

Tetrahedron Letters 39 (1998) 4559-4560

TETRAHEDRON LETTERS

Lanthanoid-Catalyzed Ring-Opening Reaction of Epoxides with Acyl Halides

Yuki Taniguchi, Shintaro Tanaka, Tsugio Kitamura, and Yuzo Fujiwara*

Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

Received 20 March 1998; accepted 17 April 1998

Abstract: Eu(dpm), [dpm: dipivaloylmethanate] catalyzes the ring-opening reaction of epoxides with acyl halides affording the corresponding 2-haloalkyl esters. The stereochemical course was confirmed as *trans*-addition in the case of the reaction of cyclohexene oxide. © 1998 Elsevier Science Ltd. All rights reserved.

Transformation of epoxides to 1,2-disubstituted alkanes is one of the important processes in organic syntheses, and extensive studies on the regio- and stereochemistry of the ring-opening reaction of epoxides with several nucleophiles giving the 2-substituted alkanols catalyzed by transition metals, particularly lanthanoid metals, have been reported.¹ In continuing studies², we discovered that the lanthanoid(III) tris(dipivaloylmethanate) catalyzes the ring-opening reaction of epoxides with acyl halides to afford the corresponding 2-haloalkyl esters. To our knowledge, although a similar ring opening reaction of tetrahydrofuran (THF) with acyl halides promoted by Sm³⁺ was reported by Kagan,³ this unique reaction is undoubtedly interesting as a first example of the ring opening reaction of epoxides. This communication describes an efficient and a stereoselective synthesis of 2-haloalkyl esters from the reaction of epoxides and acyl halides catalyzed by a lanthanoid complex (Eq 1).

$$R^{1} \xrightarrow{O} R^{2} + R^{3} \xrightarrow{C} X \xrightarrow{cat. Eu(dpm)_{3}} Benzene \xrightarrow{R^{3}COO} R^{1} \xrightarrow{X} (1)$$
1a-c 2a-f (X: Cl, Br) 3a-f R²

At first, we examined the reaction of cyclohexene oxide (1a) (0.5 mmol) with benzoyl chloride (2a) (0.5 mmol) in benzene (1.5 mL) using a catalytic amount of various lanthanoid complexes (0.025 mmol) at 40°C for 2 h. The reaction proceeds smoothly to give *trans*-2-chlorocyclohexyl benzoate (3a) in 38% yield as a sole product. Although the reaction without catalyst gave no product, the reaction proceeded catalytically by the addition of lanthanoid complexes. Of the catalysts tested, 1,3-diketonato complexes of lanthanoid metals such as $Ln(dpm)_3$ are highly active for the reaction. The catalytic activity in this reaction with 1a appears to be in the order $Eu(dpm)_3$ (38%) ~ $Y(dpm)_3(37\%) > Pr(dpm)_3$ (18%) > $Eu(pta)_3$ (9%) > $La(dpm)_3$ (3%) ~ $Eu(tfc)_3$ (2%). The reaction using $Eu(dpm)_3$ catalyst was completed at 40°C for 24 h giving 3a in 92% isolated yield. In additon, the product 3a was also obtained in 84% yield at 80°C for 2 h

Epoxide	Acyl Halide	Time (h)	Product	Yield(%) ^{b)}
\sim	PhCOCl (2a)	24	$\mathbf{X}_{\mathbf{A}}$ $\mathbf{3a:} \mathbf{R} = \mathbf{Ph}, \mathbf{X} = \mathbf{Cl}$	92
la	PhCOBr (2b)	15	\mathbf{RCOO} 3b : R = Ph, X = Br	91
	CH ₃ COCl (2c)	6	3c : $R = CH_3$, $X = Cl$	89
	<i>n</i> -C ₃ H ₇ COCl (2d)	4	3d : $\mathbf{R} = C_3 H_7$, $\mathbf{X} = C \mathbf{I}$	86
	c-C ₆ H ₁₁ COCl (2e)	3	3e : $R = c - C_6 H_{11}$, $X = Cl$	90
	COCI (2f)	24	$\mathbf{3f}: \mathbf{R} = 1, \mathbf{X} = \mathbf{Cl}$	85
0 	28	16	$\begin{array}{c} OCOPh \\ Cl \\ + PhCOO \\ \end{array}$	70 ^{c)}
	2 a	16	3g $3hOCOPhCl Cl 3i$	79

