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Assignment of Carbon-13 Nuclear Magnetic
Resonance Spectra of Some Friedelanes
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Department of Chemistry, University College of Science, Calcutta 700 009, India

Carbon-13 resonance assignments of cerin acetate, 2a-pyridine-N-oxyfriedelan-3-one, epi-cerin and its acetate,
3a-hydroxyfriedelan-2-one and its acetate, 3-hydroxyfriedel-3-en-2-one and its acetate, friedelane-3,7-dione, 3§3-
hydroxyfriedelan-7-one, canophyllol, friedelolactone and friedelolactone-2a-yl acetate, friedelane-2a,3a-diol and
its diacetate, friedelane-2$,3a-diyl diacetate, pachysandiyl-A diacetate and friedelane-2f,3B-diyl diacetate have
been made. The carbon signals of 3-oxofriedelan-29-ol and its acetate, methyl 3-oxofriedelan-29-oate, 3-
oxofriedelan-30-0l, maytenfoliol, maytensifolin-A, maytensifolin-B, pachysonol and pristimerin reported in the
literature have also been considered for their specific resonance assignments. A few signal assignments of some
friedelanes, viz. friedelan-28-ol, friedelan-29-ol, friedelan-30-ol, friedelan-29-al, 3-oxofriedelane-21c,26-diol and
zeylasterone, reported recently by others, are unusual and have been reviewed.
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INTRODUCTION

Since the appearance of ambiguous resonance assign-
ments of some friedelanones’ and the subsequent
revision of their resonance assignments by us,” a few
more publications in the series have appeared.””’ We
were interested in providing alternative support for our
resonance assignments of friedelin® (1). For this purpose
we obtained cerin acetate (3), 2a-pyridine-N-
oxyfriedelan-3-one (4), epi-cerin (5) and its acetate (6),
3a-hydroxyfriedelan-2-one (7) and its acetate (8), 3-
hydroxyfriedel-3-en-2-one (9) and its acetate (10),
friedelane-3,7-dione (11), 3B-hydroxyfriedelan-7-one
(12), canophyllol (13), friedelolactone® (14), friedelane-
2a,3a-diol (15) and its diacetate (16), friedelane-28,3 a-
diyl diacetate (17), pachysandiyl-A diacetate (18),
friedelane-28,33-diyl diacetate (19) and friedelolac-
tone-2a-yl acetate (19a), and recorded their *C NMR
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spectra which, to our knowledge, have not been pub-
lished. We also present some signal assignments for
friedelan-28-ol° (22), friedelan-30-ol° (23), friedelan-29-
ol’ (24), friedelan-29-al’ (25), 3-oxofriedelane-21a,26-
diol’ (26) and zeylasterone® (33) reported recently which
are inconsistent and require reconsideration. The carbon
signals of methyl 3-oxofriedelan-29-oate’ (21), pachy-
sonol'® (27), maytensifolin-B'® (28), 3-oxofriedelan-29-
ol'® (29) and its acetate’ (20), maytenfoliol'® (30), 3-
oxofriedelan-30-01'® (31), maytensifolin-A'® (32) and
pristimerin'' (34) recorded in the literature®'" have been
analysed for the purpose of making specific assignments.

RESULTS AND DISCUSSION

The complete signal assignments for the friedelanes 1-19
and 19a are reported in Table 1. The assignments are
based on the determination of the degree of protonation
of each carbon from the corresponding SFORD and
APT spectra, as well as from the chemical shift changes
on change of functionalities using chemical shift
theory,'” in particular the effect of carbonyl or hydroxy
(axial or equatorial) incorporation into a rigid
framework. Finally, the friedelane resonances so derived
were confirmed in appropriate cases by lanthanide-
induced shift studies using either Pr(fod);-d,; or
Eu(fod);-d,,.

