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Abstract: Site- and enantioselective intramolecular C-H insertion of a-methoxycarbonyl-c-
diazoacetamides has been achieved by exploiting a p-nitrophenyl group as the N-substituent and
dirhodium(ll) tetrakis[N-phthaloyl-(S)-tert-leucinate] as catalyst, leading to the formation of 4-
substituted 2-pyrrolidinone derivatives of up to 82% ee. The efficiency of the present protocol has been
verified well by a short-step synthesis of (R)-(-)-baclofen.

© 1997 Elsevier Science Ltd. All rights reserved.

Enantioselective C-H insertion reaction of a-diazo carbonyl compounds catalyzed by chiral dirhodium(II)
complexes is rapidly becoming recognized as a potentially powerful means for the construction of both
carbocyclic and heterocyclic systems in optically active form.] OQur efforts in this area have led to the
development of dirhodium(II) carboxylates incorporating N-phthaloyl-(S)-amino acids as the bridging ligands,
which catalyze intramolecular C-H insertion reactions of a-diazo carbonyl compounds site-selectively to give
optically active cyclopentanone, 2-indanone, and 2-azetidinone derivatives with up to 80%, 98%, and 74% ee,
respectively.24 As a logical extension of our studies, we have addressed enantioselective construction of 4-
substituted 2-pyrrolidinones via a site-selective C-H insertion process.

Apart from enantiocontrol, site-control has remained a major challenge in the enantioselective construction
of heterocycles via an intramolecular C-H insertion process in an acyclic system. Itis well documented that site-
selectivities in the rhodium(II)-catalyzed C-H insertion reaction of a-diazo amides are highly dependent on the
a-substituents of the diazo carbon as well as the N-substituents on the amide moiety.5.6 For example,
cyclization of N-alkyl-N-tert-butyl-a-diazoacetamides pioneered by Doyle and his coworkers with Rh(5S-
MEPY)4 and Rh(45-MEOX)4 gave a mixture of 2-pyrrolidinone and 2-azetidinone derivatives of up to 71%
and 80% ee, respectively, with the former being favored.” In this context, we demonstrated that Rha(S-
PTPA)4-catalyzed cyclization of N-alkyl-N-tert-butyl-a-methoxycarbonyl-a-diazoacetamides led to the
exclusive formation of 2-azetidinone derivatives of up to 74% ee.4 On the other hand, Wee and his coworkers
recently reported that Rho(OAc)4-catalyzed cyclization of N-alkyl-N-p-methoxyphenyl-a-alkoxycarbonyl-o-
diazoacetamides bearing a chiral auxiliary alcohol resulted in the predominant or exclusive formation of 2-
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pyrrolidinone derivatives of up to 98% de, wherein the N-p-methoxyphenyl substituent played a dual role as a
practical nitrogen protective group as well as a site-control element.6:8

