Extending Pummerer Reaction Chemistry. Application to the Oxidative Cyclization of Tryptophan Derivatives

ORGANIC LETTERS 2004 Vol. 6, No. 17 2849–2852

Ken S. Feldman* and Andrew G. Karatjas

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

ksf@chem.psu.edu

Received June 3, 2004

ABSTRACT

The diastereoselective oxidative cyclization of a β -oxygenated tryptophan derivative is reported. This process, which utilizes a new variant of the Pummerer reaction, may have application in TMC-95A synthesis.

The stereoselective oxidative cyclization of tryptophan derivatives to form spirocyclic butyrolactone oxindole products, $\mathbf{1} \rightarrow \mathbf{4}$, Scheme 1,¹ has remained an enduring problem in alkaloid synthesis, primarily in response to the structural challenges posed by toxins within the tryptoquivaline family of mycotoxin metabolites.^{1e,f,i,j} With a singular exception,^{1e} diastereoselectivity is scarcely seen upon formation of oxindoles **4**. Identification of the structural/stereoelectronic factors that might influence the stereochemical outcome of this cyclization is complicated by lack of a clear mechanistic understanding. For example, three distinct species, the threemembered ring-bearing **2a**,^{1a,d,g} the orthoquinone iminium ion **2b** (this work), and the C(3) oxidized indoline **2c**,^{1b,c,i,j}

10.1021/oI048974+ CCC: \$27.50 © 2004 American Chemical Society Published on Web 07/30/2004

central roles in the process. Arguments that link the resident stereochemistry at the α -position to the forming C(3) stereogenic center have not been forthcoming, perhaps because of the discouragingly poor diastereoselectivity typically observed. Introduction of additional stereochemical control elements might favorably influence the diastereoselectivity of these cyclizations, but a lack of appropriately functionalized target molecules (\neq tryptoquivalines) did little to motivate such pursuits.

Scheme 1. Mechanistic Speculation Governing the Oxidative Cyclization of Tryptophan Derivatives

^{(1) (}a) Lawson, W. B.; Patchornik, A.; Witkop, B. J. Am. Chem. Soc.
1960, 82, 5918-5923. (b) Hinman, R. L.; Bauman, C. P. J. Org. Chem.
1964, 29, 1206-1214. (c) Hinman, R. L.; Bauman, C. P. J. Org. Chem.
1964, 29, 2431-2437. (d) Nagasaka, T.; Ohki, S. Chem. Pharm. Bull. 1971, 19, 545-551. (e) Büchi, G.; DeShong, P. R.; Katsumura, S.; Sugimura, Y. J. Am. Chem. Soc. 1979, 101, 5084-5086. (f) Ohnuma, T.; Kimura, Y.; Ban, Y. Tetrahedron Lett. 1981, 22, 4969-4972. (g) Palla, G.; Marchelli, R.; Casnati, G.; Dossena, A. Gazz. Chim. Ital. 1982, 112, 535-536. (h) Ohnuma, T.; Kasuya, H.; Kimura, Y.; Ban, Y. Heterocycles 1982, 17, 377-380. (i) Nakagawa, M.; Taniguchi, M.; Sodeoka, M.; Ito, M.; Yamaguchi, K.; Hino, T. J. Am. Chem. Soc. 1983, 105, 3709-3710. (j) Nakagawa, M.; Sodeoka, M.; Yamaguchi, K.; Hino, T. Chem. Sull. 1984, 32, 1373-1384. (k) Labroo, R. B.; Labroo, V. M.; King, M. M.; Cohen, L. A. J. Org. Chem. 1991, 56, 3637-3642.

However, the recent report describing the structure of the 20S proteosome inhibitor TMC-95A (**5**) (and congeners),² with its C(3) oxidized oxindole core, simulated a reinvestigation of this dormant area of tryptophan chemistry. One approach to the synthesis of this microbial metabolite might pass through the spirocyclic butyrolactone oxindole construct **6** as part of the fragment coupling strategy summarized in Scheme 2.

