AAC Accepted Manuscript Posted Online 5 June 2017 Antimicrob. Agents Chemother. doi:10.1128/AAC.00689-17 Copyright © 2017 American Society for Microbiology. All Rights Reserved.

> 1 Menoctone resistance in malaria parasites is conferred by M133I mutations in 2 cytochrome b that are transmissible through mosquitos 3 4 Lynn D. Blake^a, Myles E. Johnson^b, Sasha V. Siegel^a, Adonis McQueen^a, Iredia D. 5 Iyamu^c, Abdul Kadar Shaikh^c, Michael W. Shultis^c, Roman Manetsch^{c, d}, and Dennis E. 6 Kyle^{b#} 7 8 9 Department of Molecular Medicine, Morsani College of Medicine, University of South 10 Florida, Tampa, FL^a; Department of Global Health, College of Public Health, University of South Florida, Tampa, FL^b; Department of Chemistry and Chemical Biology, 11 12 Northeastern University, Boston, MA^c; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA^d 13 14 Running Head: Menoctone resistance in malaria 15 16

Downloaded from http://aac.asm.org/ on June 5, 2017 by King's College London

17 #Address correspondence to Dennis E. Kyle, dennis.kyle@uga.edu.

Antimicrobial Agents and

Chemotherapy

22	diminishing arsenal of anti-liver stage compounds sparked our interest in reviving the old
23	and previously abandoned compound menoctone. In support of these studies we
24	developed a new convergent synthesis method that was facile, required fewer steps,
25	produced better yields, and utilized less expensive reagents than the previously published
26	method. Menoctone proved to be highly potent against liver stages of Plasmodium
27	<i>berghei</i> (IC ₅₀ = 0.41 nM) and erythrocytic stages of <i>P. falciparum</i> (113 nM). We selected
28	for resistance to menoctone and found M133I mutations in cytochrome b of both P.
29	falciparum and P. berghei. This same mutation has ben observed previously in
30	atovaquone resistance and we confirmed cross-resistance between menoctone and
31	atovaquone in vitro (P. falciparum) and in vivo (P. berghei). Finally we assessed the
32	transmission potential of menoctone-resistant P. berghei and found the M133I mutant
33	parasites were readily transmitted from mouse to mosquitos and back to mice. In each
34	step M133I mutation in cytochrome b of menoctone resistance was confirmed. In
35	summary this study is the first to show the mechanism of resistance to menoctone and
36	that menoctone and atovaquone resistance is transmissible through mosquitos.

19

20

21

37

38 INTRODUCTION. Despite the decline in deaths caused by malaria in the last 10 years,

ABSTRACT. Malaria related mortality has slowly decreased over the past decade;

chemotherapies that target liver stages and combat the emergence of drug resistance. The

however, eradication of malaria requires the development of new antimalarial

39 the disease threats from infections with *Plasmodium* spp. still pose a significant global

40 public health problem. In 2015 alone, the World Health Organization estimates that

41 malaria caused 214 million clinical cases and 438,000 deaths (1). The increased

42	prevalence of drug resistant parasites and insecticide-resistant vectors continues to drive
43	the need for new treatments for this disease. New drugs are urgently needed and in some
44	cases old compounds with proven antimalarial activity can serve as the basis for lead
45	optimization of new potent antimalarial drugs (2). Menoctone, also known as 2-hydroxy-
46	3-(8-cyclohexyloctyl)-1,-4-naphthoquinone, was first synthesized by Fieser et al in 1948
47	(3). Initial studies with menoctone and analogs thereof found the drug reduced blod stage
48	parasitemia, but failed to prevent recrudescence at safe, non-toxic levels of drug
49	administration (3). In 1965, Howland used rat liver mitochondrial preparations to model
50	how menoctone and various naphthoquinones inhibited the respiratory chain between
51	cytochromes b and $c_1(4)$. Intriguingly, Skelton et al showed that menoctone, when tested
52	in vitro at concentrations of 10 - 25 nM inhibited the nicotinamide adenine dinucleotide
53	(NADH) peroxidase of <i>P. berghei</i> by 90% (5). Specific morphological changes such as
54	swelling and thickening of the mitochondria as well as reduplication of mitochondrial
55	membranes were observed in intraerythrocytic trophozoites of P. berghei infected mice
56	exposed to menoctone (6, 7). Peters et al later reported the ED_{50} and ED_{90} values against
57	the N-strain of <i>P. berghei</i> , as 0.7 and 1.5 mg/kg, respectively, and showed an effective
58	causal prophylactic dose of 1-3 mg/kg against P. yoelii nigeriensis (4). Later studies with
59	menoctone treatment of the pre-erythrocytic stages in rodent malaria models
60	demonstrated efficacy 2.5 times greater than primaquine (8). All of the previous studies
61	lead to menoctone progressing to clinical trials, but disappointingly it proved less
62	effective against P. falciparum as compared to other antimalarials under development at
63	the time. Thereafter, research on menoctone was discontinued due to the low curative
64	activity and the potential for development of resistance reported in <i>P. berghei</i> . When

65	administered daily at doses ranging from 6.25 to 25 mg/kg for five consecutive days, the
66	cure rate for menoctone was low, where only four of 72 mice remained parasite-free for
67	28 days (8). Since resistant parasites were readily selected for, Peters et al created a
68	highly resistant line of <i>P. berghei</i> against menoctone through serial technique (4). The
69	menoctone resistant line was not responsive to challenge by primaquine and cycloguanil;
70	however, remained sensitive to mefloquine, chloroquine, pyrimethamine and sulfadoxine.
71	When tested for transmission blocking activity, menoctone showed no sporontocidal
72	activity as demonstrated by successful oocyst and sporozoite development (9).
73	Although menoctone is not currently used for malaria prevention or treatment, it
74	is an effective treatment at low intravenous and intramuscular doses against Theileria
75	parva, a parasitic protozoan that causes East Coast Fever in cattle (10). Intramuscular
76	doses were preferred over intravenous administration and oral administration proved to
77	be ineffective (11). The efficacy of menoctone against <i>T. parva</i> is quite remarkable, but
78	the complexity of compound synthesis and high manufacturing costs rendered menoctone
79	unmarketable as theileiosis treatment (12).
80	Previous studies with menoctone did not reveal a mechanism of action, although
81	the chemical structure of menoctone reveals a similar core scaffold to atovaquone (Figure
82	1). Atovaquone-proguanil (AP) is a fixed-dose combination antimalarial that is currently
83	used for prophylaxis as well as treatment of <i>Plasmodium falciparum</i> . Atovaquone affects
84	the malaria parasite by binding to the quinol oxidation (Q_0) site of cytochrome b $(cyt b)$ in
85	the mitochondrial respiratory chain. Atovaquone-resistant isolates have been described
86	following atovaquone or AP treatment (13-17). In vitro studies of atovaquone with P.
87	falciparum have selected for point mutations at multiple sites in P. falciparum

cytochrome b (pfcytb); however, the predominant clinical resistance mutation seen in
patient isolates is Y268S. In contrast, *in vivo* studies with *P. berghei* have selected for
mutations in *pbcytb*, specifically M133I, a mutation commonly seen with *P. falciparum in vitro* resistance selections (18, 19).

