Zintl-Anionen des Siliciums in den Halogeniden La₃Cl₂Si₃ und La₆Br₃Si₇

Hansjürgen Mattausch*, Oliver Oeckler und Arndt Simon

Bei der Redaktion eingegangen am 1. September 1998.

Professor Peter Böttcher zum 60. Geburtstag gewidmet

Inhaltsübersicht. La₃Cl₂Si₃ und La₆Br₃Si₇ werden bei ~950 °C aus LaX₃ (X = Cl, Br), La-Metall und Si dargestellt. Nach der Einkristallstrukturanalyse kristallisiert La₃Cl₂Si₃ in C2/m mit a = 1802(3), b = 420.6(4), c = 1058(2) pm, $\beta = 97.9(2)^{\circ}$ und La₆Br₃Si₇ in Pmmn mit a = 1686.9(2), b = 412.93(11), c = 1185.2(1) pm. In beiden Verbindungen befinden sich die Si-Atome in trigonalen Prismen aus LaAtomen, die über gemeinsame Dreiecks- und Rechteckflächen zu Ebenen verknüpft sind. Sie werden über die Halogenatome miteinander verknüpft. In La₃Cl₂Si₃ bilden die Si-Atome Si-Ketten, in La₆Br₃Si₇ Stränge aus $\frac{1}{2}$ -kondensierten Si₁₂-Ringen. Beide Verbindungen besitzen metallische Leitfähigkeit.

Zintl Anions of Silicon in the Halides La₃Cl₂Si₃ and La₆Br₃Si₇

Abstract. La₃Cl₂Si₃ and La₆Br₃Si₇ are prepared at temperatures of around 950 °C from LaX₃ (X = Cl, Br), La metal and Si as starting materials. La₃Cl₂Si₃ crystallizes in C2/m with a = 1802(3), b = 420.6(4), c = 1058(2) pm, β = 97.9(2)°, and La₆Br₃Si₇ in Pmmn mit a = 1686.9(2), b = 412.93(11), c = 1185.2(1) pm. In both compounds the Si atoms are located in trigonal prisms of La atoms, which are connected through common triangular and rectangular faces to form

1 Einleitung

Als Beispiele für Seltenerdsilicidhalogenide sind die Verbindungen Gd₄I₅Si und Gd₃I₃Si [1] seit langem bekannt. Si zentriert als isoliertes Atom innerhalb des Gd-Metallgerüstes die Oktaederlücken ähnlich wie C in den entsprechenden Carbidhalogeniden [2, 3, 4]. Wegen des stark elektropositiven Charakters der Seltenerdmetalle liegen die interstitiellen Atome als Anionen Si⁴⁻ bzw. C⁴⁻ vor. Daneben gibt es jedoch auch größere Einheiten, wie C_2^{6-} [5], C_2^{4-} [6], CBC-Gruppen [7] oder ${}^{1}_{\infty}B_{4}$ -Ketten. Mehrere Faktoren bestimmen die Art der interstitiellen Spezies, so die Anzahl der vom LnXn-Gerüst auf A übertragenen Elektronen, die relative Abfolge der elektronischen Niveaus von Ln-Ln-, A-A-, und Ln-A-Bindungen (A = interstitielle Spezies), und die Anordnung der Metallatome. So gelang kürzlich in Silicidiodiden des Lanthans die strukturelle Charakterisierung von Si₆-, Si₁₄- und Si₂₂-Ringen, die zweidimensional miteinander verknüpft sind [8]. Sie stellen zweidimensionale Ausschnitte aus den Strukturen von α - bzw. β -ThSi₂

layers. The bromine atoms connect the metal atom double layers. In $La_3Cl_2Si_3$ the Si atoms form zig-zag chains, in $La_6Br_3Si_7$ chains build up from $\frac{1}{\infty}$ -connected Si₁₂ rings. Both compounds are metallic conductors.

Keywords: Rare earth chloride silicide; rare earth bromide silicide; single crystal structure; Zintl anions; Si chains; Si_{12} rings

dar. Die Variation des Halogenidanteils, und damit die Variation der Valenzelektronenkonzentration läßt in den Silicidhalogeniden von Seltenerdmetallen weitere Si-Zintl-Anionen erwarten.

