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Amidation of nitrile with N,N-dimethylformamide (DMF) 
was catalyzed by Cu2O with 1,10-phenanthroline as ligand 
under oxygen atmosphere. A variety of N,N-dimethyl 
benzamides were obtained in yields up to 84%. 

Amides, which can be found in many protein and peptide 10 

structures , are one of the most important funct ional groups in 
nature.1 They are also important motifs in natural products, 
pharmaceuticals, agrochemicals and polymers.2 Bes ides the 
classical synthetic method of activat ed acids  with amine, 
several other catalytic protocols have been developed for their 15 

preparation. For example, Heck and coworkers  firstly reported 
palladium-catalyzed synthesis of amides from alkenyl, aryl or 
heterocyclic halide with primary or secondary amines in the 
presence of carbon monoxide in 1974.3 Following this  
pioneering work, different aminocarbonylation ways have 20 

been explored by using carbon monoxide as the source of 
carbonyl group.4 To eliminate the cumbersome handling of 
toxic carbon monoxide gas, a great many of surrogates have 
then emerged, such as met al carbonyls like W(CO)6,5 
Mo(CO)6,6 and Ni(CO)4,7 as well as other organic reagents  25 

like carbamoylsilane,8 carbamoylstannanes ,9 formamide,10 and 
DMF.11 However, these substitutes usually have their own 
shortcomings such as high cost, thermal inst ability,9 the 
necess ity of using microwave et c.11a Moreover, most of these 
reactions still depend on palladium catalyst.  30 

On the other hand, the tradit ional methods to synthesize  
N,N-disubst ituted amides are limited by the necessity of 
preact ivat ion of carboxylic acids,12 oxidative aminat ion of 
aldehydes ,13 cross-coupling of acyl chlorides in N,N-
dimethylformamide,14 aminocarbonylation or carbamoylation 35 

of aryl halides,11,15 or direct amidation of alcohols 16 as shown 
in Scheme 1. Thus, low cost and simple way to obtain N,N-
disubstitut ed amides are still challenging in synthetic organic 
chemistry. 

In continuation of our recent work of copper catalyzed C-40 

CN bond cleavage,17 herein is reported our recent work of 
copper-catalyzed amidation of nitriles  by us ing DMF as  an 
amide source. 
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Scheme 1. Synthetic methods of N,N-dimethyl amides  45 

 
Initially, benzyl cyanide was chosen as model substrate to be 

reacted with DMF for the optimization of the reaction conditions 
by using benzyl cyanide (1 mmol), DMF (2 mL), O2 atmosphere 
(1 atm.), base or acid (1 equiv.), Cu source (10 mol %) and ligand 50 

(20 mol %) at 140 oC for 24 h. As shown in Table 1, there was  
only trace of product to be detected in the absence of metal and 
molecular oxygen (Table 1, entries 1 and 2). Meanwhile, acid 
seemed to be better than base in this reaction. For example, p-
toluenesulfonic acid gave yield around 44%, while acetic acid 55 

resulted in only 40% (Table 1, entries 2-6). Further control 
experiments indicated the necessity of addition of acid, and there 
was only trace of product to be found in the absence of it (Table 1, 
entry 4). Different copper sources were also examined, and Cu2O 
exhibited higher catalytic activities than others including CuSO4, 60 

Cu(OTf)2, Cu(OAc)2 and CuO in the yield of 83% (Table 1, 
entries 6-13). Among the ligands screened, 1,10-phenanthroline 
was more beneficial for the reaction than others (Table 1, entries 
13-16). Some other solvents were then tested, toluene, DMSO 
and H2O resulted in trace of product (Table 1, entries 19-21). 65 

Therefore, DMF is used as substrate as well as solvent in the 
following reactions. In addition, the effects of reaction 
temperatures of 120 oC, 140 oC were tested, and 140 oC was 
proved to be suitable for the reaction with 83% yield (Table 1, 
entries 12 and 17). After then, we shortened the reaction time 70 

from 24 h to 12 h, which lowered yield to 44% (Table 1, entry 
18). 
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Table 1. Optimization of the reaction conditions.a 

CN
+ H NMe2

O

1a 2 3a

O2

N

O

conditions

 

Entry Cu source Ligand Base or Acid Yield[%] b 

1 _ Phen TsOH trace 

2 CuSO4 Phen TsOH tracec 

3 CuSO4 Phen t-BuONa Trace 

4 CuSO4 Phen _ Trace 

5 CuSO4 Phen AcOH 40 

6 CuSO4 Phen TsOH 44 

7 Cu(OTf)2 Phen TsOH 32 

8 Cu(OAc)2  Phen TsOH 57 

9 Cu(OAc)2  Phen TsOH 40 

10 CuO Phen TsOH 47 

11 CuSO4 Phen TsOH 27 

12 CuCl2 Phen TsOH 15 

13 Cu2O Phen TsOH 83 

14 Cu2O 2-Picolinic  
acid TsOH 20 

15 Cu2O 2-Nipecotic  
acid TsOH 30 

16 Cu2O L-Proline TsOH 30 

17 Cu2O Phen TsOH 56 d 

18 Cu2O Phen TsOH 44 e 

19 Cu2O Phen TsOH NR f 

20 Cu2O Phen TsOH NRg 

21 Cu2O Phen TsOH NRh 

a Reaction conditions: 1.0 mmol of benzyl cyanide, 2 mL of 
DMF , O2 (1 atm), 10 mol% Cu source, 20 mol% ligand, 1 mmol 
of base or acid unless otherwise indicated, 140 oC and 24h; Phen 5 