Inspired by Wee's site- and diastereoselective construction of 4-substituted 2-pyrrolidinones, we initially
explored cyclization of N-phenylethyl-N-p-methoxyphenyl-a-methoxycarbonyl-o-diazoacetamide (1) with the
aid of 2 mol % of Rha(S-PTPA)4 (eq 1). While Rha(OAc)4-catalyzed cyclization of 1 afforded trans-3-
methoxycarbonyl-4-phenyl-2-pyrrolidinone 26.9 via aliphatic C-H insertion and 2(3H)-indolinone 3 via
aromatic C-H insertion in 64% and 12% yields, respectively, Rho(S-PTPA)4-catalysis of 1 was found to
produce 3 in 68% yield along with less than 5% of 2. No trace of 2-azetidinone derivatives could be detected in
either case. The difference in predominant insertion sites with Rha(OAc)4 and Rh2(S-PTPA)4 can be
rationalized by assuming that aromatic C-H insertion proceeds via an electrophilic addition of the rhodium(II)
carbene carbon to the aromatic ring rather than via a direct C-H insertion mechanism as pointed out by ourselves
and other groups,38:10-12 wherein aliphatic C-H insertion is presumed to be more sensitive to nonbonding
interactions with the bridging ligands on the rhodium relative to aromatic C-H insertion.
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At this point, we envisaged that, by switching the substituent at the para position on the benzene ring from
the electron-donating methoxy group to the electron-withdrawing nitro group, formation of 2(3H)-indolinones
via an electrophilic aromatic substitution-type reaction could be suppressed in favor of the ring closure leading to
2-pyrrolidinones. Indeed, we found that cyclization of N-phenylethyl-N-p-nitrophenyl-o.-methoxycarbonyl-o-
diazoacetamide (4a) in the presence of Rha(S-PTPA)4 gave exclusively trans-3-methoxycarbonyl-4-phenyl-2-
pyrrolidinone 5a% in 82% yield, with no trace of 2(3H)-indolinone or 2-azetidinone derivatives (eq 2). The
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enantioselectivity in this reaction was determined to be 47% ee by lH NMR spectroscopy using Eu(hfc)z as a
chiral shift reagent.13 The preferred absolute configuration at the insertion site was established as R by its
transformation [(1) NaCl, ag. DMSO, 160 °C, 2 h; (2) Fe,!4 AcOH, reflux, 2 h; (3) ceric ammonium nitrate
(CAN),15 MeCN] to the known 4-phenyl-2-pyrrolidinone (6a), [a]p23 -17.9 (¢ 1.07, MeOH) [lit.,16 [a]p?25
-37.8 (c 0.95, MeOH) for (R)-6a); undoubtedly, the above % ee value was virtually consistent with that based
on the optical rotation value. We next screened other chiral dirhodium(II) carboxylates, Rha(S-PTA)4, Rha(S-
PTV)4, Rhp(S-PTTL)4, and Rh(S-TBSP)417, and the results are summarized in Table 1. While a consistent
sense of enantioselection was observed in all cases, % ee values were dependent on the catalyst. Of
dirhodium(II) carboxylates incorporating N-phthaloyl-(S)-amino acids, Rha(S-PTTL)4 characterized by a bulky
tert-butyl group proved to be the catalyst of choice for displaying the highest degree of enantioselectivity (74%
ee, entry 4), though we cannot presently rationalize the effect of the bridging ligands on the degree of
enantioselection. It is worthy of note that the enantioselectivity observed with Rhy(S-TBSP)4 developed by
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Daviesl7 was 6% ee (entry 5), suggesting the Table 1. Enantioselective Intramolecular C-H Insertion of
unique ability of our dirhodium(I) complexes.18 a-Diazoacetamide 4a Catalyzed by Chiral Rh(II) Catalyst

With the effectiveness of Rhp(S-PTTL)4 as  entry Rh(II) catalyst time,h % yield® % ee” confign®
the catalyst identified, we then explored

1 Rhx(S-PTPA), 4 82 47  38,4R
cyclization of o-diazoacetanilides 4b-e possessing 2 Rhy(S-PTA), 5 83 47  3S.4R
substituents other than a phenyl group at the 3 Rhy(S-PTV)4 3 82 26 35, 4R
insertion site. The results are summarized in 4 Rhy(S-PTTL)4 S 80 74  3S5,4R
Table 2. While the same sense of enantioselection 5 Rhy(S-TBSP), 4 87 6 35,4R

as that with 4a was observed in every case, the  “Isolated yield. ®Determined by 'H NMR analysis using Eu(hfc)s
aryl group at the insertion site was found to s achiral shift reagent. “Sec the text.

exhibit much higher enantioselectivities than the

alkyl group (73-81% ee vs 33-34% ece, entries 1-3 vs 4 and 5). We previously observed similar substituent
effects in enantioselective synthesis of 3-substituted cyclopentanones via C-H insertion, where the introduction
of an electron-donating methoxy group at the para position on the benzene ring sharply diminished the
enantioselectivity.2 In the present reaction, however, a little variation in enantioselectivities was observed by
the introduction of electron-donating or electron-withdrawing groups on the benzene ring (entries 1-3), which
provides added flexibility in the present protocol.

