

Tetrahedron Letters 39 (1998) 79-82

TETRAHEDRON LETTERS

Enantioselective Synthesis of 4-Substituted 2-Pyrrolidinones by Site-selective C-H Insertion of α-Methoxycarbonyl-α-diazoacetanilides Catalyzed by Dirhodium(II) Tetrakis[N-phthaloyl-(S)-tert-leucinate]

Masahiro Anada and Shun-ichi Hashimoto*

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

Received 29 September 1997; revised 20 October 1997; accepted 22 October 1997

Abstract: Site- and enantioselective intramolecular C-H insertion of α -methoxycarbonyl- α diazoacetamides has been achieved by exploiting a p-nitrophenyl group as the N-substituent and dirhodium(II) tetrakis[N-phthaloyl-(S)-tert-leucinate] as catalyst, leading to the formation of 4substituted 2-pyrrolidinone derivatives of up to 82% ee. The efficiency of the present protocol has been verified well by a short-step synthesis of (R)-(-)-baclofen. © 1997 Elsevier Science Ltd. All rights reserved.

Enantioselective C-H insertion reaction of α -diazo carbonyl compounds catalyzed by chiral dirhodium(II) complexes is rapidly becoming recognized as a potentially powerful means for the construction of both carbocyclic and heterocyclic systems in optically active form.¹ Our efforts in this area have led to the development of dirhodium(II) carboxylates incorporating *N*-phthaloyl-(*S*)-amino acids as the bridging ligands, which catalyze intramolecular C-H insertion reactions of α -diazo carbonyl compounds site-selectively to give optically active cyclopentanone, 2-indanone, and 2-azetidinone derivatives with up to 80%, 98%, and 74% ee, respectively.²⁻⁴ As a logical extension of our studies, we have addressed enantioselective construction of 4-substituted 2-pyrrolidinones *via* a site-selective C-H insertion process.

Apart from enantiocontrol, site-control has remained a major challenge in the enantioselective construction of heterocycles via an intramolecular C-H insertion process in an acyclic system. It is well documented that siteselectivities in the rhodium(II)-catalyzed C-H insertion reaction of α -diazo amides are highly dependent on the α -substituents of the diazo carbon as well as the N-substituents on the amide moiety.^{5,6} For example, cyclization of N-alkyl-N-tert-butyl- α -diazoacetamides pioneered by Doyle and his coworkers with Rh₂(5S-MEPY)₄ and Rh₂(4S-MEOX)₄ gave a mixture of 2-pyrrolidinone and 2-azetidinone derivatives of up to 71% and 80% ee, respectively, with the former being favored.⁷ In this context, we demonstrated that Rh₂(S-PTPA)₄-catalyzed cyclization of N-alkyl-N-tert-butyl- α -methoxycarbonyl- α -diazoacetamides led to the exclusive formation of 2-azetidinone derivatives of up to 74% ee.⁴ On the other hand, Wee and his coworkers recently reported that Rh₂(OAc)₄-catalyzed cyclization of N-alkyl-N-p-methoxyphenyl- α -alkoxycarbonyl- α diazoacetamides bearing a chiral auxiliary alcohol resulted in the predominant or exclusive formation of 2-

 $\begin{array}{l} R = Me: Rh_2(S-PTA)_4, \ R = Bn: Rh_2(S-PTPA)_4 \\ R = i - Pr: Rh_2(S-PTV)_4, \ R = t - Bu: Rh_2(S-PTTL)_4 \end{array}$

 $X = CH_2: Rh_2(5S-MEPY)_4$ $X = O: Rh_2(4S-MEOX)_4$

Rh₂(S-TBSP)₄

pyrrolidinone derivatives of up to 98% de, wherein the *N*-*p*-methoxyphenyl substituent played a dual role as a practical nitrogen protective group as well as a site-control element.^{6,8}

