6.84 (m, 6H), 6.88–6.93 (m, 7H), 7.02–7.05 (m, 4H), 7.06–7.11 (m, 5H), 7.22–7.24 (m, 1H), 7.29–7.32 (m, 2H), 7.40 (dd, *J* = 7.6, 4.8 Hz, 3H), 8.22 (dd, *J* = 7.6, 1.6 Hz, 1H), 8.25 (dd, *J* = 7.6, 1.6 Hz, 3H), 8.55 (dd, *J* = 5.2, 1.6 Hz, 1H), 8.66 (dd, *J* = 4.8, 1.3 Hz, 3H), 8.72 (dd, *J* = 5.2, 1.6 Hz, 1H), 8.81 (dd, *J* = 5.2, 1.6 Hz, 3H). ESI–MS: m/z 1,157.4 (M + H)⁺. Found: C, 75.5; H, 4.0; N, 14.3. Calcd for C₇₃H₄₈N₁₂O₄: C, 75.8; H, 4.2; N, 14.5.

Synthesis of $[(bpy)_8Ru_4(L^1)](PF_6)_8$

A mixture of ligand L1 (79 mg, 0.07 mmol) and Ru-(bpy)₂Cl₂·2H₂O (187 mg, 0.36 mmol) in 2-methoxyethanol (50 mL) was heated to 120 °C for 12 h under nitrogen to give a clear deep red solution, and then the solvent was evaporated under reduced pressure. The residue was purified twice by column chromatography on alumina, being eluted first with CH₃CN-EtOH (5:1, v/v) to remove impurities, then with EtOH to afford the complex $[(bpy)_{8}Ru_{4}(L^{1})]Cl_{8}$. This complex was dissolved in the minimum amount of water followed by dropwise addition of saturated aqueous NH₄PF₆ until no more precipitate formed. The precipitate was recrystallized from CH₃CN-Et₂O mixture (vapor diffusion method) to afford a red solid. Yield: 96 mg (35.4 %). ¹H NMR (400 MHz, DMSO d_6): $\delta = 4.09$ (s, 8H), 6.99–7.04 (m, 16H), 7.07–7.12 (m, 4H), 7.54–7.65 (m, 24H), 7.77 (d, J = 4.8 Hz, 4H), 7.83-7.86 (m, 8H), 8.03-8.08 (m, 4H), 8.16-8.20 (m, 24H), 8.34-8.41 (m, 4H), 8.83 (s, 8H), 8.85 (s, 8H). ESI-MS: m/z 848.2 $(M-4PF_6)^{4+}$, 649.3 $(M-5PF_6)^{5+}$. Found: C, 46.2; H, 2.7; N, 9.7. Calcd for C₁₅₃H₁₁₂F₄₈N₂₈O₄P₈Ru₄: C, 46.3; H, 2.8; N, 9.9.

Synthesis of $[(bpy)_8Ru_4(L^2)](PF_6)_8$

[(bpy)₈Ru₄(L²)](PF₆)₈ was prepared by the same procedure as that described for [(bpy)₈Ru₄(L¹)](PF₆)₈, except L² (85 mg, 0.07 mmol) was used instead of L¹ to react with Ru(bpy)₂Cl₂·2H₂O (191 mg, 0.37 mmol). Yield: 127 mg (43.5 %) of a red solid. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 4.08$ (s, 8H), 7.04–7.22 (m, 12H), 7.32–7.44 (m, 8H), 7.55–7.62 (m, 20H), 7.76 (d, J = 4.8 Hz, 6H), 7.85 (d, $J = 5.6 \text{ Hz}, 6\text{H}, 7.88 \text{ (d, } J = 5.6 \text{ Hz}, 6\text{H}, 8.17 \text{ (d, } J = 4.8 \text{ Hz}, 3\text{H}), 8.19-8.35 \text{ (m, 18H)}, 8.29 \text{ (d, } J = 7.6 \text{ Hz}, 3\text{H}), 8.38-8.45 \text{ (m, 6H)}, 8.82-8.86 \text{ (m, 16H)}. \text{ ESI-MS: m/z} 1,179.0 \text{ (M}-3\text{PF}_6)^{3+}, 847.8 \text{ (M}-4\text{PF}_6)^{4+}. \text{ Found: C}, 46.1; \text{ H}, 2.6; \text{ N}, 9.7. \text{ Calcd for } \text{C}_{153}\text{H}_{112}\text{F}_{48}\text{N}_{28}\text{O}_4\text{P}_8\text{Ru}_4\text{: C}, 46.3; \text{ H}, 2.8; \text{ N}, 9.9.$