Wir berichten über die Präparation, die Kristallstruktur und die elektrische Leitfähigkeit der neuen Verbindungen La₃Cl₂Si₃ und La₆Br₃Si₇.

2 **Experimentelles**

Ausgangsstoffe und Präparation

Lanthanmetall liegt in sublimierter Form vor (99,99%; Universal Matthey), das zur Reaktion mechanisch zerkleinert wird. LnX₃ wird durch Umsetzung von La₂O₃ (99,99%; Universal Matthey) mit NH₄X, HX (p. a.; Merck) im Ar-Strom dargestellt [9, 10] und durch Destillation im dynamischen Hochvakuum in Ta-Gefäßen gereinigt (LaCl₃: 950 °C; LaBr₃: 850 °C). Si liegt in Form von feinem Pulver (99.99%, Aldrich) vor. Zur Darstellung werden La, LaX₃ und Si im gewünschten Verhältnis (insgesamt 2-3 g) im Ar-Lichtbogen in eine Ta-Kapsel eingeschweißt und für die Dauer von zwei Wochen erhitzt (La₃Cl₂Si₃: 950 °C; La₆Br₃Si₇: 920 °C). Man erhält röntgenographisch und optisch reine Präparate (Ausbeute ≥95%). Beide Verbindungen bilden lattenförmige Kristalle, die beim Chlorid silbern, beim Bromid bronzefarben sind. Während La₃Cl₂Si₃ mit Wasser nur träge reagiert, zersetzt sich La₆Br₃Si₇ bereits mit Spuren von Feuchtigkeit unter Feuererscheinung. Nach DTA-Untersuchungen in klei-

^{*} Dr. Hj. Mattausch, Prof. Dr. Drs. h. c. A. Simon

Max-Planck-Institut für Festkörperforschung

Heisenbergstr. 1

D-70569 Stuttgart Fax: 07 11/6 89/10 91

E-mail: hansm@vaxff2.mpi-stuttgart.mpg.de

nen Ta-Ampullen zersetzt sich $La_3Cl_2Si_3$ oberhalb 1020 °C und $La_6Br_3Si_7$ oberhalb 1070 °C. Beide Verbindungen besitzen metallische Leitfähigkeit.

Charakterisierung

Röntgenographische Untersuchungen. Die in Tabelle 1 aufgeführten Gitterkonstanten werden nach der modifizierten Guiniertechnik [11] bestimmt (CuK α_1 : $\lambda = 154.056$ pm; interner Standard Si mit a = 543.035 pm; Image plate; Auswertung mit Programmsystem TINA 2.0, Version 2.08 (raytest); Ausgleichsrechnung).

Einkristalle werden mit Präzessions- und Weißenbergaufnahmen charakterisiert. Diffraktometerdaten und experimentelle Einzelheiten zur Strukturbestimmung sind in Tabelle 2, die Orts- und Auslenkungsparameter der Atome und die interatomaren Abstände in den Tabellen 3 bis 5 zusammengestellt. $^{1)}$

Messung der elektrischen Leitfähigkeit. Die elektrische Leitfähigkeit wird im Temperaturintervall $5 \text{ K} \ge T \ge 300 \text{ K}$ in He-Atmosphäre an gesinterten Pulverpreßlingen bestimmt [12]. Deswegen werden nur gemittelte Werte der Leitfähigkeit erhalten, obwohl wegen des ausgeprägt schichtartigen Aufbaus der Kristallstruktur starke Anisotropien zu erwarten sind.

 $^{1)}$ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-408031 (La₃Cl₂Si₃) und CSD-408032 (La₆Br₃Si₇) angefordert werden.

 Tabelle 1
 Gitterkonstanten der bislang bekannten Seltenerdhalogenidsilicide (Standardabweichungen); Pulver

