

View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Ren, S. Song, L. Ye, C. Feng and T. P. Loh, *Chem. Commun.*, 2016, DOI: 10.1039/C6CC04638J.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Published on 26 July 2016. Downloaded by Cornell University Library on 27/07/2016 03:24:36.

COYAL SOCIETY

Journal Name

ARTICLE

Copper-Catalyzed Oxyamination of Electron-Deficient Alkenes with N-Acyloxyamines

Received 00th January 20xx, Accepted 00th January 20xx

Shichao Ren,^{a,b,†} Shengjin Song,^{a, b,†} Lu Ye,^b Chao Feng,^b* and Teck-Peng Loh^{a,c}*

DOI: 10.1039/x0xx00000x

www.rsc.org/

A Cu(I)-catalyzed direct intermolecular oxyamination of electron deficient alkenes is disclosed. This process is characterized by difunctionalization of a variety of α , β -unsaturated ketones with easily available *N*-acyloxyamine reagents as both amine and oxygen donors, which delivers ester derivatives of β -amino alcohols in good yields as well as high regioselectivity. Control studies suggested the involvement of alkyl radical species on the way of product formation.

 β -Amino alcohol represents as a key structural motif which is frequently found in naturally occurring compounds and bioactive molecules. In addition, optically pure θ -amino alcohols are extensively used as privileged chiral ligands or auxiliaries in modern organic synthesis.¹ In view of their importance in biological and synthetic chemistry, the pursuit of novel synthetic approaches for the preparation of β -amino alcohols have attracted considerable attention from the synthetic organic chemists. In particular, synthetic protocols which afford the amino alcohols in a single step have been of intensive research interest in recent years. In this context, elegant examples for the construction of β -amino alcohol derivatives have been developed, for example, the nucleophilic addition to imines/carbonyl compounds,² epoxides/aziridines³ with proper nucleophiles; direct C–H bond functionalization of alcohol derivatives⁴ and hydrogenation of amino ketone derivatives.⁵ Compared with these strategies, the venerable Sharpless aminohydroxylation, which directly converts simple alkene into amino alcohol is arguably one of the most powerful and convenient ways for the easy access of such skeletons.⁶ While expedient, the relative high cost and toxicity of osmium catalyst expose somewhat limits on its practical applications. Therefore, alternative synthetic protocols, which resort to other metallic salts such as Pd,⁷ Rh,⁸ Cu,⁹ Fe¹⁰ as the catalysts have been extensively exploited and proved to be effective complements to the Sharpless aminohydroxylation. Noteworthily, a handful of metal-free and

^{b.} Institute of Advanced Synthesis, College of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu, P. R. China 210009.

E-mail: iamcfeng@njtech.edu.cn

^c Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371. E-mail: teckpena@ntu.edu.sa.

[†] These authors contributed equally to this work.

Electronic Supplementary Information (ESI) available: Detailed experimental procedures, characterization of new compounds. See DOI: 10.1039/x0xx00000x

photoredox reactions were also reported most recently.¹¹ As a cheap and abundant transition metal, Cu has also been employed in catalytic oxyamination of alkenes. For example, In 2002, Gottlich and co-workers reported a Cu-catalyzed intramolecular oxyamination of alkenes (Scheme 1a).9d In addition, Yoon and co-workers have developed a Cu(II)catalyzed addition of N-sulfonyl oxaziridine to olefins in 2007.^{9j} Although these methods proved to be effective for the introduction of vicinal amino and hydroxyl groups, some drawbacks still remain, such as limited substrate scope and attenuated regioselectivities. Therefore, the development of a novel protocol of intermolecular alkene oxyamination would unarguably be of vital importance from either academic or industrial viewpoints. In recent years, N-acyloxyamines were widely studied and used as the amine donors in the transitionmetal-catalyzed synthetic elaborations, however, the employment of these reagents as both amine and oxygen donors in a single transformation was far less exploited.¹² Herein, we would like to report a highly regioselective and atom economic protocol of copper(I)-catalyzed intermolecular alkene oxyamination, which, by making use of N-acyloxyamine as both the amine and oxygen donors, provides a novel synthetic pathway for the ready access of amino alcohol derivatives (Scheme 1b).13

Scheme 1. Cu(I)-catalyzed oxyamination of alkenes.