Since menoctone is structurally similar to atovaquone and displays activity against liver stages of *P. berghei* (8), we hypothesize that menoctone shares a similar target as atovaquone and may generate similar mutations in *pfcytb* that confer crossresistance to atovaquone. In this study, we generated menoctone resistant parasites in both *P. berghei* and *P. falciparum* and sequenced *cytb* to better understand the mechanism(s) of resistance to menoctone and potential for this compound to serve as a lead for antimalarial drug development. Downloaded from http://aac.asm.org/ on June 5, 2017 by King's College London

99

100 MATERIALS AND METHODS

101 Parasites and animals. We used P. falciparum (W2) that was cloned from an Indochina 102 isolate by Oduola et al in 1988 (20). Human O^+ red blood cells and plasma for culturing 103 P. falciparum were obtained from Interstate Blood Bank (Memphis, TN). All in vitro 104 cultured parasites were maintained according to previously published methods (21). 105 Menoctone resistant P. berghei MEN (MRA-414) was obtained from Malaria 106 Research and Reference Reagent Resource Center (MR4); the line was originally 107 generated by Professor Wallace Peters (22, 23). P. berghei 1052 Cl1 (Pb 1052 Cl1) was 108 obtained from C.J. Janse at Leiden University and was used for menoctone resistance 109 selections. This line was generated from the reference ANKA clone c1115cyl and

110 expresses both green fluorescent protein (GFP) and firefly luciferase (24). Pb 1052 Cl1

111	has two copies of the GFP-luc incorporated into its genome. One copy is regulated by a
112	constitutively expressed <i>eef1aa</i> promoter, and the other is an <i>ama1</i> promoter (24, 25).
113	All mice used in these experiments were female Balb/C mice (average weight was
114	approximately 20g) obtained from Harlan/EnVigo (Indianapolis, IN) and from Charles
115	River (Wilmington, MA). Rodent malaria parasites were monitored via modified Giemsa
116	stained blood from tail vein smears, and parasitemia was determined via light
117	microscopy. Parasites were passaged by removing blood via cardiac venipuncture and
118	inoculating the intraperitoneal cavity of a naïve mouse with parasite infected blood. Mice
119	were humanely euthanized when parasitemia reached 40% or the animal showed severe
120	symptoms of malaria. This study was conducted in compliance with the Guide for the
121	Care and Use of Laboratory Animals of the National Research Council for the National
122	Academies and the University of South Florida Institutional Animal Care and Use
123	Committee approved the animal use protocols.
124	Drugs and chemicals. Atovaquone was obtained from Sigma Aldrich (St. Louis, MO).
125	Menoctone was not commercially available at reasonable costs and the published
126	synthesis methods required improvement, therefore a new method was devised and is
127	described herein.
128	Susceptibility assessment of <i>P. berghei</i> liver stages in vitro.
129	Mosquito infections and sporozoite isolation. Mice were infected using previously
130	described methods above. When parasites reached >4% parasitemia, mice were
131	anesthetized using ketamine (100 mg/kg) and xylazene (10 mg/kg) and placed on cartons
132	containing 100 naïve female, 3-4 day old Anopheles stephensi. Mosquitos fed for 25
133	minutes and were maintained on 10% sucrose ad libitum inside environmental chambers

136	glands were dissected and sporozoites we
137	Liver stage drug susceptibility assay. Hep
138	black 384-well collagen coated plates wit
139	Franklin Lakes, NJ). Cells were seeded u
140	(Tecan Group Ltd, Männedorf, Switzerla
141	37°C in 5% mixed gas humidified incuba
142	Minimum Essential Medium, supplement
143	streptomycin, and 1% L-glutamine. Mosc
144	above, and 4,000 sporozoites were added
145	three hours and then media was removed
146	prepared were added to the respective we
147	lysed the cells with 5 μ l of Promega Cell
148	Luciferase Assay Reagent (Promega, Ma
149	lysates was quantified by using the Perkin
150	MA). An IC ₅₀ dose response curve was g
151	(GraphPad Software, Inc., La Jolla, CA)

Antimicrobial Agents and

Chemotherapy

135 through the visualization of oocysts on the midgut. On day 21 PE, infected salivary ere isolated and counted. pG2 cells (17,500 cells/well) were seeded in th optically clear bottoms (Becton Dickson, sing the Tecan Freedom Evo robotic system nd) at 50 µl per well and were maintained at tors. Complete media consisted of Eagle's ed with 10% fetal bovine serum, 1% penicillinquito dissections were harvested as described to each well. Plates were incubated at 37°C for and serially diluted drugs that were previously ells (26). After 44-hour incubation period we Lysis Reagent Buffer and added 20 µl Promega dison, WI). Luciferase activity in parasite n Elmer EnVision (Perkin Elmer, Waltham, enerated from this data in GraphPad Prism to determine the efficacy of drugs against liver 152 stage parasites. 153 P. falciparum asexual blood stage susceptibility. Parasitemia was cultured and allowed 154 to grow to approximately 5% parasitemia where it was then synchronized at ring stages 155 by using sorbitol as previously described (27). Drug dilutions were prepared in 96-well

at 22°C. On day 10 post-exposure (PE), 50 mosquitoes were checked for infection

156 plates and were tested in duplicate using a 1:3 dilution series with a starting concentration

7

157	of 10 $\mu g/mL$ for menoctone and 62.5 ng/mL for atovaquone. Drugs were allowed to act
158	on parasite development for 48 hours. [³ H]hypoxanthine was diluted 1:20 and added at 10
159	µl per well to the whole plate. Plates were placed into a specially contained incubator
160	reserved only for hypoxanthine treated plates for another 24 hours. Plates were then
161	removed and placed in an -80°C freezer for an additional 24 hours. Cells were harvested
162	using the Perkin Elmer MicroBeta FilterMate-96 Harvester (Perkin Elmer, Waltham,
163	MA). We used the TopCount Luminometer (Perkin Elmer, Waltham, MA) to read the
164	plates and used the data to determine the fifty percent inhibition concentration (IC_{50}) (28).
165	Selection of menoctone resistance in <i>P. falciparum in vitro</i> and mutation detection.
166	W2 menoctone resistance selection. Parasite line W2 was grown to 10% parasitemia, then
167	10^8 parasites were seeded in fresh parasite culture media containing ~10x IC ₅₀
168	concentration of menoctone (1.5 μ M). Media was changed with fresh menoctone and
169	blood smears were made twice per week, with fresh erythrocytes added as needed.
170	Cultures were split 1:3 every 10 days, and cultured until parasite recovery was observed
171	(2% parasitemia) in presence of menoctone.
172	DNA extraction. Parasite genomic DNA extraction was performed with an initial lysis
173	step in 1x PBS+0.01% saponin, followed by extraction using the Qiagen MiniBlood Prep
174	Kit according to manufacturer's instructions. Genomic DNA (gDNA) was assessed for
175	concentration and purity on a NanoDrop spectrophotometer.
176	PCR Amplification and sequencing of Pf-cytochrome b. PCR primers were designed for
177	amplification based on the annotated P. falciparum 3D7 cytochrome b sequence
178	(MAL_MITO_3) on Plasmodb.org v27 as follows: Pf-cytb-PCRFOR: 5'
179	TGCCTAGACGTATTCCTG—3' and Pf-cytb-PCRREV 5'—

180	GAAGCATCCATCTACAGC—3'. PCRs were amplified using Phusion HS II High-
181	Fidelity PCR Master Mix (ThermoFisher Scientific) with ~20 ng parasite gDNA
182	template, according to manufacturer's instructions with the following program: 98°C-
183	30s initial denaturation step, then 35 cycles: (98°C—10s, 54°C—40s, 72°C—30s) and a
184	final extension of 72°C for 7 min. PCR products were confirmed as a single, discrete
185	band of 1,382 bp length on a 1% agarose gel then subsequently purified using the Qiagen
186	PCR Purification Kit according to manufacturer's instructions. Purified PCR products
187	were prepared for Sanger sequencing service at Genewiz (Genewiz, South Plainfield, NJ)
188	using the following sequencing primers: pf-cytb-SEQFOR1: 5'
189	GTGGAGGATATACTGTGAGTG—3', pf-cytb-SEQFOR2: 5'—
190	TACAGCTCCCAAGCAAAC—3', pf-cytb-SEQREV1: 5'—
191	GACATAACCAACGAAAGCAG—3', and pf-cytb-SEQREV2: 5'—
192	GTTCCGCTCAATACTCAG—3'. PCR primers Pf-cytb-PCRFOR and Pf-cytb-
193	PCRREV were also used for sequencing purposes.
194	Analysis of Pf-cytochrome b sequences for mutation detection. Sequence files were
195	aligned to <i>P. falciparum</i> 3D7 cytochrome <i>b</i> sequence (MAL_MITO_3) using open source
196	software: A Plasmid Editor (ApE v2.0.49). Trace files were checked at all mutant
197	positions to validate any potential mutations found.
198	
199	Generation of menoctone resistance in P. berghei and mutation detection. We used
200	similar methods W. Peters used to generate a new menoctone resistant parasite from the