Table 2. Enantioselective Synthesis of 4-Substituted 2-Pyrrolidinones Catalyzed by Rhy(S-PTTL),4

substrate 2-pyrrolidinones
entry R time, h % yield® [alp(c,CHCl3) g ee®  confign
1 4a Ph 5 5a 80 +7.18 (1.12) 74 38, 4R°
2 4b  p-MeOCgH, 4 5b 72 +12.6 (1.17) 81 (35, 4R
3 4c P-NO2CeHy 3 Sc 81 +14.0 (1.05) 73 (35, 4R
4 4d Me 3 5d 82 -2.11(1.06) 33 35, 45°
5 4e Et 4 Se 84 -4.67 (1.07) 34 (38, 45)°

9Isolated yield. bpetermined by 'H NMR analysis using Eu(hfc); as a chiral shift reagent. “See the text. "Assigned by analogy.
“The preferred absolute configuration at insertion site of 5d was established as § by its transformation to the known ($)-4-
methyl-2-pyrrolidinone. See ref 19.

Finally, we applied the present method to the synthesis of (R)-(-)-baclofen, a typical GABAp receptor
agonist (Scheme 1).20 There have recently been reported a number of syntheses of (R)-(-)-baclofen via
chemoenzymatic2! and diastereoselective?2 approaches, but a catalytic, enantioselective synthesis has not yet
been addressed. Toward this end, N-2-(p-chlorophenyl)ethyl-N-p-nitrophenyl-o-methoxycarbonyl-a-diazo-
acetamide (8) was prepared from commercially available 2-(p-chlorophenyl)ethylamine (7) by condensation
with 4-fluoronitrobenzene23 followed by N-acylation and subsequent diazo transfer in 87% overall yield.
Cyclization of 8 with the aid of 2 mol % of Rhp(S-PTTL)4 proceeded uneventfully to afford the desired 2-
pyrrolidinone 9, [o]p25 +16.8 (c 0.85, CHCl3), in 83% yield, the enantioselectivity of which was determined
to be 82% ee by 1H NMR spectroscopy using Eu(hfc)s as a chiral shift reagent. Successive removal of the
methoxycarbonyl and p-nitrophenyl groups from 9 furnished the known lactam 10, mp 108-115 °C, [a]p25
-33.4 (c 1.01, EtOH), in 76% yield, which, upon one recrystallization from AcOEt-hexane, produced the
optically pure sample, mp 113-114 °C , [a]p25 -39.1 (¢ 1.03, EtOH) [lit.,22b mp 112 °C, [a]p23 -39 (¢ 1,
EtOH) for (R)-10] in 79% yield. Acidic hydrolysis of 10 afforded (R)-(-)-baclofen as its hydrochloride, mp
214-215 °C (dec), [a]p?23 -1.42 (¢ 1.12, H20) [lit.,24 mp 215 °C (dec), [a]p23 -1.4 (¢ 1, H;0)].

In summary, we have achieved the first catalytic, enantioselective synthesis of 4-aryl-substituted 2-
pyrrolidinones of up to 82% ee via Rh2(S-PTTL)4-mediated C-H insertion of a-methoxycarbonyl-o-diazo-
acetamides, wherein the dual role of the N-p-nitrophenyl substitutent as a practical nitrogen protective group as
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Scheme 1. Reagents and conditions: (a) 4-fluoronitrobenzene, KoCO3, EtOH, 160 °C, 18 h, 95%; (b) MeO,CCH,COC], Et3N,
CH,Cly, 0 °C, 2 h, 96%; (c) p-acetamidobenzenesulfonyl azide, DBU, MeCN, 0 °C, 3 h, 95%; (d) Rhy(S-PTTL)4 (2 mol %),
CH,Ch, 23 °C, 6 h, 83% (82% ee); (e) NaCl, aq. DMSO, 160 °C, 2 h, 96%; (f) Fe, AcOH, reflux, 2 h, 97%; (g) CAN, MeCN,
H,0, 0 °C, 1.5 h, 81%; () recrystallization from AcOEt-n-hexane (>99% ee), 79%; (i) 6N HCl, reflux, 6 h, 74%.

well as a site-control element has proven to be crucial to the success. The efficiency of the present protocol has
been verified well by a short-step synthesis of (R)-(-)-baclofen, thus providing great potential for a facile access
to its novel analogues for biological and pharmacological investigations.25
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