At the very beginning, 1-phenylprop-2-en-1-one **1a** and 4benzoyloxymorpholine **2a** were chosen as the model reaction partners for the optimization of reaction conditions (see ESI for details). When **1a** (1.0 equiv) and **2a** (1.1 equiv) were

^{a.} Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, P. R. China 230026.

ARTICLE

Published on 26 July 2016. Downloaded by Cornell University Library on 27/07/2016 03:24:36.

subjected to a catalytic amounts of CuI (20 mol%) with ophenanthroline (20 mol%) as the ligand in dioxane under nitrogen atmosphere at 80 °C for 12 h, to our delight, 50% yield of desired product 3a was obtained. The following ligand screening revealed 2,2'-dipyridine to be the ligand of choice, which delivered 3a in 76% yield. Further examination of copper catalysts revealed that only copper halide such as CuCl, CuBr and CuI exhibited catalytic reactivity for this reaction and the yield increased in the order Cl<Br<I, thus indicating a significant effect of halide counter ion for this process.¹⁴ The role of halide in this particular transformation was further confirmed in another control reaction wherein the addition of a substoichiometric amount of Bu₄NI (0.5 equiv) enabled the aminoacyloxylation with Cu(MeCN)₄PF₆ (20 mol%) as the reaction catalyst which failed to give any product in its own right. Moreover, control experiments clearly demonstrated the indispensability of copper catalysts in this transformation.

With the optimal reaction conditions in hand, the substrate scope with respect to alkene partner was subsequently studied and the results were summarized in Table 2. Generally, aryl (R^{1}) -substituted vinyl ketones proved to be well suited for this transformation. Vinyl ketones with aryl fragments containing either electron-rich or electron-deficient substituents all worked smoothly and produced vicinal acyloxyl amine derivatives in moderate to good yields. For example, when substrates bearing electron-donating groups such as methyl and methoxyl (1b and 1c) were employed, products 3b and 3c were obtained in 68% and 71% yields, respectively. Slightly lower yields were observed in the case of using substrates with electron-withdrawing groups, such as chloride, fluoride and cyanide. It is noteworthy that while o-chlorophenyl vinyl ketone 1g led to the product 3g in only 30% yield, 56% of desired product 3d was obtained when p-chlorophenyl vinyl ketone 1d was subjected to the standard reaction conditions. The discrepancy between 1g and 1d was tentatively attributed to the bidentate chelation of chlorine and ketone moieties in the case of 1g, which rendered the copper catalyst residing away from the alkene moiety thus impeding the ensuing migratory insertion step. The oxyamination process was also evaluated with sterically more encumbered substrates. It was found that β -substituted enone substrates were nicely accommodated and tended to afford the difunctionalization products in good yields, albeit with low diastereoselectivities observed in the cases of **3I** and **3m**. In contrast, α -substituted congener 1n led to a much lower yield, which is likely due to the steric congestion, thus disfavouring the migratory insertion of the copper intermediate to the alkene moiety. Upon extending the scope to alkyl and heteroaryl vinyl ketones, high yields were also obtained. Much to our surprise, while 1p afforded the product **3p** as a mixture of diastereoisomers in the ratio of 1.8:1, the related substrate 1q, however, provided product 3q as a single isomer and the exact reason for this discrepancy is presently uncertain (the structure of 3q was confirmed by single-crystal X-ray diffraction analysis).¹⁵ It is worth mentioning that while acrylates, at the present stage, were proved to be not viable substrates in this oxyamination

 Table 2: Substrate scope of activated alkenes.^a

^{*a*} Unless otherwise noted, the reactions were carried out at 80 °C using **1** (0.1 mmol), **2a** (0.11 mmol), CuI (0.02 mmol) and 2,2'-dipyridine (0.02 mmol) in solvent (1.0 mL) for 12 h. ^{*b*} Yield of isolated products are given.