- 201 well-characterized P. berghei luc ANKA (4). Infected mice were treated with increasing
- 202 levels of menoctone at doses of 3 mg/kg, 30 mg/kg, and 300 mg/kg. Recrudescent

Antimicrobial Agents and Chemotherapy

203	parasites were inoculated into malaria naïve mice, and subsequent treatment with higher
204	doses of drug led to resistance at a dose of 300 mg/kg. Resistance was confirmed by the
205	lack of response to subsequent inoculation of high doses of menoctone. A maintenance
206	dose of 300 mg/kg was used to maintain a high level of parasite resistance.
207	DNA extraction. Parasite genotyping was performed by sequencing cardiac venipuncture
208	blood containing parasites at high parasitemias (>40%) that were majority schizonts.
209	Murine leukocytes were removed by treating the blood with Ficoll-Paque PLUS (GE
210	Healthcare Life Sciences, Waltham, MA). Parasite genomic DNA extraction was then
211	performed as described earlier.
212	PCR Amplification and sequencing of Pb-cytochrome b. PCR primers were designed for
213	amplification based on the annotated P. berghei cytochrome b sequence
214	(PBANKA_MITO1900) on Plasmodb.org v27 as follows: Pb-cytb-PCRFOR: 5'-
215	TGCCTAGACGTATTCCTG—3' and Pb-cytb-PCRREV 5'—
216	GCTGAGCATGTTAACTCG—3'. PCRs were amplified similarly with the following
217	program: 98°C—30s initial denaturation step, 35 cycles: (98°C—5s, 54°C—10s, 72°C—
218	39s) and a final extension of 72°C for 7 min. PCR products were confirmed as a single,
219	discrete band of 1,307 bp length on a 1% agarose gel then subsequently purified and
220	sequenced as described earlier, using the following primers: pb-cytb-SEQFOR1: 5'-
221	GTGGAGGATACACTGTTAGTG—3', pb-cytb-SEQREV1: 5'—
222	CATAACCTATAAAAGC—3', pb-cytb-SEQREV2: 5'—
223	GTTTGCTTGGGAGCTGTA—3'. PCR primers Pb-cytb-PCRFOR and Pb-cytb-

224 PCRREV were also used for sequencing purposes.

Antimicrobial Agents and

Chemotherapy

242

243 P. berghei MEN (MRA-414) assessment of atovaquone cross-resistance. Mice were 244 infected with P. berghei MEN and allowed to grow to >4% parasitemia at which point 245 they were challenged with atovaquone at 3 mg/kg, 30 mg/kg and 100 mg/kg. Subsequent 246 administration of atovaquone at 100 mg/kg was used as confirmation of atovaquone 247 resistance.

227 previously.

228 In vivo antimalarial efficacy against blood stages of P. berghei life cycle (modified

229 **Thompson test).** In breif, five mice were randomly assigned to each dosage group. P.

berghei luc ANKA, as well as, *Pb* MEN-R were inoculated at $2x10^6$ parasites per mouse. 230

231 Menoctone was administered orally at 3 mg/kg, 30 mg/kg and 300 mg/kg and atovaquone

232 was administered at 1 mg/kg, 3 mg/kg and 10 mg/kg. Both drugs were suspended in

233 polyethylene glycol 400 (PEG 400) (Sigma Aldrich, St. Louis, MO) and administered via 234 oral gavage at 100 µl per mouse. Dosing by oral gavage occurred once daily for 3 days on 235 days 6 to 8. Blood films were made on days 3, 5, 6, 9, 12, 15, 18, 21, 24, 27, and 30 post-

236 infection from tail vein blood to monitor parasite recrudescence.

237 Elucidation of mutation selection by atoyaquone or menoctone. Sensitive and

238 resistant parasites were inoculated into mice and challenged with either atovaquone or 239 menoctone at different concentrations. Atovaquone was administered to mice at dosages 240 of 1 mg/kg, 3 mg/kg, and 10 mg/kg, and menoctone was given at 3 mg/kg, 30 mg/kg, and 241 300 mg/kg respectively. Parasitized blood was then removed and sequenced for cytb

mutations.

248	Transmission of menoctone resistant P. berghei to mosquitoes. Resistant parasites
249	were passaged and maintained using methods described above. Once the parasitemia
250	reached 3-5%, the mice were anesthetized with a solution of xylazene (10 mg/kg),
251	ketamine (100 mg/kg), then placed on cartons of 200, 3-4 day old, naïve female
252	Anopheles stephensi mosquitoes. Mosquitoes were allowed to feed for approximately 25
253	minutes and maintained on 10% sucrose inside environmental chambers at 22°C. On day
254	10 PE, 50 mosquitos were checked for infection through the visualization of oocysts on
255	the midgut wall. Oocysts were scored based on two different characteristics: the
256	percentage of midguts infected with oocysts and the quality of infection. The percentage
257	of midguts infected was calculated by dividing the number of infected midguts by the
258	total number of midguts dissected, then multiplying the result by 100. Each midgut was
259	also graded by the following scale to determine the quality of infection: $0-50$ oocysts = +;
260	51-100 oocysts = ++; 101-150 oocysts = +++, 151-200 oocysts = ++++; and greater than
261	200 oocysts in a midgut = +++++. On day 21 PE, the salivary glands were dissected from
262	mosquitoes to determine the presence sporozoites.
263	P. berghei luc menoctone resistant sporozoite liver and blood stage infection. On day
264	21 PE, we harvested sporozoites and infected five female mice with 10,000 sporozoites
265	per mouse via tail vein injection. Once parasites were visualized in peripheral blood
266	smears, two of the five mice were treated with 300 mg/kg of menoctone to confirm
267	parasite resistance, while the remaining three were kept as controls. Cardiac venipuncture
268	was used to collect blood from all five mice and leukocytes were removed prior to
269	parasite genotyping.
270	

271 **RESULTS**

272	Synthesis of menoctone. Although first identified as an antimalarial by Fieser and co-
273	workers in collaboration with Sterling-Winthrop Research Institute in 1948 (29), it wasn't
274	until 1969 that Lorenz patented a synthetic route for menoctone starting from 5-
275	phenylvaleric acid (30). Dolan et al reported that this synthesis had many shortcomings
276	requiring costly raw materials, harsh reaction conditions, and some low yielding synthetic
277	steps (10). In an effort to design a facile synthetic route for menoctone, we developed a
278	novel convergent approach involving modern and classical transformations (Figure 1).
279	Isochroman-1,4-dione 1 was synthesized from 2-acetylbenzoic acid, which was first
280	brominated and then cyclized. The copper mediated alkane synthesis of 1-bromo-7-
281	chloroheptane and allylmagnesium bromide afforded chloroalkene 2 (31). Substitution of
282	the chloride with iodide via a Finkelstein reaction afforded iodoalkene 3 that was then
283	treated with cyclohexylmagnesium bromide in another copper mediated alkane synthesis
284	to afford the allylcyclohexane 4. Lemieux-Johnson oxidation of allyl 4 yielded aldehyde
285	5. Condensation of aldehyde 5 with isochroman-1,4-dione 1 afforded 3-substituted
286	isochroman-1,4-dione 6, which was rearranged to menoctone using sodium methoxide in
287	methanol (Figure 1). This new synthetic route was facile, required fewer steps, produced
288	better yields, and utilized less expensive reagents than the previously published method.
289	Efficacy of menoctone against exoerythrocytic and blood stage parasites. Previous
290	studies demonstrated menoctone is efficacious against asexual blood stage as well as liver
291	stage parasites, yet these studies were done in vivo before the advent of quantitative in
292	vitro susceptibility assays. Therefore we first profiled the activity of menoctone against
293	asexual blood stages of <i>P. falciparum in vitro</i> . The menoctone IC ₅₀ was 113 nM against

Online

294	W2, a clone that is resistant to chloroquine, pyrimethamine, and sulfadoxine. Next we
295	assessed the activity of menoctone against P. berghei liver stages infecting HepG2
296	hepatoma cells in vitro. In these assays menoctone proved to be extremely efficacious
297	$(IC_{50} = 0.41 \text{ nM})$ and was approximately three fold more potent than atovaquone (Figure
298	2).