The synthesis sub-goal 6 bears a C(7) ether moiety (TMC-95A numbering) that may be the missing stereochemical determinant in tryptophan oxidative cyclizations. Two diastereotopic transition states can be envisioned, 7a and 7b, for the cyclization of a C(7) functionalized tryptophan derivative (Scheme 3). In these models, a generic C(3) sp²hybridized electrophile is indicated since the mechanistic uncertainty described with Scheme 1 makes further refinement impossible. In particular, a burgeoning steric interaction (cf. 7b) between the C(7) ether substituent and the peripositioned hydrogen H_p might serve to steer the cyclization of 7 down an alternate pathway favoring formation of the diastereomer 8a. Transition state construct 7a also may enjoy an additional energetic benefit via Felkin-Ahn-type LUMO-LUMO mixing between σ^*_{C-O} and the p orbital of the electrophile, an advantage that is not available in the diastereomeric species 7b. On the basis of the results with the simple tryptophan derivatives highlighted in Scheme 1, the influence of the α -stereogenic (NHR) center is not expected to overwhelm any of these putative control elements. The test of this hypothesis is described below.

Scheme 3. Model for Diastereoselective Cyclization of Tryptophan Derivatives Bearing an Ether Substituent at the Indolic Position

The initial attempt to probe this strategy for introducing stereoselectivity into tryptophan oxidative cyclizations relied on the normally dependable brominative cyclization procedure^{1a,b,g,i} to convert a $C(\beta)$ -oxidized tryptophan derivative into the desired oxindole, Scheme 4. Construction of the

C(α)-(*S*)/C(β)-(*S*) diastereomer **10** followed from known enoate **9**³ by application of a protocol developed by Boger et al.⁴ The Sharpless bishydroxylation⁵ of indole derivative **9** provided a diol product in \geq 99% ee (HPLC, OJ-H column). The low yield for this sequence can be attributed to a problematical azide reduction/acylation step, but a disappointing cyclization outcome provided little reason to pursue optimization studies. Treatment of tryptophan derivative **10** under a variety of bromonium ion initiated oxidative cyclization procedures afforded varying amounts of a single cyclization product. Under the most favorable conditions (NBS, NaHCO₃), yields as high as 67% could be obtained. Spectroscopic analysis (e.g., IR 1764 cm⁻¹; compare 1800 cm⁻¹ for structures of the type **4**)^{1g} of this diastereomerically pure tricycle led to the conclusion that incorporation of the

⁽³⁾ Braña, M. F.; Garranzo, M.; de Pascual-Teresa, B.; Pérez-Castells, J.; Torres, M. R. *Tetrahedron* **2002**, *58*, 4825–4836.

⁽⁴⁾ Boger, D. L.: Patane, M. A.; Zhou, J. J. Am. Chem. Soc. 1994, 116, 8544-8556.

⁽⁵⁾ Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547.

 $C(\beta)$ -(*S*) ether substituent diverted the reaction down an unexpected channel, and a C(2) rather than a C(3) cyclized product resulted. The stereochemical relationship between the ring fusion and the $C(\alpha)/C(\beta)$ stereogenic centers was not determined. It is possible that an intermediate related to **2c** preceded nucleophilic acid addition to C(2) of the oxidized indole core.

This unexpected turn was rendered even more curious by the cyclization results obtained upon exposing the diastereomeric species 12 (OTIPS instead of OTBS) to the same brominative reaction conditions. Oxidative cyclization substrate 12 was prepared by a strategy similar to that used for the synthesis of 10, and the Sharpless amidohydroxylation procedure⁶ provided hydroxyamide product in \geq 99% ee (HPLC, OJ-H column) and 10:1 regiochemical selectivity. In this instance, the only cyclized material isolated from a relatively more complex reaction mixture was the butyrolactone-containing oxindole **13** (IR 1810 cm⁻¹). Despite the modest yield, the formation of a single stereoisomeric product was encouraging, especially since the specific stereochemical relationship between the $C(\beta)$ OTIPS moiety and the oxindole's spirocyclic center corresponded to that expected from application of the cyclization model shown in Scheme 3. Unfortunately, this diastereomeric relationship does not match the one desired for TMC-95A (10 might have led to that species).

The basis for the regiochemically disparate cyclization outcomes with **10** and **12** remains uncertain, but it is apparent that the C(α) group NHCBz must be exerting some influence after all. Possible eclipsing steric interactions between the OTBS and NHCBz groups in the cyclization transition state derived from **10**, which are absent (or at least minimized) in the alternative transition state extending from **12**, may play a role in raising the energy of the former process. In this view, alternative, normally higher energy cyclization modes (e.g., \rightarrow **11**) then may have a chance to be expressed. Whatever the reason, these divergent cyclization results bring into focus a more general problem with oxidative cyclizations of these C(β)-functionalized tryptophan constructs—a lack of predictable regiochemical control.