In order to further evaluate the reaction generality and limitation with respect to the N-acyloxyamine reagents, a series of N-acyloxyamines were synthesized and examined and the results were summarized in Table 3. It was found that moderate to good yields of desired products could be obtained by modifying either the amino or ester fragments. For example, when pyrrolidine based N-benzoxyamine was subjected to the optimized reaction condition with 1a, the desired product 3r was obtained in 72% yield. Pleasingly, this transformation was not limited to cyclic hydroxylamine derivatives and when dibenzylamine or diethylamine based Nbenzoxyamine substrates were employed, the reaction worked smoothly to deliver the corresponding difunctionalized products in synthetically useful yields (3s, 3t). Furthermore, the ester group in the hydroxylamine derivatives could also be decorated and when 2e was employed the reaction readily occurred to provide the desired product 3u in 55% yield. It needs to be pointed out that the products obtained from acyclic N-acyloxyamine derivatives were not very stable, which underwent degradation either under the standard reaction conditions or decomposed on silica gel chromatograph. For Published on 26 July 2016. Downloaded by Cornell University Library on 27/07/2016 03:24:36.

Journal Name

example, when *N*,*N*-diethyl acyloxyamine derivatives **2f** and **2g** were examined, α -acyloxylated enones **3v** and **3w** were obtained instead of the α -acyloxyl- β -amino ketones in the yields of 53% and 37%, respectively. Although the yields were only moderate, it constituted to be a shortcut for the easy access of α -acyloxylated enone derivatives, which, however, were previously obtained through multistep-reactions with 1,2-diketones or prefunctionalized substrates as starting materials.¹⁶

Table 3: Substrate scope of N-acyloxyamine.

^a Yield of isolated products are given. ^b Purified with alkaline aluminium oxide column chromatography.

To probe the reaction mechanism, 2 equivalent TEMPO was charged into the model reaction and the yield of desired product decreased significantly from 76% to 29% (see ESI for details of control experiments). It seems a radical intermediate was involved in this process although the TEMPO trapped intermediate was not detected. In addition, a small amount of α -iodo- β -amino side product **3a'** was observed in the reaction mixture determined by ¹H NMR, reminiscent of halogen transfer from Cu(II)-X to alkyl radical intermediate.¹⁷ Furthermore, when 3a' was subjected into the standard reaction conditions the desired product 3a could be obtained in 30% yield. Taken together, these results indicated that compound 3a' probably stems from a radical intermediate derived from 1a and a Cu(II) complex and might be an intermediate on the way to product 3a formation. Furthermore, it was found that either cis- or trans-chalcone gave a mixture of diastereomers with essentially the same ratio, which further lent support the involvement of a radical intermediate, thus resulting in the loss of stereo information of starting materials. Therefore, a provisionally proposed reaction mechanism for this Cu(I)-catalyzed oxyamination of α,β unsaturated ketones was depicted in Scheme 2. Initially, the oxidative addition of Cul complex I with N-benzyloxyamine forms an aminocopper intermediate II, which is in equilibrium with aminyl radical species II'. Then intermediate II undergoes a sequence of alkene complexation and migratory insertion to form alkyl-Cu(III) species III. At this stage, two possible reaction pathways could be envisioned for the access of oxyamination product 3: the first (path a) comprises a selective reductive elimination to produce the desired product 3a while the other

pathway (path b) lies on the involvement of α -iodo- β -amino ketone 3' as the key reaction intermediate, which evolves into the product 3 with simultaneous regeneration of the active copper catalyst I upon further interaction with acyloxycopper complex V.^{9d,13} It needs to be further pointed out that 2-iodo-3-morpholino-1-phenylpropan-1-one 3a' was always observed at a very low level along with product 3a accumulating by a real-time monitoring of the reaction between 1a and 2a and the characteristic ¹H-NMR signal of **3a'** disappeared when the reaction completed. This observation indicates the radical pathway b is viable for the reaction however it may be less favoured than the ionic pathway a. The existence of equilibrium between the radical intermediate IV and the alkyl-Cu(III) complex III is consistent with the similar diastereoselectivities obtained from both E and Z enones.

Scheme 2. Proposed reaction mechanism.

In conclusion, we have reported a copper(I)-catalyzed regioselective aminoacyloxylation of electron deficient alkenes. This reaction works efficiently and delivers the ester derivatives of β -amino alcohol. Compared with previous reports, this reaction features a 100% atom economy fashion with both amino and oxygen functionalities originating from the sole *N*-acyloxyamine reagents without any added acid or amine derivatives for promotion. By tuning the amino or ester fragments, a diversity of functionalized β -amino alcohol derivatives could be easily accessed in a straightforward manner and a variety of synthetically useful functional groups were well tolerated under reaction conditions.