299 Menoctone resistance selection in P. falciparum. Based upon structural similarity 300 between menoctone and known mitochondrial electron chain inhibitors, we hypothesized 301 that cytochrome *bc1* is the site of action of menoctone. A common way to identify 302 mechanisms of action is the selection of resistance to an inhibitor followed by sequence of the putative target or whole genome. We used standard methods to select for resistance 303 to menoctone in *P. falciparum* (W2). We grew 10^8 asexual erythrocytic stage parasites 304 305 and exposed them to constant menoctone drug pressure (1.5 μ M). Initial exposure of W2 306 to menoctone resulted in pyknotic forms and parasites outside of erythrocytes after 48 307 hours, followed by a gradual reduction of parasites observed in thin smears. However, on 308 day 23 of menoctone exposure, parasites recovered to healthy morphology and reached 309 2% parasitemia, which were expanded further under continued menoctone drug pressure. 310 We sequenced the parasites to identify mutations in cytochrome b and found the 311 menoctone resistant progeny had a non-synonymous SNP (G to C at nucleotide 399) that 312 resulted in a M133I mutation (Table 1). 313 Menoctone resistance selection in *P. berghei*. In previous studies Wallace Peters and 314 colleagues found that resistance to menoctone was selected rapidly in *P. berghei in vivo* 315 (4); however, these parasites have not been fully characterized or genotyped. Therefore,

Downloaded from http://aac.asm.org/ on June 5, 2017 by King's College London

316 we aimed to select for resistance in *P. berghei luc* ANKA by using a stepwise selection

3	17	method. First we infected mice with asexual erythrocytic stages and treated with a single
3	18	dose (3 mg/kg) of menoctone and no decrease in parasitemia was observed post treatment
3	19	(Figure 3A). Blood from these mice was then inoculated into two malaria naïve mice and
32	20	once patent infections ensued, we treated with a single dose of menoctone (30 mg/kg). In
32	21	these mice parasitemia decreased to <1% three days post treatment, but recrudesced to
32	22	approximately 30% six days later. Once again blood from the recrudescent infections
32	23	(day 6) were inoculated into malaria naïve mice and the treatment dose was escalated to
32	24	300 mg/kg. As noted in Figure 3C, parasitemia reduced rapidly after treatment, yet
32	25	recrudesced a few days later. Parasitemia in these mice was low so we immediately sub-
32	26	inoculated the infected blood into more malaria naïve mice and repeated the single high
32	27	dose of menoctone (300 mg/kg). In these mice parasitemia continued to increase at a
32	28	rapid rate despite treatment, thus indicating selection of highly resistant parasites to
32	29	menoctone. The menoctone resistant P. berghei luc ANKA parasite is hereafter referred
33	30	to as <i>Pb</i> MEN-R (Figure 3).
33	31	Confirmation of menoctone resistance in Pb MEN-R infected mice. Next we aimed
33	32	to assess the efficacy of menoctone and atovaquone in the standard Thompson efficacy
33	33	assay. In these studies, mice were inoculated with parasites and after parasitemia reached
33	34	\sim 1% mice were treated once a day for three days with drug. Efficacy was assessed by
33	35	reduction of parasitemia on day 9 (one-day post drug treatment) as well as cure rate
33	36	(survival to day 30 of the study). The doses used were 1, 3, and 10 mg/kg for atovaquone
33	37	and 3, 30, and 300 mg/kg for menoctone. In these studies, we confirmed that atovaquone
33	38	was more efficacious than menoctone against asexual blood stages of P. berghei luc
33	39	ANKA as well as <i>Pb</i> MEN-R. Interestingly there was evidence of atovaquone cross-

348

340 resistance in Pb MEN-R as evidenced by higher survival rates in Pb MEN-R versus Pb 341 ANKA following treatment with atovaquone (Figure 4). These studies confirmed that Pb 342 MEN-R is highly resistant to menoctone when compared to the response of the parental 343 line P. berghei luc ANKA (Figure 4). 344 **Menoctone resistance genotype in** *P. berghei*. Next we compared the cytochrome b 345 genotype of the parent P. berghei luc ANKA line and the menoctone resistant Pb MEN-R 346 progeny. Sanger sequencing revealed the same M133I mutation in Pb MEN-R that we 347 observed in menoctone resistant P. falciparum (W2 MEN-R) (Table S1). The SNP

identified (G to T, nt 399) is located outside of the quinol oxidation site (Table S1) and is 349 the same SNP as observed in previous studies in which atovaquone was used to select for 350 resistance (18). Although we did not have access to the parental line, we obtained the P. 351 berghei MEN (MRA-414) line selected for resistance to menoctone by W. Peters (4) and 352 sequenced cytochrome b. Interestingly in Pb MEN (MRA-414) we observed a G to T

353 mutation at nucleotide position 397 that confers a M133L mutation (Table 1). These data 354 suggest that menoctone resistance is conferred by similar mutations in cytochrome b in 355 both P. berghei and P. falciparum and that these mutations confer cross-resistance with 356 atovaquone.

357 A previous study suggested rapid selection of menoctone resistance in *P. berghei*, 358 therefore we next aimed to evaluate if M133I is readily selected in a single passage. In 359 this study we challenged both sensitive and resistant menoctone parasites to single dose 360 exposures of different doses of menoctone or atovaquone. After one round of atovaquone 361 or menoctone treatment, we found WT cytb in all of the menoctone sensitive parasites.

