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Abstract: We have developed an alternative method for the synthesis of 2'-modified 4'- 
thionucleosides. The fusion of 3,5-di-O-benzoyl-l-bromo-2-deoxy-2-fluoro-4-thio-a-D- 
arabinofuranose, prepared from 1,2:5,6-diisopropylidene-ct-D-allofuranose, with 
persilylated N4-acetylcytosine predominantly gave a I~-anomer of protected 4'- 
thionucleoside, which was then deprotected to give 4'-thioFAC. 
© 1999 Elsevier Science Ltd. All rights reserved. 

Previously, we have reported a novel method for the synthesis of 2'-modified 4'-thionucleosides, ~-3 and 

found that some 2'-substituted-4'-thiocytidine derivatives had potent antineoplastic activities in vivo as well as 

in vitro. ~'2"4'5 Among them, l-(2-deoxy-2-fluoro-4-thio-I~-D-arabinofuranosyl)cytosine (4'-thioFAC, 1) has 

shown prominent antitumor activities against various human solid tumor cell l inesY The most important 

feature of 4'-thioFAC is that it is an orally active antitumor agent; oral treatment with 4'-thioFAC effectively 

inhibited the growth of colon and stomach cancer xenografts which had been transplanted into nude mice.5 

The original synthesis of 4'-thioFAC presented several problems which 

NH 2 made its large-scale preparation difficult. 2 For example, an expensive silyl 

I~N. ~ protecting group ( t er t -bu ty ld ipheny ls i l y l  group) and difficult-to-handle 

O reagents, such as DAST, BBr 3, and MCPBA, have been used. 2 Moreover, 

O ~ F  there was a serious problem at the glycosylation step: the undesired ct- 
H H 

OH isomer was predominantly formed (ct : I~ = 2.5 : 1) and had to be separated 

1: X = S (4'-thioFAG) from the desired ~-isomer by a complicated purification method. 2 To 

2: X = O (FAG) overcome these drawbacks, the development of an alternative synthetic 

method which can selectively produce 13-4'-thioFAC is needed. 

To this end, we sought to apply the improved synthesis of 1-(2-deoxy-2-fluoro-13-D-arabinofuranosyl)cytosine 

(FAC, 2), 4'-oxy counterpart of 4'-thioFAC reported by Watanabe, 6 to the synthesis of 4'-thioFAC. In this 

communication, we report both the alternative synthesis of a 2-fluoro-4-thiosugar derivative, and its 

stereoselective coupling with persilylated NCacetylcytosine, which led to 4'-thioFAC. 

0040-4039/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. 
PH: S0040-4039(99)00048-9 



1938 

Following Watanabe's report, 6 commercially available 1,2:5,6-diisopropylidene<t-D-allofuranose 3 

should be fluorinated at the C-3 position. Instead of the original method, we used the method developed by 

Bristol-Myers group 7 with a slight modification. Treatment of 3 with sulfuryl chloride and imidazole in 

dichloromethane gave an imidazoyl sulfate 4, which was treated with potassium fluoride in refluxing 2- 

methoxyethanol to give a 3-fluorinated compound 5 in 77% yield from 3. Compound 5 was selectively 

deblocked at the 5,6-isopropylidene group, and the resulting diol was selectively benzoylated at the primary 

hydroxyl group to give 6-benzoate 6. Mesylation at the C-5 position of 6 and subsequent treatment with 

sodium methoxide gave 5,6-epoxide 7 in 82% yield with inversion of the C-5 stereochemistry. The 5,6- 

epoxide 7 was treated with thiourea in refluxing methanol to give a 5,6-thiirane derivative 8, the C-5 

configuration of which was controlled since it was to be a D-sugar. Cleavage of the 5,6-thiirane ring of 8 was 

achieved by the treatment with potassium acetate in refluxing acetic anhydride and acetic acid (5 : 1)~ for 2 