Verbindung	Raumgruppe	a (pm)	b (pm)	c (pm)	β(°)	Baugruppe	Literatur
La ₃ I ₃ Si	I4 ₁ 32	1259.34(5)				isol. Si	diese Arbeit
Ce ₃ I ₃ Si	I4 ₁ 32	1245.7(1)				isol. Si	diese Arbeit
La ₃ Br ₃ Si	I4 ₁ 32	1215.7(1)				isol. Si	diese Arbeit
Gd ₃ I ₃ Si	I4 ₁ 32	1205.2				isol. Si	[1]
La ₄ I ₅ Si	C2/m	1967.1(3)	436.9(5)	907.8(2)	103.82(1)	isol. Si	diese Arbeit
Ce ₄ I ₅ Si	C2/m	1948.3(2)	432.9(1)	899.0(1)	103.62(1)	isol. Si	diese Arbeit
Gd ₄ I ₅ Si	C2/m	1991.7	419.66	870.99	103.298	isol. Si	[1]
La ₆ Br ₅ Si ₃	C2/m	1889.2(7)	433.4(1)	1453.7(6)	130.06(2)	isol. Si	diese Arbeit
Gd7I12Si	R3m	1553.1(1)		1040.7(1)	~ /	isol. Si	diese Arbeit
La ₅ I ₃ Si ₅	C2/m	2403.9(2)	425.72(4)	1572.2(2)	110.40(1)	Si ₂₂ -Ringe	[8]
La ₄ I ₃ Si ₄	C2/m	2436.0(5)	424.0(1)	1257.0(3)	97.59(3)	Si ₆ -, Si ₁₄ -Ringe	[8]
Ce ₄ I ₃ Si ₄	C2/m	2412.6(2)	420.7(1)	1244.7(1)	97.57(1)	Si ₆ -, Si ₁₄ -Ringe	diese Arbeit
LaISi	P3m1	421.93(2)		1179.4(1)	~ /	Si ₆ -Ringe	[8]
CeISi	P3m1	417.99(4)		1169.3(1)		Si ₆ -Ringe	[8]
PrISi	P3m1	416.35(4)		1161.9(1)		Si ₆ -Ringe	[8]
La ₃ Cl ₂ Si ₃	C2/m	1808.1(2)	423.6(1)	1061.8(1)	97.94(1)	Si-Zickzackketten	diese Arbeit
La6Br3Si7	Pmmn	1686.8(2)	413.0(2)	1183.6(2)		Si ₁₂ -Ringe	diese Arbeit

Tabelle 2 Kristalldaten und Strukturverfeinerung für La₃Cl₂Si₃ und La₆Br₃Si₇

La ₃ Cl ₂ Si ₃	$La_6Br_3Si_7$
$5/1.88 \text{ g} \times \text{mol}^{-1}$	1269.92 g×mol
a = 1802(3) pm	a = 1686.9(2) pm
b = 420.6(4) pm	b = 412.93(11) pm
c = 1058(2) pm	c = 1185.15(13) pm
$\beta = 97.9(2)^{\circ}$	
$0.794(2) \text{ nm}^3$	0.8256(3) nm ³
C2/m	Pmmn
4	2
$4.785 \text{ g} \times \text{cm}^{-3}$	$5.108 \mathrm{g} \times \mathrm{cm}^{-3}$
$8.878 \text{ mm}^{-1}(\text{AgK}\alpha)$	$18.133 \text{ mm}^{-1}(\text{AgK}\alpha)$
$0.23 \times 0.06 \times 0.03 \text{ mm}^3$	$0.28 \times 0.02 \times 0.02 \text{ mm}^3$
Latten; silbern	Latten; bronze
CAD4 (Nonius)	CAD4 (Nonius)
56.086 pm	56.086 pm
3.07° bis 26.96°	2.71° bis 24.55°
-28 h 28, -6 k 0, -17 l 0	-24 h 0, -6 k 0, 0 l 17
2009	1616
1929 ($R_{int} = 0.0293$)	1616
ψ -scan (9 Reflexe; $\mu \times r = 0.05$)	ψ -scan (10 Reflexe; $\mu \times r = 0.04$)
0.930, 0.75	0.92, 0.77
Direkte Methoden [20]	Direkte Methoden [20]
Vollmatrix Least-Squares an F ² [21]	Vollmatrix Least-Squares an F ² [21]
1910/0/50	1604/0/54
1.277	1.305
$R_1 = 0.0397; wR_2 = 0.0731$	$R_1 = 0.0493; wR_2 = 0.0764$
$R_1 = 0.0578; wR_2 = 0.0876$	$R_1 = 0.0850; wR_2 = 0.0990$
	La ₃ Cl ₂ Si ₃ 571.88 g×mol ⁻¹ a = 1802(3) pm b = 420.6(4) pm c = 1058(2) pm $\beta = 97.9(2)^{\circ}$ 0.794(2) nm ³ C2/m 4 4.785 g×cm ⁻³ 8.878 mm ⁻¹ (AgK α) 0.23×0.06×0.03 mm ³ Latter; silbern CAD4 (Nonius) 56.086 pm 3.07° bis 26.96° -28 h 28, -6 k 0, -17 l 0 2009 1929 (R _{int} = 0.0293) ψ -scan (9 Reflexe; $\mu \times r = 0.05$) 0.930, 0.75 Direkte Methoden [20] Vollmatrix Least-Squares an F ² [21] 1910/0/50 1.277 R ₁ = 0.0397; wR ₂ = 0.0731 R ₁ = 0.0578; wR ₂ = 0.0876