362

and	
ents o	20
Age	lerd
bia	to t
icro	Che
ntim	
\triangleleft	

363	mutation (Table 1).
364	Assessment of atovaquone cross-resistance on <i>P. berghei</i> MEN resistant parasites.
365	Upon initial treatment with 3 mg/kg of atovaquone, parasitemia decreased to $<1\%$ in Pb
366	MEN infected mice; however, parasites never completely cleared. Parasites recrudesced
367	by day six post-treatment and 10% parasitemia was reestablished by day nine. Blood was
368	passaged into naïve Balb/C mice and a higher dose of 30 mg/kg atovaquone decreased
369	the parasitemia to <1%. Resistant parasite populations recrudesced faster, four days post-
370	treatment when compared to the first drug exposure, 9 days. Again, a higher dose of
371	atovaquone (100 mg/kg) brought the parasitemia down to $<1\%$, and parasites recrudesced
372	by day seven post-treatment. Successive treatment with a high dose of atovaquone (100
373	mg/kg) failed to clear parasites from peripheral blood (Figure 5).
374	Mosquito transmission of menoctone resistance. Recent studies have suggested
374 375	Mosquito transmission of menoctone resistance. Recent studies have suggested resistance to atovaquone that is mediated by cytochrome <i>b</i> mutations is not transmissible
374 375 376	Mosquito transmission of menoctone resistance. Recent studies have suggested resistance to atovaquone that is mediated by cytochrome <i>b</i> mutations is not transmissible through mosquitos (32). We aimed to test that hypothesis with the <i>Pb</i> MEN-R parasites
374375376377	Mosquito transmission of menoctone resistance. Recent studies have suggested resistance to atovaquone that is mediated by cytochrome <i>b</i> mutations is not transmissible through mosquitos (32). We aimed to test that hypothesis with the <i>Pb</i> MEN-R parasites generated in this study. First we inoculated mice ip with <i>Pb</i> MEN-R- or <i>Pb</i> ANKA-
 374 375 376 377 378 	Mosquito transmission of menoctone resistance. Recent studies have suggested resistance to atovaquone that is mediated by cytochrome <i>b</i> mutations is not transmissible through mosquitos (32). We aimed to test that hypothesis with the <i>Pb</i> MEN-R parasites generated in this study. First we inoculated mice ip with <i>Pb</i> MEN-R- or <i>Pb</i> ANKA- infected erythrocytes, collected blood for cytochrome <i>b</i> genotyping, and then fed adult
 374 375 376 377 378 379 	Mosquito transmission of menoctone resistance. Recent studies have suggested resistance to atovaquone that is mediated by cytochrome <i>b</i> mutations is not transmissible through mosquitos (32). We aimed to test that hypothesis with the <i>Pb</i> MEN-R parasites generated in this study. First we inoculated mice ip with <i>Pb</i> MEN-R- or <i>Pb</i> ANKA- infected erythrocytes, collected blood for cytochrome <i>b</i> genotyping, and then fed adult female <i>A. stephensi</i> mosquitos on the infected animals. On day 10, midgut dissections
 374 375 376 377 378 379 380 	Mosquito transmission of menoctone resistance. Recent studies have suggested resistance to atovaquone that is mediated by cytochrome <i>b</i> mutations is not transmissible through mosquitos (32). We aimed to test that hypothesis with the <i>Pb</i> MEN-R parasites generated in this study. First we inoculated mice ip with <i>Pb</i> MEN-R- or <i>Pb</i> ANKA- infected erythrocytes, collected blood for cytochrome <i>b</i> genotyping, and then fed adult female <i>A. stephensi</i> mosquitos on the infected animals. On day 10, midgut dissections revealed 32.6% of mosquito midguts were infected with oocysts of <i>Pb</i> MEN-R (Table 2).
 374 375 376 377 378 379 380 381 	Mosquito transmission of menoctone resistance. Recent studies have suggested resistance to atovaquone that is mediated by cytochrome <i>b</i> mutations is not transmissible through mosquitos (32). We aimed to test that hypothesis with the <i>Pb</i> MEN-R parasites generated in this study. First we inoculated mice ip with <i>Pb</i> MEN-R- or <i>Pb</i> ANKA- infected erythrocytes, collected blood for cytochrome <i>b</i> genotyping, and then fed adult female <i>A. stephensi</i> mosquitos on the infected animals. On day 10, midgut dissections revealed 32.6% of mosquito midguts were infected with oocysts of <i>Pb</i> MEN-R (Table 2). Mercurochrome staining of midguts showed healthy, round oocysts with definitive
 374 375 376 377 378 379 380 381 382 	Mosquito transmission of menoctone resistance. Recent studies have suggested resistance to atovaquone that is mediated by cytochrome <i>b</i> mutations is not transmissible through mosquitos (32). We aimed to test that hypothesis with the <i>Pb</i> MEN-R parasites generated in this study. First we inoculated mice ip with <i>Pb</i> MEN-R- or <i>Pb</i> ANKA- infected erythrocytes, collected blood for cytochrome <i>b</i> genotyping, and then fed adult female <i>A. stephensi</i> mosquitos on the infected animals. On day 10, midgut dissections revealed 32.6% of mosquito midguts were infected with oocysts of <i>Pb</i> MEN-R (Table 2). Mercurochrome staining of midguts showed healthy, round oocysts with definitive borders. Infected midguts contained approximately 130 oocysts and produced a
 374 375 376 377 378 379 380 381 382 383 	Mosquito transmission of menoctone resistance. Recent studies have suggested resistance to atovaquone that is mediated by cytochrome <i>b</i> mutations is not transmissible through mosquitos (32). We aimed to test that hypothesis with the <i>Pb</i> MEN-R parasites generated in this study. First we inoculated mice ip with <i>Pb</i> MEN-R- or <i>Pb</i> ANKA- infected erythrocytes, collected blood for cytochrome <i>b</i> genotyping, and then fed adult female <i>A. stephensi</i> mosquitos on the infected animals. On day 10, midgut dissections revealed 32.6% of mosquito midguts were infected with oocysts of <i>Pb</i> MEN-R (Table 2). Mercurochrome staining of midguts showed healthy, round oocysts with definitive borders. Infected midguts contained approximately 130 oocysts and produced a qualitative score of +++. On day 21 (D21), salivary glands were dissected and yielded

All of the Pb MEN-R parasites, regardless of the treatment maintained the M133I

385	ANKA produced higher rates of oocyst development and sporozoites per mosquito, as
386	compared to Pb MEN-R. Some sporozoites were used to extract gDNA and the rest were
387	used to inoculate iv into five malaria naïve Balb/C mice. Three of the mice infected with
388	Pb MEN-R were not treated with drug and produced patent blood stage infections 12
389	days PI. The two Pb MEN-R infected mice that were treated with menoctone (300
390	mg/kg) demonstrated menoctone resistance as evidenced by continued growth despite
391	treatment with the highest dose of drug.
392	As noted above, at each stage of the study we collected gDNA and then
393	sequenced parasites to elucidate the cytochrome b genotype (Table 2). Genotype analysis
394	confirmed that Pb MEN-R parasites used for mosquito infections had the M133I
395	mutation as did sporozoites dissected from the salivary glands of the mosquitos D21 post
396	feed. Furthermore, the M133I mutation was maintained in subsequent sporozoite
397	challenge and menoctone resistant erythrocytic stages of Pb MEN-R maintained the
398	resistance phenotype and M133I genotype. In simultaneous studies with the parental line
399	$Pb \ luc$ ANKA, we found the WT cytochrome b sequence throughout the transmission
400	study. These studies demonstrate that menoctone and atovaquone resistance associated
401	with M133I mutations in cytochrome b are transmissible through mosquitos. The only
402	differences observed were somewhat lower oocysts and sporozoite yields with Pb MEN-
403	R as compared to Pb luc ANKA (Table 2). Mosquito transmission studies with
404	menoctone resistant <i>P. falciparum</i> were not possible since neither W2 nor W2 MEN-R
405	produce viable gametocytes for mosquito infections.
406	

408 DISCUSSION

409 In previous studies we have shown that old, potent drug scaffolds can be optimized into 410 clinical candidates (2). Menoctone represents an interesting case where there was 411 evidence of efficacy against multiple stages, although much was not known since the 412 drug was abandoned shortly after its discovery. Early studies were limited mostly to in 413 vivo evaluation in rodent models and a few biochemical analyses. In addition the limited 414 reports date back almost 70 years, laying down initial groundwork for determining 415 efficacy, yet the mechanism of action of menoctone against malaria was still not fully 416 understood. Therefore the major aim of this study was to better profile the parasitological 417 efficacy of menoctone and to generate resistance to better understand the mode of action. 418 Limited availability of the compound prompted us to develop a new synthesis of 419 menoctone using contemporary synthetic approaches. In comparison to the original 420 menoctone synthesis (29, 30) our new synthetic route is convergent and requires fewer 421 synthetic steps. At the synthetic scale we prepared menoctone, the overall yield of our 422 synthetic approach also surpassed the overall yield of the original synthesis. Availability 423 of menoctone then enabled us to generate encouraging efficacy data, especially the fact 424 that menoctone is much more active against liver stages of P. berghei than the approved 425 drug atovaquone. We also were successful at generating menoctone resistant malaria 426 parasites that has allowed us to evaluate the possible mechanism(s) of action exhibited by 427 menoctone on Plasmodium species. 428 In this study we demonstrated the high potentcy of menoctone against liver and

429 blood stage parasites. We tested menoctone in a quantitative dose response assay for *P*.