Acknowledgements

We gratefully acknowledge the funding support of the State Key Program of National Natural Science Foundation of China (21432009). We also thank the Academic Research Fund from Nanjing Tech University (39837110), Nanyang Technological University, Singapore Ministry of Education Academic Research Fund [Tier 1: MOE2015-T1-001-070 (RG5/15) and MOE2014-T1-001-102 (RG9/14)], and Singapore National Research Foundation (NRF2015NRF-POC001-024) for generous financial support.

2007, **129**, 1866; (k) D. J. Michaelis, M. A. Ischay and T. P. Yoon, *J. Am. Chem. Soc.*, 2008, **130**, 6610.
10 (a) G. S. Liu, Y. Q. Zhang, Y. A. Yuan and H. Xu, *J. Am. Chem.*

- Soc., 2013, 135, 3343; (b) D. F. Lu, C. L. Zhu, Z. X. Jia and H. Xu, J. Am. Chem. Soc., 2014, 136, 13186; (c) Z. Ma, B. C. Naylor, B. M. Loertscher, D. D. Hafen, J. M. Li and S. L. Castle, J. Org. Chem., 2012, 77, 1208; (d) K. S. Williamson and T. P. Yoon, J. Am. Chem. Soc., 2012, 134, 12370; (e) Y.-Q. Zhang, Y.-A. Yuan, G.-S. Liu and H. Xu, Org. Lett., 2013, 15, 3910; (f) K. S. Williamson and T. P. Yoon, J. Am. Chem. Soc., 2010, 132,
 - 4570.
 (a) U. Farid and T. Wirth, Angew. Chem. Int. Ed., 2012, 51, 3462; (b) G.-Q. Liu, L. Li, L. Duan and Y.-M. Li, RSC Adv., 2015, 5, 61137; (c) K. Moriyama, Y. Izumisawa and H. Togo, J. Org. Chem., 2012, 77, 9846; (d) V. A. Schmidt and E. J. Alexanian, J. Am. Chem. Soc., 2011, 133, 11402; (e) J. M. Mahoney, C. R. Smith and J. N. Johnston, J. Am. Chem. Soc., 2005, 127, 1354; (f) H.-C. Xu and K. D. Moeller, J. Am. Chem. Soc., 2008, 130, 13542; (g) H. M. Lovick and F. E. Michael, J. Am. Chem. Soc., 2010, 132, 1249; (h) D. J. Wardrop, E. G. Bowen, R. E. Forslund, A. D. Sussman and S. L. Weerasekera, J. Am. Chem. Soc., 2010, 132, 1188; (i) K. Miyazawa, T. Koike and M. Akita, Chem.-Eur. J., 2015, 21, 11677.
 - 12 (a) Z. Dong and G. Dong, J. Am. Chem. Soc., 2013, 135, 18350; (b) Y. Yang, S. L. Shi, D. W. Niu, P. Liu and S. L. Buchwald, Science, 2015, 349, 62; (c) S. Zhu, N. Niljianskul and S. L. Buchwald, J. Am. Chem. Soc., 2013, 135, 15746; (d) Y. Miki, K. Hirano, T. Satoh and M. Miura, Angew. Chem. Int. Ed., 2013, 52, 10830; (e) W. Wang, X. Peng, F. Wei, C.-H. Tung and Z. Xu, Angew. Chem. Int. Ed., 2016, 55, 649; (f) Y. Xi, T. W. Butcher, J. Zhang and J. F. Hartwig, Angew. Chem. Int. Ed., 2016, 55, 776; (g) S. L. McDonald, C. E. Hendrick and Q. Wang, Angew. Chem. Int. Ed., 2014, 53, 4667; (h) S. L. McDonald and Q. Wang, Angew. Chem. Int. Ed., 2014, 53, 1867; (i) N. Matsuda, K. Hirano, T. Satoh and M. Miura, Angew. Chem. Int. Ed., 2012, 51, 3642; (j) R. P. Rucker, A. M. Whittaker, H. Dang and G. Lalic, Angew. Chem. Int. Ed., 2012, 51, 3953; (k) K. Hirano, T. Satoh and M. Miura, Org. Lett., 2011, 13, 2395; (I) N. Matsuda, K. Hirano, T. Satoh and M Miura, J. Org. Chem., 2012, 77, 617; (m) N. Matsuda, K. Hirano, T. Satoh and M. Miura, J. Am. Chem. Soc., 2013, 135, 4934; (n) R. Sakae, K. Hirano and M. Miura, J. Am. Chem. Soc., 2015, 137, 6460; (o) B. N. Hemric and Q. Wang, Beilstein J. Org. Chem., 2016, 12, 22; (p) Y. Li, X. Zhou, G. F. Zheng and Q. Zhang, Beilstein J. Org. Chem., 2015, 11, 2721.
 - 13 While preparing this manuscript a related protocol for the electron-neutral alkene oxyamination using external acid as oxygen donor was reported, see: B. N. Hemric, K. Shen and Q. Wang, J. Am. Chem. Soc., 2016, **138**, 5813.
 - 14 K. Fagnou and M. Lautens, Angew. Chem. Int. Ed., 2002, 41, 26.
 - 15 CCDC 1491982, see the Supporting Information for details.
 - 16 (a) T. Sun and X. Zhang, Adv. Synth. Catal., 2012, 354, 3211;
 (b) B. G. Pujanauski, B. A. Bhanu Prasad and R. Sarpong, J. Am. Chem. Soc., 2006, 128, 6786; (c) Y. Peng, L. Cui, G. Zhang and L. Zhang, J. Am. Chem. Soc., 2009, 131, 5062; (d) R. Mahrwald and H. Schick, Angew. Chem. Int. Ed., 1991, 30, 593; (e) T. Jiang, X. Quan, C. Zhu, Ph. G. Andersson and J.-E. Bäckvall, Angew. Chem. Int. Ed., 2016, 55, 5824.
 - 17 Y. Koganemaru, M. Kitamura and K. Narasaka, Chem. Lett., 2002, 784.
- ChemComm Accepted Manuscript