Inspired by Wee's site- and diastereoselective construction of 4-substituted 2-pyrrolidinones, we initially explored cyclization of N-phenylethyl-N-p-methoxyphenyl- α -methoxycarbonyl- α -diazoacetamide (1) with the aid of 2 mol % of Rh₂(S-PTPA)₄ (eq 1). While Rh₂(OAc)₄-catalyzed cyclization of 1 afforded *trans*-3-methoxycarbonyl-4-phenyl-2-pyrrolidinone $2^{6,9}$ via aliphatic C-H insertion and 2(3H)-indolinone 3 via aromatic C-H insertion in 64% and 12% yields, respectively, Rh₂(S-PTPA)₄-catalysis of 1 was found to produce 3 in 68% yield along with less than 5% of 2. No trace of 2-azetidinone derivatives could be detected in either case. The difference in predominant insertion sites with Rh₂(OAc)₄ and Rh₂(S-PTPA)₄ can be rationalized by assuming that aromatic C-H insertion proceeds via an electrophilic addition of the rhodium(II) carbene carbon to the aromatic ring rather than via a direct C-H insertion mechanism as pointed out by ourselves and other groups, ^{3a,10-12} wherein aliphatic C-H insertion is presumed to be more sensitive to nonbonding interactions with the bridging ligands on the rhodium relative to aromatic C-H insertion.

At this point, we envisaged that, by switching the substituent at the para position on the benzene ring from the electron-donating methoxy group to the electron-withdrawing nitro group, formation of 2(3H)-indolinones *via* an electrophilic aromatic substitution-type reaction could be suppressed in favor of the ring closure leading to 2-pyrrolidinones. Indeed, we found that cyclization of N-phenylethyl-N-p-nitrophenyl- α -methoxycarbonyl- α diazoacetamide (4a) in the presence of Rh₂(S-PTPA)₄ gave exclusively *trans*-3-methoxycarbonyl-4-phenyl-2pyrrolidinone 5a⁹ in 82% yield, with no trace of 2(3H)-indolinone or 2-azetidinone derivatives (eq 2). The

enantioselectivity in this reaction was determined to be 47% ee by ¹H NMR spectroscopy using Eu(hfc)₃ as a chiral shift reagent.¹³ The preferred absolute configuration at the insertion site was established as *R* by its transformation [(1) NaCl, aq. DMSO, 160 °C, 2 h; (2) Fe,¹⁴ AcOH, reflux, 2 h; (3) ceric ammonium nitrate (CAN),¹⁵ MeCN] to the known 4-phenyl-2-pyrrolidinone (**6a**), $[\alpha]_D^{25}$ -17.9 (*c* 1.07, MeOH) [lit.,¹⁶ $[\alpha]_D^{25}$ -37.8 (*c* 0.95, MeOH) for (*R*)-**6a**]; undoubtedly, the above % ee value was virtually consistent with that based on the optical rotation value. We next screened other chiral dirhodium(II) carboxylates, Rh₂(*S*-PTA)₄, Rh₂(*S*-PTV)₄, Rh₂(*S*-PTTL)₄, and Rh₂(*S*-TBSP)₄¹⁷, and the results are summarized in Table 1. While a consistent sense of enantioselection was observed in all cases, % ee values were dependent on the catalyst. Of dirhodium(II) carboxylates incorporating *N*-phthaloyl-(*S*)-amino acids, Rh₂(*S*-PTTL)₄ characterized by a bulky *tert*-butyl group proved to be the catalyst of choice for displaying the highest degree of enantioselectivity (74% ee, entry 4), though we cannot presently rationalize the effect of the bridging ligands on the degree of enantioselection. It is worthy of note that the enantioselectivity observed with Rh₂(*S*-TBSP)₄ developed by

Davies¹⁷ was 6% ee (entry 5), suggesting the unique ability of our dirhodium(II) complexes.¹⁸

With the effectiveness of Rh₂(S-PTTL)₄ as the catalyst identified, we then explored cyclization of α -diazoacetanilides **4b-e** possessing substituents other than a phenyl group at the insertion site. The results are summarized in Table 2. While the same sense of enantioselection as that with **4a** was observed in every case, the aryl group at the insertion site was found to exhibit much higher enantioselectivities than the