Tabelle 3 Atomkoordinaten und isotrope Auslenkungsparameter (pm^2); U_{eq} ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors; (Standardabweichung)

a.) La₃Cl₂Si₃

Atom	x/a	y/b	z/c	U _{eq}	
La(1)	0.4647(1)	0	0.1697(1)	72(1)	
La(2)	0.3837(1)	0	0.5090(1)	84(1)	
La(3)	0.1809(1)	1/2	0.1485(1)	82(4)	
Cl(1)	0.2737(1)	1/2	0.3918(2)	138(4)	
Cl(2)	0.2973(1)	0	0.1270(2)	130(4)	
Si(1)	0.0890(1)	0	0.2775(2)	94(4)	
Si(2)	0.0646(1)	0	0.0497(2)	82(4)	
Si(3)	-0.0194(1)	0	0.3882(2)	94(4)	

b.) La6Br3Si7

Atom	x/a	y/b	z/c	U_{eq}	
La(1)	3/4	1/4	0.3576(1)	59(2)	
La(2)	0.6300(1)	1/4	0.0641(1)	82(2)	
La(3)	0.5057(1)	1/4	0.3569(1)	68(2)	
La(4)	1/4	1/4	0.3412(1)	82(3)	
Br(1)	0.5579(1)	3/4	-0.1086(1)	141(3)	
Br(2)	3/4	1/4	-0.1380(2)	142(4)	
Si(1)	0.6266(3)	3/4	0.4583(3)	82(7)	
Si(2)	0.6252(1)	3/4	0.2540(3)	82(7)	
Si(3)	0.6265(3)	1/4	0.5673(4)	85(7)	
Si(4)	3/4	3/4	0.1528(5)	65(10)	

Tabelle 4AnisotropeAuslenkungsparameter (pm^2) . DieKomponenten U_{ij} beziehen sich auf einen Temperaturfaktorder Form

$$\begin{split} & \exp\{-2\pi^2(U_{11}h^2a^{*2}+U_{22}k^2b^{*2}+U_{33}l^2c^{*2}+\\ & 2(U_{12}hka^*b^*+U_{13}hla^*c^*+U_{23}klb^*c^*))\}\\ & (Standardabweichung) \end{split}$$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂
La(1)	69(2)	76(2)	72(2)	11(1)
La(2)	77(2)	88(2)	87(2)	16(2)
La(3)	63(2)	96(2)	89(2)	17(1)
Cl(1)	110(8)	165(10)	130(9)	-14(6)
Cl(2)	94(8)	148(9)	156(9)	43(7)
Si(1)	97(10)	105(11)	83(9)	28(8)
Si(2)	82(9)	84(10)	82(10)	17(7)
Si(3)	93(9)	96(11)	97(10)	30(7)

b.) $La_6Br_3Si_7$; $U_{12} = U_{23} = 0$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₃	
La(1)	64(5)	51(5)	63(5)	0	
La(2)	103(4)	73(3)	70(3)	-18(3)	
La(3)	76(4)	53(4)	75(3)	9(3)	
La(4)	104(5)	76(6)	67(5)	0	
Br(1)	164(7)	140(7)	119(6)	-42(5)	
Br(2)	186(10)	160(10)	82(9)	0	
Si(1)	130(20)	40(20)	70(20)	10(20)	
Si(2)	100(20)	80(20)	70(20)	0(20)	
Si(3)	80(20)	70(20)	110(20)	0(20)	
Si(4)	60(20)	40(20)	90(30)	0	