Results and discussion

Synthesis

The procedure of the synthesis of the two tetrapodal ligands and their Ru(II) complexes is presented in Scheme 1. Starting compounds 9-(4-hydroxy)phenylimino-4,5-diazafluorene and 9-(2-hydroxy)phenylimino-4,5-diazafluorene were prepared from 4,5-diazafluoren-9-one according to the literature procedure [15]. Tetrapodal ligands L^1 and L^2 have been prepared by two steps, 9-(4hydroxy)phenylimino-4,5-diazafluorene reacted with pentaerythrityl tetratosylate for 24 h at different molar ratio affording compounds 1 and 2, respectively. Compounds 1 and 2 reacted with 9-(2-hydroxy)phenylimino-4,5-diazafluorene in DMF for 72 h yielding ligands L^1 and L^2 , respectively. Both Ru(II) complexes were obtained by refluxing Ru(bpy)₂Cl₂·2H₂O and the ligand in 2-methoxyethanol solution and isolated as their PF_6^- salts in good yields. Both complexes were characterized by elemental analyses, ESI-MS, and ¹H NMR spectroscopy.

Absorption spectra

The UV-Vis absorption spectra of both complexes were recorded in CH₃CN solution, at a working concentration of 5×10^{-6} mol/L. The energy maxima and absorption coefficients are summarized in Table 1, and the spectra are shown in Fig. 1. Assignments of the absorption bands of the complexes have been made on the basis of the welldocumented optical transitions of analogous Ru(II) polypyridyl complexes [19-21]. The absorption spectra of both complexes show three well-resolved bands. Those at ca. 286 and 238 nm can be assigned to intraligand $\pi \to \pi^*$ transitions centered on the 2,2'-bipyridine. The lowest energy band at around 443 nm is attributed to an MLCT, $d\pi \rightarrow \pi^*$ transition, which consists of overlapping $d\pi(Ru) \rightarrow \pi^*(bpy)$ and $d\pi(Ru) \rightarrow \pi^*(L)$ components. The lowered symmetry removes the degeneracy of the π^* levels, which results in the appearance of a nonsymmetric MLCT band. The MLCT absorption maxima of the complexes are blue-shifted by about 7 nm compared with that of $Ru(bpy)_3^{2+}$ [22], suggesting that the donor properties of ligands L^1 and L^2 are weaker than those of 2,2'-bipyridine.

Scheme 1 Synthesis of tetrapodal ligands L^{1-2} and their Ru(II) complexes

Table 1 Photophysical and electrochemical data of Ru(II) polypyridyl complexes

Complex	Absorption $\lambda_{max} \ (nm) \ (10^4 \epsilon, \ M^{-1} \ cm^{-1})$	Emission ^a		$E_{1/2}, V (\Delta E_p, mV)^b$	
		λ_{max} (nm)	Φ	Oxidation	Reduction
$\left[(bpy)_8Ru_4(L^1)\right]^{8+}$	444 (7.04)	574	0.158	1.33 (59)	-0.86^{irr}
	286 (26.19)				-1.42 (96)
	238 (21.46)				-1.68 (92)
$[(bpy)_8Ru_4(L^2)]^{8+}$	443 (6.70)	574	0.152	1.34 (65)	-0.85^{irr}
	286 (25.21)				-1.41 (98)
	238 (21.93)				-1.69 (95)