An approach to solving the problem of regiochemical control in indole oxidative cyclizations has been described recently.⁷ This methodology uses a variant of the Pummerer reaction to effect C(3)-selective oxidative cyclization of pendant carbon nucleophiles to furnish spirocyclic 2-thio-imidate and/or derived oxindole products. The extension of this chemistry to the tryptophan series requires successful participation of a carboxylic acid derivative as the nucleophile, Scheme 5.

Initial attempts to effect cyclization with 2-thiophenyl tryptophan derivatives featuring either a free carboxylic acid or its derived methyl ester were not productive. However, switching to a silyl ester **15** did provide the first evidence that this transformation was possible. Cyclization substrate

CAN

87%

16

NHBOC

17 21%

0~0

~ 1:1

PhS

15

NHBOC

Ô

3) mCPBA

86%

14

18 Ö

Assembly of the key cyclization precursor **21** began with 2-chloroindole-3-carboxaldehyde $(19)^9$ and used a nucleophilic sulfur source to introduce the requisite Pummerer functionality, Scheme 6. Sharpless dihydroxylation provided

⁽⁶⁾ Tao, B.; Schlingloff, G.; Sharpless, K. B. Tetrahedron Lett. 1998, 39, 2507–2510.

^{(7) (}a) Feldman, K. S.; Vidulova, D. B. Org. Lett. 2004, 6, 1869–1871.
(b) Feldman, K. S.; Vidulova, D. B. Tetrahedron. Lett. 2004, 45, 5035–5037.

a chiral diol intermediate (ee \geq 99%, HPLC, OJ-H column) that could be processed on to the azido silyl ether **21** using chemistry similar to that described for the preparation of **10**. Surprisingly, treatment of the sulfoxide derived from **21** (not shown) with a variety of electrophilic Pummerer triggers did not lead to any butyrolactone spirocyclic product, nor were related attempts with the analogous silyl ester or methyl ester rewarded. These disappointing results, in contrast to the simpler system **15**, point to unexpected complications engendered by introduction of the β -silyloxy substituent.

Fortunately, use of the unconventional Pummerer initiator PhI(CN)OTf^{7b,10} with *sulfide* **21** did lead to a productive cyclization that furnished a single butyrolactone thioimidate product **23** in moderate yield. With this particular substrate, use of functional variants such as the silyl or methyl esters, or an NHBOC group in place of the azide, did not improve the yield shown. In fact, participation of the NHCO₂*t*-Bu

substrate's carbonyl in bond formation to C(3) provided a glimpse of some of the difficulties that can hamper this cyclization. The butyrolactone product **23** was formed with a diastereomeric relationship between C(6) and C(7) that is both consistent with the cyclization model described in Scheme 3 and on track for TMC-95A synthesis. As with the simpler system **17**, ready hydrolysis of the thioimidate unit delivered the desired oxindole **24**.

These studies demonstrate that, for the first time, possibly biomimetic oxidative cyclization of a tryptophan derivative to form a butyrolactone product can be achieved with both high and predictable stereochemical control. This advance is tied to the use of a hypervalent iodine reagent in a Pummerer-based oxidative cyclization protocol.

Acknowledgment. We thank the National Institutes of Health, General Medical Sciences Division, for support of this work (GM35727).

Supporting Information Available: Spectral data including ¹H NMR, ¹³C NMR, IR, and MS for **10–13**, **15**, **17**, **18**, **20**, **21**, **23**, and **24**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL048974+

⁽⁸⁾ Crich, D.; Davies, J. W. *Tetrahedron Lett.* **1989**, *30*, 4307–4308.
(9) Hollis Showalter, H. D.; Sercel, A. D.; Leja, B. M.; Wolfangel, C. D.; Ambroso, L. A.; Elliott, W. L.; Fry, D. W.; Kraker, A. J.; Howard, C.

T.; Lu, G. H.; Moore, C. W.; Nelson, J. M.; Roberts, B. J.; Vincent, P. W.; Denny, W. A.; Thompson, A. M. J. Med. Chem. **1997**, 40, 413–426.

⁽¹⁰⁾ Stang, P. J.; Williamson, B. L.; Zhdankin, V. V. J. Am. Chem. Soc. **1991**, *113*, 5870–5871.