430 *berghei* liver stages and found that menoctone was approximately three fold more potent

than atovaquone. Further investigation with human blood stage parasites demonstrated
nanomolar activity against *P. falciparum* (W2). These results for a putative cytochrome *b*inhibitor are different than most other scaffolds we have studied. Usually potency against
blood and liver stages are more similar in fold differences when compared to atovaquone.
In contrast, menoctone is much more potent against liver stages than blood stages.
Further studies to better understand the <1nM potency of menoctone for liver stages is

437 warranted.

438 In the course of generating the menoctone resistant parasite line Pb MEN-R, we 439 demonstrated that WT P. berghei under menoctone pressure generates a mutation at 440 M133I, which is identical to previous reports of *P. berghei* under atovaquone pressure 441 (18). Since the mutation is located directly outside of the Q_0 site, the known binding site 442 for atovaquone, we believe that menoctone shares the same mechanism of action as 443 atovaquone and that is collapsing the mitochondrial membrane potential and disrupting 444 pyrimidine biosynthesis, leading to parasite death (33). The stability of resistance in Pb445 MEN-R following passage in untreated mice has not been verified beyond three passages, 446 but resistance remains stable following cryopreservation, which is similar to observations 447 of Pb MEN after cryopreservation (4). Pb MEN demonstrated cross-resistance with 448 atovaquone and when sequenced, selected for a point mutation allowing for parasite 449 survival. Interestingly, *Pb* MEN selected for the same guanine to tyrosine nucleotide 450 change as seen for Pb MEN-R, however, the mutation was located at nucleotide position 451 397. This confers an amino acid change from methionine to leucine. Although Pb MEN 452 and Pb MEN-R differ in nucleotide mutations, it is interesting that the resultant amino 453 acids in resistant parasites are isomers of one another. The data suggest the M133I or

454

Antimicrobial Agents and Chemotherapy

455	results show, for the first time, the menoctone resistance genotype and suggest a potential
456	mechanism of action of menoctone.
457	Furthermore, we used a modified Thompson model to demonstrate the in vivo
458	activity of menoctone against sensitive and resistant erythrocytic stages of rodent malaria
459	(34). A summary of the <i>in vivo</i> results is presented in supplementary table 1. In the
460	menoctone drug administered groups, all mice inoculated with sensitive parasites
461	exhibited low survival outcomes, and menoctone administration did not provide
462	protection for mice inoculated with Pb MEN-R. Alternatively, atovaquone at 10 mg/kg, 3
463	mg/kg and 1 mg/kg offered almost complete protection against sensitive P. berghei
464	throughout the 30 day study. It is interesting to note that even though 12 out of the 15
465	mice survived Pb luc ANKA infection after atovaquone administration, some of the
466	surviving mice did present with low levels of parasitemia on day 30 of the study. Overall,
467	atovaquone imparted better protection against both Pb luc ANKA as well as Pb MEN-R
468	when compared to menoctone, and only high dosages of menoctone, 30 mg/kg and 300
469	mg/kg respectively, offer low levels of protection against sensitive P. berghei infection
470	(Figure 4). This data bolsters the initial findings by Fieser et al that menoctone fails to
471	prevent recrudescence of blood stage parasites (3). In addition, our study confirms that
472	menoctone resistance confers cross-resistance to atovaquone, which is characterized by
473	the healthy and uninterrupted growth of Pb MEN-R in the presence of atovaquone in
474	vivo. When comparing menoctone and atovaquone administration against resistant Pb
475	MEN-R, there was a slight delay in parasite recrudescence for atovaquone treated mice,
476	indicating perhaps that atovaquone clears more parasites than menoctone, thus requiring

Downloaded from http://aac.asm.org/ on June 5, 2017 by King's College London

M133L mutations inhibit the activity of menoctone or atovaquone to the binding site. Our

477 more time for the parasites remaining in peripheral circulation to recrudesce. This finding 478 was expected since the parasites were resistant to menoctone at high levels. Our results 479 demonstrate that cross-resistance is clearly present between the two drugs and the 480 mechanism by which atovaquone and menoctone act on the parasite are very similar if 481 not affecting the same target.

482 Previously Coleman et al demonstrated menoctone failure to block transmission 483 and successfully produced both oocysts and sporozoites in P. berghei and P. falciparum 484 at a dose of 100 mg base drug/kg mouse body weight (9). More recently a study has 485 shown that atovaquone resistance can't be transmitted via mosquitoes (32). This study 486 reported that atovaquone drug pressure selects for the M133I cvtb mutation in P. berghei, 487 which is consistent with our data on menoctone drug pressure. Furthermore they found 488 that the P. berghei with M133I or other cytb mutations could not be transmitted through 489 mosquitoes. In contrast, we found that P. berghei MEN-R was easily transmitted through 490 mosquitoes. We confirmed that the M133I mutation existed in the pre-feed Pb MEN-R 491 infected blood that after feeding to An. stephensi produced healthy oocysts and infective 492 sporozoites in the mosquito. Genotyping of the resulting sporozoites uncovered the same 493 M133I point mutation, which we then compared to its sensitive parent parasites, 494 displaying WT cytb. These sporozoites carrying the M133I mutation then successfully 495 produced blood stage infection in the next generation of mice. We confirmed that the 496 mutation is fully transmittable from sporozoites to mice since all sporozoite-infected 497 mice produced blood stage infection and carried the M133I mutation. To further 498 demonstrate that the resistance phenotype was maintained, we administered high doses of Downloaded from http://aac.asm.org/ on June 5, 2017 by King's College London

499 menoctone to two of the sporozoite inoculated mice to observe parasite growth; despite

500	treatment with high dose of menoctone (300 mg/kg) parasitemia continued to rise and
501	healthy parasites propagated despite treatment with menoctone. Parasites from these mice
502	also maintained the M133I mutation. We conclude that menoctone and atovaquone
503	resistant parasites containing the M133I mutation in cytb are indeed transmittable by the
504	mosquito vector. At present we do not understand why P. berghei with M133I mutations
505	were transmitted in our study, but not in the recent study by Goodman et al (32). The
506	difference could be due to inherent transmissibility of the different P. berghei strains or
507	mosquitoes used in the respective studies. Another possibility is that yet-to-be identified
508	mutations in the nuclear genome may contribute to resistance and transmission potential.
509	The transmission potential of parasites resistant to mitochondrial electron chain inhibitors
510	warrants additional studies.
511	The diminishing arsenal of anti-liver stage compounds sparked our interest in
512	reviving the old and previously abandoned compound menoctone. In summary,
513	menoctone is a potent liver stage antimalarial with corresponding erythrocytic stage
514	efficacy. The compound readily selects for <i>cytb</i> M133I mutation in <i>P. falciparum</i> and <i>P.</i>
514 515	efficacy. The compound readily selects for <i>cytb</i> M133I mutation in <i>P. falciparum</i> and <i>P. berghei</i> ; this is the same mutation often selected for under atovaquone drug pressure.
514 515 516	efficacy. The compound readily selects for <i>cytb</i> M133I mutation in <i>P. falciparum</i> and <i>P. berghei</i> ; this is the same mutation often selected for under atovaquone drug pressure. This leads us to hypothesize that menoctone most likely targets the mitochondrial
514 515 516 517	efficacy. The compound readily selects for <i>cytb</i> M133I mutation in <i>P. falciparum</i> and <i>P. berghei</i> ; this is the same mutation often selected for under atovaquone drug pressure. This leads us to hypothesize that menoctone most likely targets the mitochondrial respiration chain of <i>Plasmodium</i> . In these studies, we have demonstrated for the first time
 514 515 516 517 518 	efficacy. The compound readily selects for <i>cytb</i> M133I mutation in <i>P. falciparum</i> and <i>P. berghei</i> ; this is the same mutation often selected for under atovaquone drug pressure. This leads us to hypothesize that menoctone most likely targets the mitochondrial respiration chain of <i>Plasmodium</i> . In these studies, we have demonstrated for the first time that <i>cytb</i> mutations are transmittable from mouse to mosquito to mouse and have
 514 515 516 517 518 519 	efficacy. The compound readily selects for <i>cytb</i> M133I mutation in <i>P. falciparum</i> and <i>P. berghei</i> ; this is the same mutation often selected for under atovaquone drug pressure. This leads us to hypothesize that menoctone most likely targets the mitochondrial respiration chain of <i>Plasmodium</i> . In these studies, we have demonstrated for the first time that <i>cytb</i> mutations are transmittable from mouse to mosquito to mouse and have provided insight to a potential mechanism of action of menoctone. In addition we
 514 515 516 517 518 519 520 	efficacy. The compound readily selects for <i>cytb</i> M133I mutation in <i>P. falciparum</i> and <i>P. berghei</i> ; this is the same mutation often selected for under atovaquone drug pressure. This leads us to hypothesize that menoctone most likely targets the mitochondrial respiration chain of <i>Plasmodium</i> . In these studies, we have demonstrated for the first time that <i>cytb</i> mutations are transmittable from mouse to mosquito to mouse and have provided insight to a potential mechanism of action of menoctone. In addition we developed a new synthesis method for menoctone that could be used in medicinal

