
#### Note

# Enzymic oxidation of D-arabino-hexos-2-ulose (D-glucosone) to D-arabino-2hexulosonic acid ("2-keto-D-gluconic acid")

JOHN GEIGERT, SAUL L. NEIDLEMAN, DAVID S. HIRANO, BEVERLY WOLF, AND BARBARA M. PANSCHAR Cetus Corporation, 600 Bancroft Way, Berkeley, CA 94710 (U.S.A.) (Received August 9th, 1982; accepted for publication, September 4th, 1982)

Scheme 1a presents a known enzymic pathway for forming D-arabino-2hexulosonic acid ("2-keto-D-gluconic acid", 4) from D-glucose (1). This pathway involves the intermediate D-glucono-1,5-lactone (2) and the enzymes D-glucose-1oxidase (EC 1.1.3.4) and pyranose-2-oxidase (EC 1.1.3.10)<sup>1,2</sup>. We now propose an



Scheme 1. Two enzymic pathways from D-glucose (1) to "2-keto-D-gluconic acid" (4). [Both pathways require the same two enzymes. (a) Known pathway, involving D-glucono-1,5-lactone (2). (b) Proposed, alternative pathway, involving D-glucosone (3).]

0008-6215/83/0000-0000/\$ 03.00, © 1983 - Elsevier Scientific Publishing Company

alternative, enzymic pathway (see Scheme 1b) that requires the same two enzymes, but which proceeds through the intermediate D-glucosone (3).

In 1963, Bentley<sup>3</sup> reported that the enzyme D-glucose-1-oxidase oxidizes D-glucosone, but, because neither the identity of the oxidized product was determined nor D-glucosone free from residual D-glucose was used, later reports on D-glucose-1-oxidase no longer mention this activity<sup>1</sup>. The availability of pure D-glucosone<sup>4</sup> has now permitted us to discover the formation of "2-keto-D-gluconic acid" from D-glucosone by D-glucose-1-oxidase.

## EXPERIMENTAL

*Enzymic oxidation.* — D-Glucosone (20 mg) and catalase (Sigma Chemical Co., Catalog No. C-10, 900 units, from bovine liver) were placed in a 100-mL, Erlenmeyer flask containing 0.1M potassium phosphate buffer, pH 6.0 (20 mL). D-Glucose-1-oxidase (Sigma Chemical Co., Catalog No. G-6500; 100 units, from *Aspergillus niger*) was then added, and the reaction was conducted for 6 h at 25<sup>-</sup>, with gentle stirring.

Analytical methods. -- The oxidation of D-glucosone was monitored by high performance liquid chromatography (h.p.l.c.) as previously described<sup>4</sup>. "2-Keto-Dgluconic acid", D-glucosone, and other sugars and sugar acids are readily detected by this analytical method<sup>5</sup>. Confirmation of the identity of the product was made by comparing the chromatographic behavior and optical activity of the D-glucosoneoxidized product with those of an authentic sample of "2-keto-D-gluconic acid" (purchased from Sigma Chemical Company: hemi-calcium salt).

In addition to measurement by h.p.l.c., the oxidized product of D-glucosone cochromatographed with authentic "2-keto-D-gluconic acid" in the following thinlayer chromatography (1.l.c.) system: Avicel-coated, glass plates; developed with 25:3:4 (v/v)  $95^{\circ}_{,o}$  ethanol-water- $25^{\circ}_{,o}$  ammonium hydroxide. Plates were sprayed with aniline phthalate reagent (1.15° $_{,o}$  of aniline,  $2^{\circ}_{,o}$  of *o*-phthalic acid, and  $1^{\circ}_{,o}$  of epichlorohydrin in 1:2 isopropyl alcohol-methanol).

A Perkin-Elmer Model 271 polarimeter was used to measure the specific rotation of the substrate and the product. Aqueous solutions containing 1mm potassium phosphate buffer, pH 6.0, were used.

### **RESULTS AND DISCUSSION**

D-Glucose-1-oxidase converts D-glucosone into an oxidation product and hydrogen peroxide. The hydrogen peroxide can oxidize certain critical sites on the enzyme molecule (*e.g.*, sulfhydryl groups), damaging its function. Under the experimental conditions described herein, the hydrogen peroxide is decomposed to water and oxygen by the catalase. An alternative method of removing the  $H_2O_2$  produced is to consume it to yield a useful co-product<sup>6</sup>.

By comparing the chromatographic behavior of the D-glucosone-derived product

with that of an authentic sample of "2-keto-D-gluconic acid", its identity was readily achieved. Identical retention-times were obtained in the h.p.l.c. method. Identical distances of migration ( $R_{\rm F}$  0.42) and formation of an identical color (purple) were obtained in the t.l.c. method. (D-Glucosone showed a brown-colored spot at  $R_{\rm F}$ 0.51.) The oxidation product of D-glucosone showed a specific rotation essentially equivalent to that of authentic "2-keto-D-gluconic acid";  $[\alpha]_{\rm D}^{20}$  (degrees): D-Glucosone (substrate), -9.8; oxidation product of D-glucosone, -86.2; authentic "2-keto-Dgluconic acid", -85.4.

This enzymic reaction suggests that two pathways may exist to convert Dglucose into "2-keto-D-gluconic acid", rather than only that shown in Scheme 1a. It is even possible that the pathway shown in Scheme 1b, *i.e.*, *via* D-glucosone, may, in fact, be the major pathway in some micro-organisms. If the pathway shown in Scheme 1a proceeds at a higher rate than that shown in Scheme 1b, the pathway in Scheme 1b would go undetected.

#### ACKNOWLEDGMENTS

Our thanks are due Dr. T. E. Liu for the enzymic synthesis of D-glucosone, and Dr. M. Moreland for her technical assistance.

#### REFERENCES

- 1 T. E. BARMAN, Enzyme Handbook, 1 (1969) 112-113.
- 2 F. W. JANSSEN AND H. W. RUELIUS, Biochim. Biophys. Acta, 167 (1968) 501-510.
- 3 R. BENTLEY, Enzymes, 7 (1963) 567-586.
- 4 T. E. LIU, B. WOLF, J. GEIGERT, S. L. NEIDLEMAN, J. D. CHIN, AND D. S. HIRANO, *Carbohydr. Res.*, 113 (1983) 151-157.
- 5 J. GEIGERT, D. S. HIRANO, AND S. L. NEIDLEMAN, J. Chromatogr., 202 (1980) 319-322.
- 6 S. L. NEIDLEMAN, W. F. AMON, JR., AND J. GEIGERT, U.S. Pat. 4,246,347 (1981).