^a The emission quantum yields are calculated relative to $Ru(bpy)_3^{2+}$ ($\Phi_{std} = 0.376$) in EtOH:MeOH (4:1, v/v) glassy matrix at 77 K, the uncertainty in quantum yields is 15 %

^b Oxidation potentials are recorded in 0.1 mol/L TBAP/CH₃CN, reduction potentials are recorded in 0.1 mol/L TBAP/DMF and potentials are given versus SCE, scan rate = 200 mV/s and ΔE_p is the difference between the anodic and cathodic waves

Fig. 1 Absorption spectra of complexes $[(bpy)_8Ru_4(L^1)](PF_6)_8$ (*black*) and $[(bpy)_8Ru_4(L^2)](PF_6)_8$ (*red*) in CH₃CN solution at room temperature. (Color figure online)

Emission spectra

Upon excitation into the MLCT band, both Ru(II) complexes are nonemissive in CH₃CN solution at room temperature. The emission properties of Ru(II) polypyridyl complexes generally follow the energy gap law [23–25]. The ³MLCT state is reasonably long-lived and is thought to be deactivated by three processes: radiative decay, k_r , radiationless decay, k_{nr} , and thermal population of a higher lying excited state, $k_0 \exp(-\Delta E/RT)$. For the last process, the thermally accessible excited state has been designated as a ligand field excited state. The energy of the ligand field state should depend on the ligand field strength. The emission intensities follow the model shown in Fig. 2 originally proposed by Crosby, Meyer, and others [26–30]. The values of ΔE for the Ru(II) difficult complexes containing diazafluorene are substantially lower than the corresponding value for $Ru(bpy)_3^{2+}$. These results are

Fig. 2 Energy state diagram based on the Crosby-Meyer model

consistent with ligand field theory, since diazafluorenone derivatives are known to be lower than 2,2'-bipyridine in the spectrochemical series [31], hence the ligand field excited state energy will be lowered if 2,2'-bipyridine ligands are replaced by diazafluorenone derivatives. Consequently, population of the ligand field state is very efficient for these complexes, and they are essentially nonemissive at room temperature. However, the energy transfer is inhibited at 77 K, so both complexes show vibrational components similar to that of Ru(bpy)₃²⁺ in EtOH:MeOH (4:1, v/v) glassy matrix at 77 K (Fig. 3) [32, 33]. The complexes (10⁻⁵ mol/L) show characteristic emission at around 574 nm and a shoulder at around 620 nm in EtOH/MeOH (4:1, v/v) glassy matrix at 77 K when excited at 436 nm (Table 1).

Electrochemistry

The electrochemical behaviors of the complexes have been studied in DMF and CH_3CN solutions with 0.1 mol/L TBAP as supporting electrolyte. The reduction waves of

Fig. 3 Emission spectra of complexes $[(bpy)_8Ru_4(L^1)](PF_6)_8$ (*black*) and $[(bpy)_8Ru_4(L^2)](PF_6)_8$ (*red*) in EtOH:MeOH (4:1, v/v) glassy matrix at 77 K. (Color figure online)

the complexes are not well behaved in CH_3CN solution due to adsorption of the reduced species onto the surface of the platinum electrode. In DMF solution, the complexes display clear reduction processes, but do not exhibit the oxidative waves due to the insufficient anodic window of this solvent. Therefore, the oxidation potentials were recorded in CH_3CN solution, and the reduction potentials were recorded in DMF solution (Table 1).