Published on 26 July 2016. Downloaded by Cornell University Library on 27/07/2016 03:24:36

Notes and references

- (a) D. J. Ager, I. Prakash and D. R Schaad, *Chem. Rev.*, 1996, 96, 835; (b) T. J. Donohoe, C. K. A. Callens, A. Flores, A. R. Lacy and A. H. Rathi, *Chem.-Eur. J.*, 2011, 17, 58.
- 2 (a) S. Kobayashi, Y. Mori, J. S. Fossey and M. M. Salter, *Chem. Rev.*, 2011, **111**, 2626; (b) F. A. Luzzio, *Tetrahedron*, 2001, **57**, 915.
- 3 (a) X. E. Hu, *Tetrahedron*, 2004, **60**, 2701; (b) J. B. Sweeney, *Chem. Soc. Rev.*, 2002, **31**, 247.
- 4 (a) T. Kang, H. Kim, J. G. Kim and S. Chang, *Chem. Comm.*, 2014, **50**, 12073; (b) C. G. Espino and J. D. Bois, *Angew. Chem. Int. Ed.*, 2001, **40**, 598; (c) K. J. Fraunhoffer and M. C. White, *J. Am. Chem. Soc.*, 2007, **129**, 7274; (d) J.-L. Liang, S.-X. Yuan, J.-S. Huang, W.-Y. Yu and C.-M. Che, *Angew. Chem. Int. Ed.*, 2002, **41**, 3465; (e) H. Lebel, K. Huard and S. Lectard, *J. Am. Chem. Soc.*, 2005, **127**, 14198.
- 5 (a) P. He, H. Zheng, X. Liu, X. Lian, L. Lin and X. Feng, *Chem.-Eur. J.*, 2014, **20**, 13482; (b) S. Liu, J. H. Xie, L. X. Wang and Q. L. Zhou, *Angew. Chem. Int. Ed.*, 2007, **46**, 7506; (c) T. Ohkuma, D. Ishii, H. Takeno and R. Noyori, *J. Am. Chem. Soc.*, 2000, **122**, 6510; (d) H. Takahashi, S. Sakuraba, H. Takeda and K. Achiwa, *J. Am. Chem. Soc.*, 1990, **112**, 5876; (e) A. W. Lei, S. I. Wu, M. H He and X. M. Zhang, *J. Am. Chem. Soc.*, 1990, **126**, 1626.
- 6 (a) K. B. Sharpless, A. O. Chong and K. Oshima, *J. Org. Chem.*, 1976, **41**, 177; (b) G. G. Li, H. T. Chang and K. B. Sharpless, *Angew. Chem. Int. Ed.*, 1996, **35**, 451.
- 7 (a) L. V. Desai and M. S. Sanford, Angew. Chem. Int. Ed., 2007,
 46, 5737; (b) U. Orcel and J. Waser, Angew. Chem. Int. Ed.,
 2015, 54, 5250; (c) A. B. Weinstein, D. P. Schuman, Z. X. Tan
 and S. S. Stahl, Angew. Chem. Int. Ed., 2013, 52, 11867; (d) H.