 Tabelle 5
 Die kürzesten interatomaren Abstände (in pm) (Standardabweichung)

a.) La₃Cl₂Si₃

	La(1)	La(2)	La(3)	Cl(1)	Cl(2)	Si(1)	Si(2)	Si(3)
La(1)	397.0(8) 420.6(4)	-	393.3(7) 397.1(9)	-	298.8(6)	316.8(6)	312.2(4) 314.7(4)	310.9(4)
La(2)	-	420.6(4)	395.5(8)	303.5(4) 315.7(6)	-	307.5(4)	-	311.8(4)) 329.3(5))
$I_{2}(3)$		356.9(2)	420.6(4)	365.8(2) 286.9(7)	200 A(7)	310.7(4)	305.0(4)	
La(3)			420.0(4)	200.9(7)	300.1(4)	510.7(4)	505.0(4)	-
Si(1)							238.9(6)	241.1(6)
Si(2)							241.8(7)	-
Si(3)								237.1(7)

b.) La₆Br₃Si₇

	La(1)	La(2)	La(3)	La(4)	Br(1)	Br(2)	Si(1)	Si(2)	Si(3)	Si(4)
La(1) La(2)	412.9(1)	402.4(1) 404.8(1) 412.9(1)	412.2(1) 405.5(1)	412.4(2) -	_ 315.1(1)		316.2(3) -	319.3(3) 305.5(3)	342.7(4) -	318.3(5) 307.8(2)
La(3)		(-)	397.4(1) 412.9(1)	431.7(1)	313.2(2)	-	313.4(4) 314.4(3)	313.5(3)	311.1(3)	-
La(4)				412.9(1)		317.4(2)	315.7(4)	-	305.2(3)	-
Si(1) Si(2)						_	242.0(5)	257.0(3)	-241.9(5)	

3 Diskussion der Ergebnisse

In Abbildung 1 und 2 sind die Strukturen von $La_3Cl_2Si_3$ und $La_6Br_3Si_7$ in Projektionen [13] entlang [010] dargestellt. Alle Si-Atome werden durch die Lanthanatome trigonal prismatisch koordiniert. Die Anordnung der Prismen ist in den beiden Strukturen

jedoch unterschiedlich. In La₃Cl₂Si₃ (vgl. Abb. 1) sind die La₆-Prismen alle parallel zur nahezu dreizähligen Achse orientiert und über gemeinsame Vierecksflächen trans, cis, trans, cis… zu leicht gewellten Strängen parallel [001] verknüpft. Durch diese Art der Verknüpfung der Prismen entstehen gewinkelte Si-Ketten mit ausschließlich Si(2 b)^{2–}-Ionen. Diese spezielle Art von Si-Ketten wurde bislang in binären Seltenerdmonosiliciden noch nicht beobachtet. Sowohl die vom FeB-Typ [14] als auch die vom CrB-Typ abgeleiteten Strukturen LnSi sind durch Si-Zick-Zack-Ketten charakterisiert [15, 16]. Allerdings erhielten wir kürzlich als Nebenprodukt einer Reaktion LaSi-Einkristalle, in deren Struktur die hier gefundenen Si-Si-Ketten ebenfalls vorliegen [17]. Die in La₃Cl₂Si₃ gefundenen $\frac{1}{2}$ -La₆ Stränge sind über beide

Abb. 1 Projektion der Struktur von La₃Cl₂Si₃ entlang [010]; Cl-, La- und Si-Atome sind mit abnehmender Größe gezeichnet. Die Si-Si-Kette ist durch Fettdruck hervorgehoben. Die Elementarzelle ist eingezeichnet.