The spectra of 3-10, 14 and 19a were of help in
identifying the signals associated with C-1 to C-6 and
C-10 in friedelin (1) and friedelan-3 8-yl acetate (2). The
axial acetoxy function in 3 deshielded the methylene
signal for C-1 (ca 5.8 ppm) and shielded considerably
(due to its y-effect) the signals for C-4 and C-10 by
approximately 4.9 and 5.2 ppm, respectively. The
equatorial hydroxy or acetoxy functions in 5 and 6
deshielded the C-1 resonances significantly (10.3 and
6.3 ppm, respectively) but marginally shielded the sig-
nals associated with C-4 and C-10 (ca 2.0-2.8 ppm) rela-
tive to the appropriate carbon resonances in 1. The
change from 1 to 7 or 8 led to a downfield shift of the
most upfield methyl signal (8 6.7) in 1 by about 3.9-
4.0 ppm, necessitating its relationship with C-23. A large
downfield shift of the C-1 resonance (ca 13.8-14.9 ppm)
was also noted. Further, the C-4 methine resonance at
6 58.1 and the non-protonated carbon resonance for C-5
at § 42.0 in the spectrum of 1 were replaced in 7 by
analogous resonances at § 54.4 (further shifted upfield
to 8 50.2 in 8) and 38.0. The assignments of 3-hydroxy-
friedel-3-en-2-one (9) and its acetate (10) gave further
support for the signals of C-1 to C-5 and C-10, and also
an idea about the resonance positions for C-6 and C-24
in 1. Carbons C-4, C-10, C-23 and C-24 in 14 resonated
downfield (by 26.7, 4.5, 6.6 and 1.5 ppm, respectively)
while C-1, C-2, C-5 and C-6 experienced upfield shifts
on going from 1 to 14.

The spectrum of friedelane-3,7-dione (11) was studied
to identify the signals associated with C-5 to C-9 and
C-14in 1. The carbonyl function at C-7 in 11 was found
to exert a strong deshielding influence on the adjacent
carbons C-6 (ca 15.7 ppm) and C-8 (ca 10.4 ppm), and
gave appreciable downfield shifts for C-5 and C-9
(5.0 ppm). Further, C-14, being equatorial to ring B and
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adjacent to the C-7 carbonyl function, experienced a
minor upfield shift (0.7 ppm). An analogous observation
was made on comparison of the spectra of 12 and 2.
However, C-17 in 11 resonates at 6 30.1, and not at
8 34.7 as has been reported recently.*

The change from 1 to canophyllol (13) significantly
affected the resonances at 6359 (CH,), 29.9 (-C-),
428 (CH), 39.2(CH,) and 32.0(CH;) which are
replaced by the signals at &29.0(CH,), 35.1(-C-),
39.2 (CH), 33.2 (CH,) and 67.0 (CH,OH), respectively,
in 13. They are thus associated with C-16, C-17, C-18,
C-22 and C-28, as appropriate. The “C spectra of
3-oxofriedelan-29-yl acetate (20) and methyl 3-
oxofriedelan-29-oate (21) reported by Betancor et al’
have also been analysed. Both these spectra are more
or less superimposable with the spectrum of 1, except
for the resonances associated with C-19, C-20, C-21,
C-29 and C-30. The functionalization of 1 at C-29 as in
20 and 21 caused appropriate downfield shifts of the
C-20 and C-29 and upfield shifts of the C-19, C-21 and
C-30 resonances {ca 4.5-5.4 ppm in 20; ca 3.1-4.1 ppm
in 21). The spectrum of 27-hydroxyfriedelane® was of
help in assigning resonances for C-12 and C-13 in 1,
leaving only the resonances of C-11 and C-15 for
identification. C-12 and C-15 in 1 should have similar
resonance positions as their magnetic environments are
similar while C-11, experiencing one less y-interaction
from an axial methyl group, is likely to absorb relatively
downfield of C-185.

The acetoxy function at C-2 in pachysandiyl diacetate
(18) and friedelan-28,3 8-diyl diacetate (19) had similar
effects on the C-1 resonance (downfield shifts relative
to 2by 5.2 and 5.9 ppm, respectively); however, the axial
group in 18 caused stronger upfield shifts for the C-4
and C-10 (4.3 and 7.9 ppm, respectively, relative to 2)
resonances than the equatorial group in 19 (1.6 and
2.5 ppm, respectively, compared with 2). Similarly, a
change from 3a-hydroxyfriedelan-2-one (7) to
friedelane-2a,3a-diol (15) led to upfield shifts of the
C-4 and C-10 signals by 8.8 and 9.0 ppm, respectively,
and of those of the C-1 and C-3 resonances by 9.4 and
3.7 ppm, respectively. A 38 (axial) substituent is invol-
ved in a gauche-butane type of interaction with the C-1
methylene in 18 and 19, causing its strong upfield shift
relative to that in 6 and 3, respectively. For a 3a sub-
stituent (as in 15-17 relative to 3 and 6 as appropriate)
such a strong upfield shift was not found.