- 522 support towards whether menoctone may serve as a lead for novel antimalarial drug
- 523 development.
- 524 Acknowledgements. We thank Dr. Chris Janse for providing the transgenic *P. berghei*
- 525 ANKA *luc* line and Dr. Steven Maher for comments on this manuscript.
- 526 Funding Information. This work was funded by National Institute of Health
- 527 (R01GM097118 and R21AI109530)

REFERENCES

530		
531	1.	WHO. April 2016 2016. Malaria: Fact Sheet.
532		http://www.who.int/mediacentre/factsheets/fs094/en/. Accessed
533	2.	Monastyrskyi A KDE, Manetsch R*. 2014. 4(1H)-Pyridone and 4(1H)-
534		Quinolone Derivatives as Antimalarials with Erythrocytic, Exoerythrocytic,
535		and Transmission Blocking Activities. Curr Top Med Chem:1693-1705.
536	3.	Fieser LF, Leffler MT. 1948. Naphthoquinone antimalarials I: General
537		survey. J Am Chem Soc 70:3151-3155.
538	4.	Peters W. 1987. Chemotherapy and Drug Resistance in Malaria, vol 1.
539		Academic Press, London.
540	5.	Skelton FS, Pardini RS, Heidker JC, Folkers K. 1968. Inhibition of coenzyme
541		Q systems by chloroquine and other antimalarials. J Am Chem Soc 90:5334-
542		5336.
543	6.	Howells RE, Peters W, Fullard J. 1970. The chemotherapy of rodent malaria.
544		13. Fine structural changes observed in the eryhrocytic stages of Plasmodium
545		berghei berghei following exposureto primaquine and menoctone. Ann Trop
546		Med Parasitol 64:203-207.
547	7.	Raether W, Mehlhorn H. 1984. Action of a new floxacrine derivative (S 82
548		5455) on asexual stages of Plasmodium berghei: a light and electron
549		microscopical study. Zentralbl Bakteriol Mikrobiol Hyg A 256:335-341.
550	8.	Berberian DA, Slighter RG, Freele HW. 1968. Causal prophylactic effect of
551		Menoctone (a new hydroxynaphthoquinone) against sporozoite-induced
552		Plasmodium berghei infection in mice. J Parasitol 54:1181-1189.
553	9.	Coleman R, Nath A, Schneider I, Song G, Klein T, Milhous W. 1994.
554		Prevention of sporogony of Plasmodium falciparum and P. berghei in
555		Anopheles stephensi mosquitoes by transmission-blocking antimalarials. Am
556		J Trop Med Hyg 50:646-653.
557	10.	McHardy N, Haigh AJ, Dolan TT. 1976. Chemotherapy of Theileria parva
558		infection. Nature 261:698-699.

559	11.	Kuttler K, Kreier J. 1986. Trypanosomiasis, Babeiosis, Theileriosis and		
560		Anaplasmosis. Plenum Press, New York.		
561	12.	Aspock H, Behr C, Combes C, Daugschies J, De Bont G, Dobler G,		
562		Dubremetz J, Freeman J, Frenkel J, Gessner A, Gustafsson M, Haas W,		
563		Hanel H, Hansen O, Harder A, Julsing M, Mehlhorn H, Pereira Da Silva L,		
564		Raether W, Reiter-Owona I, Richter D, Rollinghoff M, Schaub G, Schnieder		
565		T, Seitz H, Smulian A, Spielman A, Spindler K, Taraschewski H, Tielens A,		
566		Turberg A, Vercruysse J, Walldorf V, Wernsdorfer W. 2008. Theileriacidal		
567		Drugs, p 1366-1367. In Mehlhorn H (ed), Encyclopedia of Parasitology, ed		
568		3rd, vol 2. Springer, New York.		
569	13.	Musset L, Pradines B, Parzy D, Durand R, Bigot P, Le Bras J. 2006.		
570		Apparent absence of atovaquone/proguanil resistance in 477 Plasmodium		
571		falciparum isolates from untreated French travellers. J Antimicrob		
572		Chemother 57:110-115.		
573	14.	Kuhn S, Gill MJ, Kain KC. 2005. Emergence of atovaquone-proguanil		
574		resistance during treatment of Plasmodium falciparum malaria acquired by		
575		a non-immune north American traveller to west Africa. Am J Trop Med Hyg		
576		72:407-409.		
577	15.	Fivelman QL, Butcher GA, Adagu IS, Warhurst DC, Pasvol G. 2002.		
578		Malarone treatment failure and in vitro confirmation of resistance of		
579		Plasmodium falciparum isolate from Lagos, Nigeria. Malar J 1:1.		
580	16.	David KP, Alifrangis M, Salanti A, Vestergaard LS, Ronn A, Bygbjerg IB.		
581		2003. Atovaquone/proguanil resistance in Africa: a case report. Scand J		
582		Infect Dis 35:897-898.		
583	17.	Looareesuwan S, Viravan C, Webster HK, Kyle DE, Hutchinson DB,		
584		Canfield CJ. 1996. Clinical studies of atovaquone, alone or in combination		
585		with other antimalarial drugs, for treatment of acute uncomplicated malaria		
586		in Thailand. Am J Trop Med Hyg 54:62-66.		
587	18.	Syafruddin D, Siregar JE, Marzuki S. 1999. Mutations in the cytochrome b		
588		gene of Plasmodium berghei conferring resistance to atovaquone. Mol		
589		Biochem Parasitol 104:185-194.		