Abb. 2 Projektion der Struktur von $La_6Br_3Si_7$ entlang [010]; Br-, La- und Si-Atome sind mit abnehmender Größe gezeichnet. Die Si-Si-Kette ist durch Fettdruck hervorgehoben. Im oberen linken Teil ist das charakteristische Bauelement durch gestrichelte Hinterlegung hervorgehoben. Die Elementarzelle ist eingezeichnet.

trigonalen Prismenflächen parallel [010] zu leicht gewellten Schichten kondensiert. Auch die Struktur von La₅I₃Si₅ [8] enthält Substrukturen dieser Art. Sie läßt sich formal aufteilen in $(Ln_2I_1Si_2)_a$ $(Ln_3I_2Si_3)_b$ mit a = b = 1, wobei a und b die Anzahl kondensierter Blöcke mit dem Aufbau von α - bzw. β -ThSi₂ angeben. La₃Cl₂Si₃ ist damit ein Endglied dieser Reihe mit a = 0 und b = 1. Letztendlich stellt La₃Cl₂Si₃ einen Ausschnitt der β -ThSi₂-Struktur dar. Die La–Si–La-Schichten werden parallel [100] von Ebenen aus Cl-Atomen umgeben. Die La-Atome koordinieren hierbei die Cl-Atome tetragonal pyramidal mit KZ = 5.

In der Struktur von La₆Br₃Si₇ sind die trigonalen Prismen um die Si-Atome so zueinander angeordnet, daß sowohl parallel (p) zur dreizähligen Achse als auch orthogonal (o) dazu ausgerichtete miteinander verknüpft sind. Abbildung 2 zeigt die Prismen in (p) Orientierung mit Blick auf die Dreiecks-, die Prismen in (o) Orientierung auf die Rechtecksfläche. Doppelstränge (p) als Ausschnitt von CrB sind mit Dreifachsträngen (o) über gemeinsame Vierecksflächen parallel [010] verknüpft (in Abbildung 2 gestrichelt hinterlegt). Diese linearen Baugruppen sind parallel [100] nach Abbildung 2 mit abwechselnder Orientierung der Prismendreifachstränge (o) zu Schichten kondensiert. Die Zentrierung der Prismen (o) durch Silicium führt zu parallel [010] verlaufenden Si-Zick-Zack-Ketten. Sie werden durch die Si-Atome in den Zentren der Prismen (p) zu Si₁₂-Ringen geschlossen. Sie bilden parallel [010] Stränge. Ebensolche Si₁₂-Ringe findet man in der Struktur von *a*-ThSi₂, dort jedoch dreidimensional vernetzt. Diesen Zusammenhang zeigt ein Vergleich der Projektion (Abb. 3) der Struktur von

Abb. 3 Projektion der Struktur von EuSi₂ (α -ThSi₂-Typ) [18]. Eu-, Si-Atome mit abnehmender Größe gezeichnet. Das Si-Si-Gerüst ist durch Fettdruck hervorgehoben. Die mit der Struktur von La₆Br₃Si₇ ähnlichen Blöcke sind grau hinterlegt.

EuSi₂ [18], das im α -ThSi₂-Typ kristallisiert, mit Abbildung 2. Die mit La₆Br₃Si₇ identischen (zweidimensionalen) Strukturblöcke sind in Abbildung 3 grau hinterlegt. Diese La–Si-Schichten in La₆Br₃Si₇ werden von Br-Atomen umgeben.

Eine Analyse der Siliciumteilstruktur unter Berücksichtigung der Bindigkeiten der Si-Atome führt zur formalen Ladungsverteilung $(La^{3+})_3(Cl^-)_2[Si(2b)^{2-}]_3 \cdot 1e^-$ bzw. $(La^{3+})_6(Br^-)_3[Si(2b)^{2-}]_5[Si(3b)^-]_2 \cdot 3e^-$. Die überzähligen Elektronen sind in Bändern (mit La–Labindendem Charakter) delokalisiert, wie die Leitfähigkeitsmessungen belegen. Beide Verbindungen zeigen zwischen Raumtemperatur und 5 K metallische Leitfähigkeit, wobei das Restwiderstandsverhältnis etwa 3 beträgt (siehe Abbildung 4 und 5). Dieses gilt übrigens auch für die früher publizierten Verbindungen [8] $(La^{3+})(I^-)[Si(3b)^-] \cdot 1e^-$, $(La^{3+})_5(I^-)_3[Si(2b)^{2-}]_4 \cdot$

Abb. 4 Die Temperaturabhängigkeit des elektrischen Widerstandes von $La_3Cl_2Si_3$. Kreuze: Aufheiz-, Dreiecke: Abkühlkurve.

Abb. 5 Die Temperaturabhängigkeit des elektrischen Widerstandes von $La_6Br_3Si_7$. Kreuze: Aufheiz-, Dreiecke: Abkühlkurve.