Table 1. Ring-Opening Reaction of Epoxides with Various Acyl Halides a)

a) Reaction conditions: epoxide (1.0 mmol), acyl halide (1.5 mmol), $Eu(dpm)_3$ (0.05 mmol), benzene (3.0 mL), 40°C. b) Isolated yield based on epoxide. c) Mixture of **3g** and **3h** (**3g** : **3h** = 73 : 27).

without any side-reaction.

The representative results for the reaction of various acyl halides with epoxides are shown in Table 1. The reaction of cyclohexene oxide (1a) with various acyl halides, gave the corresponding *trans*-2-halocyclohexyl esters in 86~92% yields. The reactivity of acyl halides toward 1a appears to be in the order $c-C_6H_{11}COCl$ (2e) ~ $n-C_3H_7COCl$ (2d) ~ CH_3COCl (2c) > PhCOBr (2b) > $CH_3CH=CHCOCl$ (2f) > PhCOCl (2a). The stereochemistry of the products 3a-f was assigned as *trans*- configuration by the proton couplings at C₁ and C₂ position (J = 9.0 - 9.3 Hz). As expected, the reaction using monosubstituted epoxides such as propylene oxide (1b) afforded the mixture of two regioisomers, 3g and 3h (73:27). However the reaction of epichlorohydrin (1c) with benzoyl chloride (2a) gave the corresponding ester 3i as a single product.

Further mechanistic study and synthetic application are now under investigation.

REFERENCES AND NOTES

- Reaction with thiols: (a) Vougioukas, A. E.; Kagan, H. B. Tetrahedron Lett., 1987, 28, 5513-5516 and 6065-6068. With TMSCN: (b) Matsubara, S.; Onishi, H.; Utimoto, K.; Tetrahedron Lett., 1990, 31, 6209-6212. (c) Ohno, H.; Mori, A.; Inoue, S. Chem. Lett., 1993, 975-978. With amines: (d) Chini, M.; Crotti, P.; Favero, L.; Macchia, F.; Pineschi, M. Tetrahedron Lett., 1994, 35, 433-436. (e) Meguro, M.; Asao, N.; Yamamoto, Y. J. Chem. Soc., Parkin Trans. 1, 1994, 2597-2601. With enolates: (f) Crotti, P.; Bussolo, V. D.; Favero, L.; Macchia, F.; Pineschi, M. Tetrahedron Lett., 1994, 35, 6537-6540. With TMSN₂: (g) Meguro, M.; Asao, N.; Yamamoto, Y. J. Chem. Soc., Chem. Commun., 1995, 1021-1022. (h) de Weghe, P. V.; Collin, J. Tetrahedron Lett., 1995, 36, 1649-1652. With alcohols: (i) Fujiwara, K.; Tokiwano, T.; Murai, A. Tetrahedron Lett., 1995, 36, 8063-8066.
- (a) Takaki, K.; Fujiwara, Y. Appl. Organomet. Chem. 1990, 4, 297-310.
 (b) Fujiwara, Y.; Takaki, K.; Taniguchi, Y. J. Alloys and Compds. 1993, 192, 200-204.
 (c) Taniguchi, Y.; Takaki, K.; Fujiwara, Y. Reviews on Heteroatom Chemistry 1995, 12, 163-178.
 (d) Makioka, Y.; Taniguchi, Y.; Kitamura, T.; Fujiwara, Y.; Takaki, K. Bull. Soc. Chim. Fr., 1997, 134, 349-355.
- 3. Souppe, J.; Namy, J.-L.; Kagan, H. B. Tetrahedron Lett., 1984, 25, 2869-2872.