= 1,10-phenanthroline; TsOH= p-toluenesulfonic acid. b Isolated 
yields.  c Performed under N2. d Temperature was 120 oC. e 12 h. f 

100 uL of  DMF, toluene (2 mL) as solvent. g 100 uL of  DMF, 
dimethylsulfoxide (2 mL) as solvent. h 100 uL of  DMF, H2O (2 
mL) as solvent. 10 

 
Next, the scope of substrates was extended to various benzyl 

nitriles under the optimized reaction conditions: aryl nitriles (1 
mmol), DMF (2 mL), TsOH (1 mmol), Cu2O (0.1 mmol) and 
1,10-phenanthroline (0.2 mmol) at 140 oC for 24h. The results are 15 

listed in Table 2. 
 

Table 2. Reaction of nitriles with DMF.a 

CN
+ H NMe2

O

1a - 1k 2 3a - 3k

O2, TsOH

R1
N

R1

O
         Cu2O
1,10-phenanthroline

 
 

20 

Entry Reactant  Product Yield(%)b  

1 CN

 
N

O

3a  

83 

2 CN

 
N

O

3b  

81 

3 CN

 
N

O

3c  

68 

4 
CN

MeO  
N

O

3d

MeO

 

79 

5 
CN

F3C  
N

O

3e

F3C

 

81 

6 
CN

CF3  

N

O

3f
CF3  

84 

7 
CN

Br  

N

O

3g

Br

 

78 

8 CN

Cl  

N

O

3h

Cl

 

64 

9 
CN

I  

N

O

3i

I

 

53 

10 
CN

O2N  

N

O

3j

O2N

 

76 
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11 
S

CN 

S

N

O

3k  

73 

a Reaction conditions: 1.0 mmol of nitrile, 2 mL of DMF, O2 (1 
atm), 10 mol% Cu2O, 20 mol% Phen, 1.0 mmol of TsOH, 140 oC 
and 24h. b Isolated yields. 
 

In general, the electronic influences of substituents were not 5 

obvious, and benzyl nitriles bearing either electron-donating or  
electron-withdrawing groups were smoothly transformed to the 
corresponding products in yields ranging from 53% to 84% 
(Table 2, entries 2-11). On the contrary, the steric hindrance of 
the substituent had a significant effect on the results. For example, 10 

p-methylbenzyl cyanide gave the desired product in 81% yield, 
while o-methylbenzyl cyanide afforded the corresponding 
product in a relatively lower yield of 68% (Table 2, entries 2 and 
3). Furthermore, the catalytic system could tolerate a variety of 
functionalized aryl nitriles in the reaction, including ether, nitro, 15 

trifluoromethyl, and halogen groups (Table 2, entries 2-10). 
Heterocyclic compounds, such as 2-thiopheneacetonitrile could 
also afford the corresponding products in 73% yield (Table 2, 
entry 11).  

To further establish the general utility of this transformation, 20 

N,N-diethylformamide was also tried for this reaction with lower 
yields than the results of DMF, which indicated this protocol’s 
potential usage in the synthesis of N-substituted amides (Table 3).  

 
Table 3. Reaction of benzyl nitriles with DEF. a 25 
 

CN +

1a, 1g, 1j 4 5a, 5g, 5j

O2, TsOH

R1 N
R1

O
         Cu2O
1,10-phenanthroline

H
N

O

 

N

O

5a

N

O

O2N

5g

N

O

Br

5j

75% 68% 65%  
______________________________________________________________________________ 
a Reaction conditions: 1.0 mmol of benzyl cyanide, 2 mL of DEF, 30 

O2 (1 atm), 10 mol% Cu2O, 20 mol% 1,10-phenanthroline, 1.0 
mmol of TsOH, 140 oC and 24 h. b Isolated yields. 
 

At last, based on the literatures and our experimental results,18 
the possible reaction pathway was proposed as shown in Scheme 35 

2. Firstly, benzyl cyanide 1a undergoes a copper-catalyzed 
oxidation with O2 to generate 6.19 Then, 6 forms product with 
N,N-dimethylamine, which is from the decomposition of DMF 
under the reaction conditions.20 Furthermore, N,N-
dimethylacetamide could also be reacted with benzyl cyanide, 40 

affording the same product in 80% yield.  
Therefore, this reaction would contain the cleavage of C-CN 

bond of nitrile and C-N bond of DMF, and also contain new C-N 
bond formation of product. 

 45 

 

CN

1a
[Cu]

O2 H2O

CN

O

6
     Cu2O, TsOH
1,10-phenanthroline

H N

O

CO

N

O

 
Scheme 2. Proposed pathway for amide formation 

 
In conclusion, we report here the preliminary studies into a 50 

copper-catalyzed C-C bond activation/amidation approach, which 
provides tertiary amides by coupling nitrile with DMF or DEF 
under oxygen atmosphere. This transformation offers an 
alternative method to prepare N-substituted amides and a new 
strategy for C-C bond cleavage. 55 
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