The complex $[(bpy)_8Ru_4(L^1)]^{8+}$ displays a Ru(II)-centered reversible oxidation couple at 1.33 V (Fig. 4a). This potential is slightly more positive (by about 50 mV) than that of $\operatorname{Ru}(\operatorname{bpy})_3^{2+}$ (+1.28 V vs. SCE) [34], but slightly more negative (by about 60 mV) than that of the parent complex $[(bpy)_2Ru(dafone)]^{2+}$ (dafo = 4,5-diazafluoren-9-one) [31], which indicates that the ligand L^1 is a stronger π -acceptor than 2,2'-bipyridine but a weaker π -acceptor than dafone. Complex $[(bpy)_8Ru_4(L^1)]^{8+}$ has four Ru(II) centers; two of one type of coordination environment, whilst the other two are different. The complex shows a single wave in cyclic voltammetry and a single peak without broadening in differential pulse voltammetry (Fig. 4a), which indicates that the small redox potential difference caused by these different coordination environments is not resolved by the electrochemical technique.

Electrochemical studies of both complexes reveal three ligand-centered reductions. A four-electron process for each couple of both complexes has been confirmed by coulometry. The first irreversible reduction wave of complex $[(bpy)_8Ru_4(L^1)]^{8+}$ at -0.86 V shows that this complex is a better electron acceptor than $[Ru(bpy)_3]^{2+}$ by about 0.7 V (Fig. 4b), which is consistent with the addition of four electrons to the LUMO localized on the ligand L^1 to give the species $[(bpy)_2Ru(bpy)_2RuL^{4-}Ru(bpy)_2Ru(bpy)_2]^{4+}$. The second reduction at -1.42 V is located on one of the two 2,2'-bipyridine ligands of each Ru(II) center, thus adding four

Fig. 4 Cyclic voltammetry of complex $[(bpy)_8Ru_4(L^1)](PF_6)_8$ (5 × 10⁻⁴ mol/L), **a** oxidation potential is recorded in 0.1 mol/L TBAP CH₃CN solution, **b** reduction potentials are recorded in 0.1 mol/L TBAP DMF solution

electrons to the LUMO + 1 orbital localized on the 2,2'bipyridine ligand to give the species $[(bpy^-)(bpy)Ru(bpy)(bpy^-)RuL^4-Ru(bpy^-)(bpy)]$. The third reduction at -1.68 V affords the species $[(bpy^-)(bpy^-)(bpy^-)]Ru(bpy^-)(bpy^-)RuL^4-Ru(bpy^-)(bpy^-)Ru(bpy^-)(bpy^-)]^{4-}$. The electrochemical behavior of complex $[(bpy)_8Ru_4(L^2)]^{8+}$ is similar to that of $[(bpy)_8Ru_4(L^1)]^{8+}$.

Conclusion

In summary, two 4,5-diazafluorene-based tetranuclear Ru(II) polypyridyl complexes incorporating two kinds of nonequivalent chelating sites have been synthesized. Both complexes exhibit intense emission at around 574 nm originating from the lowest energy MLCT excited state in EtOH:MeOH (4:1, v/v) glassy matrix at 77 K. Electrochemical studies of both complexes show one single Ru(II)-centered oxidation wave without broadening. The photophysical and electrochemical properties of both complexes are somewhat different to those of Ru(bpy)₃²⁺ due to the different electronic nature of the tetrapodal ligands L¹ and L². Taking into account the tetranuclear structure of both Ru(II) complexes, they have potential

applications in the research area of electron or energy transfer.

Acknowledgments We are grateful to the National Natural Science Foundation of China (21261019) and the Yunnan provincial science and technology department (2010ZC148) for financial support.