The observation described above draws attention to
the resonance assignments for C-16 and C-17 in
friedelan-28-0l (22) and of C-19, C-21 and C-22 in
friedelan-30-ol (23), friedelan-29-ol (24) and friedelan-
29-al (25) reported recently by other workers.” The
hydroxy group on C-28 in 22 was reported ° to have a
minor influence on the C-16 and C-17 resonances. We,
however, feel from our experience on canophyliol (13)
that the assignments should be reversed, and thus C-16
and C-17 in 22 are likely to be related to the resonances
at 629.2 and 34.2, respectively. [The numbers of
attached protons at C-16 and C-17 are different (2 and
0). These assignments would be more unambiguous if
the multiplicities of these carbons were to be observed.]
It was also reported that the incorporation of a hydroxy
function at C-29 or C-30, as in 23 and 24, led to an
unusual upfield shift for the C-22 signal (8-carbon with

respect to the oxygen substituent) of 11.0-11.4 ppm rela-
tive to the C-22 resonance in 1. Again, C-19 in 23 and
24 was reported to undergo a downfield shift (2.9-
4.3 ppm) relative to 1, while C-21 experienced an upfield
shift (3.0-3.4ppm) for a similar functionalization at
C-29 or C-30. Further, the formyl group at C-20 in 25
was reported’ to exert opposing influences on the 8-
carbons C-19 and C-21 (deshielding the former by
7.2 ppm while shielding the latter by 7.8 ppm), concom-
mitant with a strong upfield shift of the C-22 resonance
(9.9 ppm) relative to 1. It thus becomes apparent that a
reassignment of these resonances in 23, 24 and 25 is
needed, and that the resonances at 8 39.5 (5 38.1 and
42.4 in 24 and 25, respectively), 29.7 (6 29.3 in 24 and
25) and 27.8 (& 28.2 in 24 and 24.9 in 25) in 23 are more
likely to be related to C-22, C-19 and C-21, respectively,
for a better correspondence with substituent effects.'”
The hydroxy group on C-26 in 26 should affect C-15
instead of C-12. Thus, the & 23.4 methylene resonance
in 26 is probably associated with C-15, while C-12 should
resonate in the same region (5 30.0) as in 1.

The carbon spectra of pachysonol (27), maytensifolin-
B (28), 3-oxofriedelan-29-0l (29), maytenfoliol (30), 3-
oxofriedelan-30-o0l (31) and maytensifolin-A (32)
recently reported by Nozaki ef al.'® have been considered
in this context, and the probable assignments are given
in Table 2. The C=O0O function at C-16 in 28 was found
to exert strong deshielding effects on the a-carbons, and
also on the B-carbons of the cyclohexanone ring. A large
upfield shift (about 8.4 ppm relative to 1) noted for the
other B-carbon, peri to the carbonyl, is reminiscent of
the influence of a carbonyl function at C-6 or C-22 in
friedelane systems.”* The hydroxy group at C-16 in 27
had, however, an unusual deshielding effect on C-15
(ca 12.1 ppm relative to 1) and also affected the C-22
resonance {ca 3.2 ppm upfield shift through a y-interac-
tion). The C-29 methyl carbon in 31 resonanted slightly
upfield (6 25.87) of the C-30 methyl carbon in 29 and
30 (5 28.60-28.96), further supporting the associatjon of
the 6 31.7 and 34.9 resonances with C-29 and C-30,
respectively, in 1. The apparent upfield position of C-22
in 30 (& 28.32 or 29.17) compared with a similar carbon
in 13 (6 33.2) is not, however, readily accountable. The
contention of Nozaki et al'® that C-17 in 32 is related
to a 8203.71 (s) resonance rather than the signal at
8 82.79 (s) is strange. A few other anomalies noted dur-
ing the analysis are given as footnotes in Table 2.