days to give a diacetate derivative 9 in 73% yield. The desired 2-fluoro-4-thio sugar 11) was obtained from 9 

by 1) acidic hydrolysis of isopropylidene group, 2) oxidation with NalO4, 3) treatment with acidic methanol, 

and 4) benzoylation. (Scheme 1) 
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As mentioned above, an important goal in this alternative synthesis was to improve the I~- 

stereoselectivity at the glycosylation step. In previous studies by us t'3 and other groups ,  9"13 Lewis acid- 

catalyzed glycosylation between 4-thiosugar derivatives and nucleobases tended to give a-anomers as major 

products. Therefore, a glycosylation reaction which would not require a Lewis acid catalyst may improve the I~- 
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stereoselectivity. On the other hand, the previous synthesis of FAC and its related compounds showed that 

bromination at the anomeric position of the 2-fluoroarabinose derivative selectively gave the corresponding l-  

a-bromide, nucleophilic substitution of which with persilylated pyrimidine bases gave 1~-2-fluoro-arabino 

pyrimidine nucleosides exclusively. 6'7''4 This encouraged us to investigate the condensation, without Lewis 

acids, of silylated cytosine and 1-bromo-4-thiosugar, which could be obtained from 10. 

Acetolysis of the 1-methoxy group of 10 gave 1-acetate 11 j5 in good yield. Treatment of 11 with HBr 

/ acetic acid in dichloromethane gave the corresponding 1-bromide 12. Due to the instability of 12, it was 

difficult to confirm its structure and the ratio of ct- and I~-anomers. It was assumed that the stereoelectronic 

effect of the 2-fluoro substituent might make a formation of the a-bromide 12 favored, as in the case of the 4- 

oxy derivative. 

S c h e m e  2 

OR HBr, AcOH / 
o ~ F  CH2CI2 ,, 

Bz H 
OBz 

H2SO4, Ac20, i-- 10: R = Me 
AcOH; 90% L---11: R = Ac 

Bzo- F 

12 
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80oc 
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H )--N O 2) separation O S--~' , - I ' " ' N '  
\~)--NH2 

BzO H H H HO 
-~ ~- OH 

OBz OH 
13 13-1 ct-1 

Table 1: Summary of the glycosylation reaction 

yield (from 1-O-acetate 11) 

entry Conditions glycosylation I~- 1 ct- 1 

1 CICH2CHECI, 80 °C, 2 days trace 

2 neat, 80 °C, 5 h 59% (ct : I~ = 1 : 4) 33% 8% 

Thus, 1-bromide 12 was used, without purification, for the next glycosylation step soon after being prepared 

from 11. However, our first attempt to obtain the glycosylated product by the condensation of 12 with the 

persilylated N%acetylcytosine was unsuccessful. As shown in entry 1 of Table 1, the reaction in refluxing 1,2- 
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d ich lo roe thane  gave  on ly  trace a m o u n t s  o f  the  g lycosy l a t ed  product .  In teres t ingly ,  w h e n  this  reac t ion  was  

p e r f o r m e d  by  the  fu s i on  o f  12 wi th  the  pers i ly la ted  N4-ace ty lcy tos ine  at 80°C under  r educed  pressure ,  the  

g l y c o s y l a t e d  p roduc t  13 was  f o r m e d  in a y ie ld  o f  59%.  16 Af te r  depro tec t ion  o f  13 by  t r ea tmen t  wi th  c o n c .  

N H  3 / M e O H ,  H P L C  ana lys i s  o f  the  c rude  p roduc t s  s h o w e d  that  the  des i red  13-anomer o f  4 ' - t h i o F A C  1 was  

p r e d o m i n a n t l y  f o r m e d  (c~ : 13 =1 : 4), as we  expected .  T h e  s t ruc tu res  o f  I~-1 and  a -1  were  f i rmly  c o n f i r m e d  by  

c o m p a r i s o n  o f  the  i n s t rumen t a l  ana lys i s  da ta  af ter  isolat ion.  
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