 $[Si(3 b)^{-}]_1] \cdot 3 e^{-}$ und $(La^{3+})_4(I^{-})_3[Si(2 b)^{2-}]_2[Si(3 b)^{-}]_2] \cdot 3 e^{-}$. Die Größe des jeweils beobachteten Si-Zintl-Anions steht in offensichtlichem Zusammenhang zur Anzahl der übertragenen Elektronen: $1.00 e^{-}/Si$ in LaISi führt zu Si₆-, $1.50 e^{-}/Si$ in La₄I₃Si₄ zu Si₆- und Si₁₄-, $1.71 e^{-}/Si$ in La₆Br₃Si₇ zu Si₁₂-, $1.80 e^{-}/Si$ in La₅I₃Si₅ zu Si₂₂-Ringen und $2.00 e^{-}/Si$ in La₂Cl₂Si₃ zu Si-Zick-Zack-Ketten. Damit findet man sehr ähnliche Verhältnisse, wie sie der Jubilar für Polytelluride [19] beschrieben hat. Je mehr Elektronen auf die anionischen Teilstrukturen übertragen werden, um so geringer ist deren Dimensionalität.

Wir danken Frau *C. Kamella* für die Anfertigung der Strukturzeichnungen, Frau *G. Siegle* für die Messung der elektrischen Leitfähigkeit, Herrn *R. Eger* für die Probenpräparation.

Literatur

- D. A. Nagaki, H. Borrmann, A. Simon, J. Less-Common Met. 1989, 156, 193.
- [2] A. Simon, Hj. Mattausch, G. J. Miller, W. Bauhofer, R. K. Kremer, *Handbook on the Physics and Chemistry of Rare Earth, Vol. 15* (Hrsg.: K. A. Gschneidner, Jr. und L. Eyring), Elsevier, Amsterdam **1991**, 191.
- [3] J. D. Corbett, Modern Perspectives in Inorganic Crystal Chemistry (Hrsg.: E. Parthé), Kluwer, Dordrecht 1992, 27.
- [4] G. Meyer, Chem. Rev. 1988, 88, 93.
- [5] A. Simon, E. Warkentin, R. Masse, Angew. Chem. 1981, 98, 831; Angew. Chem. Int. Ed. Engl. 1981, 25, 845.
- [6] A. Simon, A. Yoshiasa, M. Bäcker, R. W. Henn, C. Felser, R. K. Kremer, Hj. Mattausch, Z. Anorg. Allg. Chem. 1996, 622, 123.
- [7] Hj. Mattausch, A. Simon, Angew. Chem. 1995, 107, 1764; Angew. Chem. Int. Ed. Engl. 1995, 34, 1633.
- [8] Hj. Mattausch, A. Simon, Angew. Chem. 1998, 110, 498; Angew. Chem. Int. Ed. Engl. 1998, 37, 499.
- [9] A. Brukl, Angew. Chem. 1939, 52, 152.
- [10] G. Meyer, P. Ax, Mater. Res. Bull. 1982, 17, 1447.
- [11] A. Simon, J. Appl. Cryst. 1970, 3, 11.
- [12] L. J. van der Pauw, Philips Res. Rev. 1958, 13, 1.
- [13] E. Dowty, ATOMS for Windows Version 3.1, Shape Software, Kingsport, TN 37663 1995.
- [14] D. Hohnke, E. Parthé, Acta Crystallogr. 1966, 20, 572.
- [15] O. Schob, E. Parthé, Acta Crystallogr. 1965, 19, 214.
- [16] A. Currao, J. Curda, R. Nesper, Z. Anorg. Allg. Chem. 1996, 622, 85.
- [17] Hj. Mattausch, in Vorbereitung 1998.
- [18] J. Evers, G. Oehlinger, A. Weiss, J. Less-Common Met. 1983, 90, L19.
- [19] P. Böttcher, Angew. Chem. 1988, 100, 781; Angew. Chem. Int. Ed. Engl. 1988, 27, 759.
- [20] G. M. Sheldrick, SHELXLS-97, Program for the Solution of Crystal Structures Universität Göttingen 1997.
- [21] G. M. Sheldrick, SHELXL-93, Program for the Refinement of Crystal Structures Universität Göttingen 1993.