The resonance at § 173.7 assigned to C-2 in zey-
lasterone® (33) is too downfield for an oxygenated car-
bon of a catechol system, even if the deshielding effect
of the para carbonyl at C-6 is considered. Again, the
resonance at & 153.8 related® to C-8 in 33 is too far
upfield considering that it is 8- and conjugated to a
carbonyl, and also has deshielding effects from several
a- and B-substituents. An interchange of the resonance
assignments between C-2 and C-8 in 33, however, gives
a better correspondance. The C-27 and C-28 resonance
assignments® in 33 to the signals at §32.7 and 18.3,
respectively, are inconsistent when compared with those
in 1 as well as in 20, and should be reversed. Again, the
carbomethoxy substituent in 33 and 34 should affect, as
in 20, the C-20 resonance (relative to 1) while C-17
should be more.or less unaffected. The assignment of
the 8 30.5 non-protonated carbon resonance in 33° and
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pristimerin'' (34) is thus untenable. Hence C-20 is likely
to be linked with the resonance at & ca 40.3-40.5, and
C-17 with the signal at 6 30.5. A partial carbon shift
assignment of 34 was made by earlier workers."' The
assignments of the remaining signals of 34 given in Table
2 followed from comparison with the revised assignment
of zeylasterone, which were deduced by comparison
with the carbon chemical shifts of 20 and other
friedelanes.

EXPERIMENTAL

The *C NMR spectra were recorded on a Varian CFT-
20 NMR spectrometer operating at 20.1 MHz in the FT
mode. The compounds were submitted to noise decoup-
ling and single-frequency off-resonance decoupling to
establish the carbon shifts and the degree of protonation.
The samples were recorded in 5 mm o.d. tubes using
CDCIl; as solvent as well as internal lock and internal
standard. All solutions were ca 5-10% in concentration.
The chemical shifts reported are in & (ppm) downfield
from TMS; 81ms = 8cpcy, +76.9 ppm. The spectra were
run with sweep width 4500 Hz, pulse width 6 us
(approximately 45° flip angle) and approximately 1.5s
delay between pulses. The attached proton test (APT)
experiment was also carried out using the pulse sequence
D,~(7/4)-7-m-7+1-m-D,-FID, where D;=0.6s, 7=
8 ms and D,=1500 us for 5, 6, 9 and 19a. The shift
studies were carried out using approximately 0.05, 0.10
and 0.15 molar equivalents of LSR. Pr(fod);-d,; was
employed for 3, 7 and 8 and Eu(fod);-d,, was used for
14.

Cerin, 5, 7, 9 and 13 were isolated'>'* from the bark
of Quercus suber (Cork waste). Acetylation of cerin, 5,

7 and 9 with Ac,0 in C;H;sN at room temperature for
12 h afforded 3 (and also 4 in one run), 6, 8 and 10,
respectively. NaBH, reduction of 3 and § in MeOH and
subsequent treatment of the products with Ac,O in
CsHsN as above afforded 18 and 19, respectively. NaBH,
reduction of 11 gave 12, while similar reduction of 7
afforded 15 and friedelane-2 8,3 @-diol which, on acetyla-
tion as above, furnished 16 and 17, respectively.
Friedelin (1) yielded 14 on treatment with m-chloroper-
benzoic acid (m-CPBA) in CH,ClL, at —5 °C for 24 h, or
by refluxing with H,0, and SeO,; in +-BuOH for 35h.
Treatment with Ac,O and CsH;N of the product from
the reaction of m-CPBA with cerin, as above, afforded
19a. These compounds were purified by chromatography
over silica gel and subsequent recrystallization from
suitable solvent mixtures, and were identified® from
their spectral (IR, '"H NMR and MS) characteristics and
also by direct comparison with authentic samples in
appropriate cases. Compound 4, C;sHs,0,N"Cl™
(M* m/z520), m.p. 178-80°C, [a]p+20° (CHCl,)
exhibits IR bands (KBr) at 1725, 1620, 1502, 1485, 1455,
1385, 1180, 1000 and 690 cm™' and 'H NMR signals
(360 MHz, CDCl;) at 6§ 9.08 (2H, d, J =5.8 Hz, H,-a),
8.49 (1H, t, J=7.8 Hz, H-y), 8.06 (2H, dd, J =5.8 and
7.8 Hz, H,-B8), 6.70 (1H, m, H-2), 1.17 (3H,s), 1.08
(3H,s),1.00(3H,s),0.98 (3H, 5),0.96 (3H, d, J =7.0 Hz,
H;-23), 0.94 (3H,s), 0.90 (3H, s) and 0.86 (3H, s).
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