Table 1. Enantioselective Intramolecular C-H In	sertion of
α-Diazoacetamide 4a Catalyzed by Chiral Rh(II)	Catalyst

entry	Rh(II) catalyst	time, h	% yield ^a	% ee ^b	confign ^c
1	Rh ₂ (S-PTPA) ₄	4	82	47	3 <i>S</i> , 4 <i>R</i>
2	Rh ₂ (S-PTA) ₄	5	83	47	3 <i>S</i> , 4 <i>R</i>
3	Rh ₂ (S-PTV) ₄	3	82	26	3 <i>S</i> , 4 <i>R</i>
4	Rh ₂ (S-PTTL) ₄	5	80	74	3 <i>S</i> , 4 <i>R</i>
5	Rh ₂ (S-TBSP) ₄	4	87	6	3 <i>S</i> , 4 <i>R</i>

^aIsolated yield. ^bDetermined by ¹H NMR analysis using Eu(hfc)₃ as a chiral shift reagent. ^cSee the text.

alkyl group (73-81% ee vs 33-34% ee, entries 1-3 vs 4 and 5). We previously observed similar substituent effects in enantioselective synthesis of 3-substituted cyclopentanones *via* C-H insertion, where the introduction of an electron-donating methoxy group at the para position on the benzene ring sharply diminished the enantioselectivity.^{2b} In the present reaction, however, a little variation in enantioselectivities was observed by the introduction of electron-donating or electron-withdrawing groups on the benzene ring (entries 1-3), which provides added flexibility in the present protocol.

		substrate			2-pyrrolidinones			
entry		R	time, h		% yield ^a	$[\alpha]_{D}(c, CHCl_{3})$	% ee ^b	confign
1	4a	Ph	5	5a	80	+7.18 (1.12)	74	3 <i>S</i> , 4 <i>R</i> ^c
2	4b	p-MeOC ₆ H ₄	4	5b	72	+12.6 (1.17)	81	$(3S, 4R)^{d}$
3	4c	p-NO ₂ C ₆ H ₄	8	5c	81	+14.0 (1.05)	73	$(3S, 4R)^{d}$
4	4d	Me	3	5d	82	-2.11 (1.06)	33	3S, 45e
5	4e	Et	4	5e	84	-4.67 (1.07)	34	$(3S, 4S)^d$

Table 2. Enantioselective Synthesis of 4-Substituted 2-Pyrrolidinones Catalyzed by Rh₂(S-PTTL)₄

^aIsolated yield. ^bDetermined by ¹H NMR analysis using $Eu(hfc)_3$ as a chiral shift reagent. ^cSee the text. ^dAssigned by analogy. ^cThe preferred absolute configuration at insertion site of 5d was established as S by its transformation to the known (S)-4-methyl-2-pyrrolidinone. See ref 19.

Finally, we applied the present method to the synthesis of (*R*)-(-)-baclofen, a typical GABAB receptor agonist (Scheme 1).²⁰ There have recently been reported a number of syntheses of (*R*)-(-)-baclofen via chemoenzymatic²¹ and diastereoselective²² approaches, but a catalytic, enantioselective synthesis has not yet been addressed. Toward this end, *N*-2-(*p*-chlorophenyl)ethyl-*N*-*p*-nitrophenyl- α -methoxycarbonyl- α -diazoacetamide (**8**) was prepared from commercially available 2-(*p*-chlorophenyl)ethylamine (**7**) by condensation with 4-fluoronitrobenzene²³ followed by *N*-acylation and subsequent diazo transfer in 87% overall yield. Cyclization of **8** with the aid of 2 mol % of Rh₂(*S*-PTTL)₄ proceeded uneventfully to afford the desired 2pyrrolidinone **9**, $[\alpha]_D^{25}$ +16.8 (*c* 0.85, CHCl₃), in 83% yield, the enantioselectivity of which was determined to be 82% ee by ¹H NMR spectroscopy using Eu(hfc)₃ as a chiral shift reagent. Successive removal of the methoxycarbonyl and *p*-nitrophenyl groups from **9** furnished the known lactam **10**, mp 108-115 °C, $[\alpha]_D^{25}$ -33.4 (*c* 1.01, EtOH), in 76% yield, which, upon one recrystallization from AcOEt-hexane, produced the optically pure sample, mp 113-114 °C, $[\alpha]_D^{25}$ -39.1 (*c* 1.03, EtOH) [lit,^{22b} mp 112 °C, $[\alpha]_D^{25}$ -39 (*c* 1, EtOH) for (*R*)-**10**] in 79% yield. Acidic hydrolysis of **10** afforded (*R*)-(-)-baclofen as its hydrochloride, mp 214-215 °C (dec), $[\alpha]_D^{25}$ -1.42 (*c* 1.12, H₂O) [lit,²⁴ mp 215 °C (dec), $[\alpha]_D^{25}$ -1.4 (*c* 1, H₂O)].