 Zhu, P. Chen and G. Liu, J. Am. Chem. Soc., 2014, 136, 1766;
 (e) E. J. Alexanian, C. Lee and E. J. Sorensen, J. Am. Chem.
 Soc., 2005, 127, 7690; (f) G. S. Liu and S. S. Stahl, J. Am. Chem.
 Soc., 2006, 128, 7179; (g) J.-E. Bä ckvall and S. E. Bystrom, J.
 Org. Chem., 1982, 47, 1126; (h) J.-E. Bäckvall and E. E.
 Bjorkman J. Org. Chem., 1980, 45, 2893; (i) J.-E. Bäckvall,
 Tetrahcdron Lett., 1975, 26, 2225.
- 8 (a) S. Beaumont, V. Pons, P. Retailleau, R. H. Dodd and P. Dauban, Angew. Chem. Int. Ed., 2010, 49, 1634; (b) A. W. Buesking and J. A. Ellman, Chem. Sci., 2014, 5, 1983; (c) G. Dequirez, J. Ciesielski, P. Retailleau and P. Dauban, Chem.-Eur. J., 2014, 20, 8929; (d) R. Lorpitthaya, K. B. Sophy, J. L. Kuo and X. W. Liu, Org. Biomol. Chem., 2009, 7, 1284; (e) R. Lorpitthaya, Z. Z. Xie, J. L. Kuo and X. W. Liu, Chem.-Eur. J., 2008, 14, 1561; (f) A. Padwa, A. C. Flick, C. A. Leverett and T. Stengel, J. Org. Chem., 2004, 69, 6377; (g) E. L.-Agabaa, E. Menhaji, L. N. Perlson and C. M. Rojas, Org. Lett., 2002, 4, 863; (h) A. Padwa and T. Stengel, Org. Lett., 2002, 4, 2137; (i) R. Gupta, K. M. Sogi, S. E. Bernard, J. D. Decatur and C. M. Rojas, Org. Lett., 2002, 11, 1527.
- 9 (a) T. Benkovics, J. Du, I. A. Guzei and T. P. Yoon, J. Org. Chem., 2009, 74, 5545; (b) T. Benkovics, I. A. Guzei and T. P. Yoon, Angew. Chem. Int. Ed., 2010, 49, 9153; (c) D. J. Michaelis, K. S. Williamson and T. P. Yoon, Tetrahedron, 2009, 65, 5118; (d) M. Noack and R. Gottlich, Chem. Comm., 2002, 536; (e) M. C. Paderes and S. R. Chemler, Eur. J. Org. Chem., 2011, 3679; (f) B. W. Turnpenny and S. R. Chemler, Chem. Sci., 2014, 5, 1786; (g) P. H. Fuller, J.-W. Kim and S. R. Chemler, J. Am. Chem. Soc., 2008, 130, 17638; (h) F. C. Sequeira and S. R. Chemler, Org. Lett., 2012, 14, 4482; (i) M. C. Paderes and S. R. Chemler, Org. Lett., 2009, 11, 1915; (j) D. J. Michaelis, C. J. Shaffer and T. P. Yoon, J. Am. Chem. Soc.,