References

- 1. Sun Y, Collins SN, Joyce LE, Turro C (2010) Inorg Chem 49:4257–4262
- Webb MI, Chard RA, Al-Jobory YM, Jones MR, Wong EWY, Walsby CJ (2012) Inorg Chem 51:954–966
- 3. Tejeda PP, Gotor RP, Grueso EM (2012) Inorg Chem 51: 10825-10831
- Saita T, Nitadori H, Inagaki A, Akita M (2009) J Organomet Chem 694:3125–3133
- Cavazzini M, Quici S, Scalera C, Puntoriero F, Ganga GL, Campagna S (2009) Inorg Chem 48:8578–8592
- 6. Ventura B, Barbieri A, Barigelletti F, Diring S, Ziessel R (2010) Inorg Chem 49:8333–8346
- 7. Yamamoto Y, Tamaki Y, Yui T, Koike K, Ishitani O (2010) J Am Chem Soc 132:11743–11752
- 8. Fan SH, Wang KZ, Yang WC (2009) Eur J Inorg Chem 4:508–518
- Jurss JW, Concepcion JJ, Butler JM, Omberg KM, Baraldo LM, Thompson DG, Lebeau EL, Hornstein B, Schoonover JR, Jude H, Thompson JD, Dattelbaum DM, Rocha RC, Templeton JL, Meyer TJ (2012) Inorg Chem 51:1345–1358
- Shi S, Liu J, Yao T, Geng X, Jiang L, Yang Q, Cheng L, Ji L (2008) Inorg Chem 47:2910–2912
- Elias B, Herman L, Moucheron C, Mesmaeker AK (2007) Inorg Chem 46:4979–4988
- Chao H, Qiu ZR, Cai LR, Zhang H, Li XY, Wong KS, Ji LN (2003) Inorg Chem 42:8823–8830

- Harriman A, Hissler M, Khatyr A, Ziessel R (2003) Eur J Inorg Chem 2003:955–959
- Henderson LJ, Fronczek FR, Cherry WR (1984) J Am Chem Soc 106:5876–5879
- 15. Liu Q (1998) J Jiangsu Inst Petrochem Technol 10:8-9
- Wacholtz WM, Auerbach RA, Schmehl RH, Ollino M, Cherry WR (1985) Inorg Chem 24:1758–1760
- 17. Sullivan BP, Salmon DJ, Meyer TJ (1978) Inorg Chem 17:3334–3341
- 18. Watts RJ, Crosby GA (1972) J Am Chem Soc 94:2606-2614
- Karlsson S, Modin J, Becker HC, Hammarström L, Grennberg H (2008) Inorg Chem 47:7286–7294
- 20. Bilakhiya AK, Tyagi B, Paul P (2002) Inorg Chem 41:3830-3842
- 21. Onozawa-Komatsuzaki N, Katoh P, Himeda Y, Sugihara H,
- Arakawa H, Kasuga K (2003) Bull Chem Soc Jpn 76:977-984
- 22. Rillema DP, Mack KB (1982) Inorg Chem 21:3849–3854
- Durham B, Caspar JV, Nagle JK, Meyer TJ (1982) J Am Chem Soc 104:4803–4810
- Zambrana JL, Ferloni JEX, Colis JC, Gafney HD (2008) Inorg Chem 47:2–4
- Abrahamsson M, Jäger M, Kumar RJ, Österman T, Persson P, Becker HC, Johansson O, Hammarström L (2008) J Am Chem Soc 130:15533–15542
- 26. Hager GD, Crosby GA (1975) J Am Chem Soc 97:7031-7037
- 27. Hager GD, Watts RJ, Crosby GA (1975) J Am Chem Soc 97:7037–7042
- 28. Hipps KW, Crosby GA (1975) J Am Chem Soc 97:7042-7048
- 29. Meyer TJ (1990) Pure Appl Chem 62:1003-1009
- Barigelletti F, Belser P, von Zelewsky A, Juris A, Balzani V (1986) J Phys Chem 90:5190–5193
- Wang Y, Perez WJ, Zheng GY, Rillema DP (1998) Inorg Chem 37:2051–2059
- 32. Chu BWK, Yam VMW (2001) Inorg Chem 40:3324-3329
- Wang Y, Perez WJ, Zheng GY, Rillema DP, Huber CL (1998) Inorg Chem 37:2227–2234
- Charbonnière LJ, Ziessel RF, Sams CA, Harriman A (2003) Inorg Chem 42:3466–3475