590	19.	Korsinczky M, Chen N, Kotecka B, Saul A, Rieckmann K, Cheng Q. 2000.
591		Mutations in Plasmodium falciparum cytochrome b that are associated with
592		atovaquone resistance are located at a putative drug-binding site. Antimicrob
593		Agents Chemother 44:2100-2108.
594	20.	Oduola AM, Milhous WK, Weatherly NF, Bowdre JH, Desjardins RE. 1988.
595		Plasmodium falciparum: induction of resistance to mefloquine in cloned
596		strains by continuous drug exposure in vitro. Exp Parasitol 67:354-360.
597	21.	Trager W, Jensen JB. 1976. Human malaria parasites in continuous culture.
598		Science 193:673-675.
599	22.	Peters W, Li ZL, Robinson BL, Warhurst DC. 1986. The chemotherapy of
600		rodent malaria, XL. The action of artemisinin and related sesquiterpenes.
601		Ann Trop Med Parasitol 80:483-489.
602	23.	Peters W, Robinson B. 1999. Malaria In: Handbook of animal models in
603		antimicrobial chemotherapy. Academic Press, San Diego.
604	24.	Janse CJ, Ramesar J, Waters AP. 2006. High-efficiency transfection and
605		drug selection of genetically transformed blood stages of the rodent malaria
606		parasite Plasmodium berghei. Nat Protoc 1:346-356.
607	25.	Franke-Fayard B, Trueman H, Ramesar J, Mendoza J, Van der Keur M,
608		Van der Linden R, Sinden RE, Waters AP, Janse CJ. 2004. A Plasmodium
609		berghei reference line that constitutively expresses GFP at a high level
610		throughout the complete life cycle. Molecular and Biochemical Parasitology
611		137:23-33.
612	26.	Derbyshire ER, Prudencio M, Mota MM, Clardy J. 2012. Liver-stage
613		malaria parasites vulnerable to diverse chemical scaffolds. Proc Natl Acad
614		Sci U S A 109:8511-8516.
615	27.	Lambros C, Vanderberg JP. 1979. Synchronization of Plasmodium
616		falciparum erythrocytic stages in culture. J Parasitol 65:418-420.
617	28.	Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. 1979. Quantitative
618		assessment of antimalarial activity in vitro by a semiautomated microdilution
619		technique. Antimicrob Agents Chemother 16:710-718.

620	29.	Fieser LF. Berliner E. Bondhus FJ. Chang FC. Dauben WG. Ettlinger MG.
621		Fawaz G, Fields M, Heidelberger C, Hevmann H, Vaughan WR, Wilson AG,
622		Wilson E, Wu M, Leffler MT, Hamlin KE, Matson EJ, Moore EE, Moore
623		MB, Zaugg HE. 1948. Naphthoquinone Antimalarials. IV-XI. Synthesis
624		Journal of American Chemical Society 3174-3175:3174-3175.
625	30.	Lorenz RR. 1969. Process of producing certain 1,4-naphthoquinones
626	31.	Kennedy AJ, Mathews TP, Kharel Y, Field SD, Moyer ML, East JE, Houck
627		JD, Lynch KR, Macdonald TL. 2011. Development of amidine-based
628		sphingosine kinase 1 nanomolar inhibitors and reduction of sphingosine 1-
629		phosphate in human leukemia cells. J Med Chem 54:3524-3548.
630	32.	Goodman CD, Siregar JE, Mollard V, Vega-Rodriguez J, Syafruddin D,
631		Matsuoka H, Matsuzaki M, Toyama T, Sturm A, Cozijnsen A, Jacobs-
632		Lorena M, Kita K, Marzuki S, McFadden GI. 2016. Parasites resistant to the
633		antimalarial atovaquone fail to transmit by mosquitoes. Science 352:349-353.
634	33.	Baggish AL, Hill DR. 2002. Antiparasitic agent atovaquone. Antimicrob
635		Agents Chemother 46:1163-1173.
636	34.	Thompson PE, Bayles A, Olszewski B, Waitz J. 1965. Quinine-resistant
637		Plasmodium berghei in mice. Science 148:1240-1241.
638		
639		
640		
641		
642		
643		

644	Table 1. Single dose treatments not sufficient for mutation selection. Sensitive and
645	resistant parasites were challenged with either menoctone or atovaquone at different
646	concentrations to observe whether single dose treat was favored. Single rounds of drug
647	are not sufficient to select for M133I point mutation and resulted in WT genotypes at
648	cytb, identical to the parent strain, Pb luc ANKA. All menoctone resistant parasites
649	demonstrated the M133I point mutation. Remarkably when genotyped, sporozoites
650	produced from menoctone resistant blood stage parasites also carried the M133I point
651	mutation, while sporozoites harvested from the sensitive parasite line displayed WT cytb.
652	

Parasite	Nucleotide	Mutation	Genotype
P. berghei luc ANKA (blood stages)			
+			
Atovaquone or Menoctone (single dose)	399	none	WT
P. berghei MEN-R (blood stages)			
+			
Atovaquone or Menoctone (single dose)	399	G->T	M133I
P. berghei luc ANKA (sporozoites)	399	None	WT
P. berghei MEN-R (sporozoites)	399	G->T	M133I
<i>Pb</i> MEN (MRA-414)			
(blood stages)	397	G->T	M133L
W2-MEN-R			
(blood stages)	399	G->C	M133I

653

654

656 Table 2. Menoctone resistance point mutation capable of mosquito developmental stage 657 transmission and produces next generation blood stage infection. Menoctone resistant 658 point mutation was identified in pre-mosquito fed blood stage parasites. The blood meal 659 produced positive oocysts and sporozoite infections in mosquitoes. Sporozoites produced 660 next generation blood stage infection. M133I point mutation was fully maintained 661 throughout the transmission in menoctone resistant parasites while the sensitive parasites 662 demonstrated WT *cytb*.

663

	Pre- mosquito Feed	Post-mosquito Feed				Mice post-sporozoite inoculation	
Parasite strain	<i>Cyt b</i> Genotype	No. infected midguts (%)	Midgut infection score*	Sporozoites per mosquito	<i>Cyt b</i> Genotype	Mice with patent infections (%)	<i>Cyt b</i> Genotype
<i>Pb</i> luc	WT	37/50	++	21,071	WT	3/3	WT
ANKA		(74%)				(100%)	
Pb		19/54				5/5	
MEN-R	M133I	(35.2%)	+++	1,593	M133I	(100%)	M133I

Downloaded from http://aac.asm.org/ on June 5, 2017 by King's College London

664 665 *: 0-50 oocysts= +; 51-100 oocysts = ++; 101-150 oocysts = +++, 151-200 oocysts = ++++; > 200 oocysts = +++++

666 667

668

669

A A

Antimicrobial Agents and

Chemotherapy

671 672 Figure 2. Menoctone and atovaquone efficacy against liver stages of P. berghei luc 673 ANKA (A, B) and blood stages of P. falciparum in vitro (C). 674 675 Figure 3. Generation of menoctone resistance in P. berghei luc ANKA. Blood from 676 recrudescent infections was serially passaged in malaria naïve mice following treatment 677 with 3 (A), 30 (B), and 300 mg/kg (C, D). Mice were treated on day 0 of the study and 3 678 mice were used per group; data shown are the mean parasitemia of each group. 679 680 Figure 4. Survival curves of sensitive (A, C) versus menoctone resistant *P.berghei* (B, 681 D) following treatment with menoctone or atovaquone. Menoctone offers some

Figure 1. Synthesis of menoctone.

682 protection to Pb luc ANKA infected mice (A), but demonstrates a marked decrease in

684

protection against menoctone resistant parasite Pb MEN-R (B). Atovaquone provided

significantly more efficacy than menoctone (C), however even at the highest dose of 10

685 mg/kg, atovaquone was not effective at preventing recrudescence of Pb MEN-R (D).

686

683

670

687 Figure 5. Assessment of atovaquone cross-resistance with menoctone with P. berghei 688 MEN (MRA-414). P. berghei MEN infected mice were treated with atovaquone at 3 (A), 689 30 (B), and 100 mg/kg (C, D) on day 0 (n=2 per group). Parasitemia decreased to <1%690 parasitemia following atovaquone treatment after each treatment; however, atovaquone 691 failed to completely clear all of the parasites after each round and low concentrations of 692 parasites were observed. Blood from recrudescent parasitemia mice treated with 100

- 693 mg/kg atovaquone (C) was inoculated into malaria naive mice and treated with 100
- 694 mg/kg (D); these infections also confirmed resistance with atovaquone.

695

Antimicrobial Agents and Chemotherapy

ר 2

3

2

2

1

Accepted Manuscript Posted Online

Antimicrobial Agents and Chemotherapy

40-