In summary, we have achieved the first catalytic, enantioselective synthesis of 4-aryl-substituted 2pyrrolidinones of up to 82% ee via Rh₂(S-PTTL)₄-mediated C-H insertion of α -methoxycarbonyl- α -diazoacetamides, wherein the dual role of the N-p-nitrophenyl substitutent as a practical nitrogen protective group as

(R)-(-)-Baclofen·HCl

Scheme 1. Reagents and conditions: (a) 4-fluoronitrobenzene, K2CO3, EtOH, 160 °C, 18 h, 95%; (b) MeO2CCH2COCI, Et3N, CH₂Cl₂, 0 °C, 2 h, 96%; (c) p-acetamidobenzenesulfonyl azide, DBU, MeCN, 0 °C, 3 h, 95%; (d) Rh₂(S-PTTL)₄ (2 mol %), CH₂Cl₂, 23 °C, 6 h, 83% (82% ee); (e) NaCl, aq. DMSO, 160 °C, 2 h, 96%; (f) Fe, AcOH, reflux, 2 h, 97%; (g) CAN, MeCN, H₂O, 0 °C, 1.5 h, 81%; (h) recrystallization from AcOEt-n-hexane (>99% ee), 79%; (i) 6N HCl. reflux, 6 h, 74%.

well as a site-control element has proven to be crucial to the success. The efficiency of the present protocol has been verified well by a short-step synthesis of (R)-(-)-baclofen, thus providing great potential for a facile access to its novel analogues for biological and pharmacological investigations.²⁵

References and Notes

- For reviews, see: (a) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. (b) Doyle, M. P. Aldrichim. Acta 1. 1996, 29, 3. (c) Doyle, M. P.; McKervey, M. A. Chem. Commun. 1997, 983. (a) Hashimoto, S.; Watanabe, N.; Sato, T.; Shiro, M.; Ikegami, S. Tetrahedron Lett. 1993, 34, 5109. (b)
- 2.
- (a) Watanabe, N.; Watanabe, N.; Ikegami, S. Synlett 1994, 353.
 (a) Watanabe, N.; Ohtake, Y.; Hashimoto, S.; Shiro, M.; Ikegami, S. Tetrahedron Lett. 1995, 36, 1491. (b) Watanabe, N.; Ogawa, T.; Ohtake, Y.; Ikegami, S.; Hashimoto, S. Synlett 1996, 85. 3.
- Watanabe, N.; Anada, M.; Hashimoto, S.; Ikegami, S. Synlett 1994, 1031. 4.
- (a) Doyle, M. P.; Shanklin, M. S.; Oon, S.; Pho, H. Q.; van der Heide, F. R.; Veal, W. R. J. Org. Chem. 1988, 5. (a) Doyle, M. F., Shahkin, M. S., Oon, S., Ho, H. Q., Valuer, M. R., Year, W. K. J. Org. Chem. 53, 3384. (b) Doyle, M. P.; Taunton, J.; Pho. H. Q. Tetrahedron Lett. 1989, 30, 5397.
 Wee, A. G. H.; Liu, B.; Zhang, L. J. Org. Chem. 1992, 57, 4404.
 Doyle, M. P.; Protopopova, M. N.; Winchester, W. R.; Daniel, K. L. Tetrahedron Lett. 1992, 33, 7819.
- 6.
- 7.
- Wee, A. G. H.; Liu, B. Tetrahedron Lett. 1996, 37, 145. 8.
- No trace of 3,4-cis isomer could be detected. 9.
- Doyle, M. P.; Shanklin, M. S.; Pho, H. Q.; Mahapatro, S. N. J. Org. Chem. 1988, 53, 1017. 10.
- Cox, G. G.; Moody, C. J.; Austin, D. J.; Padwa, A. Tetrahedron 1993, 49, 5109. 11.
- Padwa, A.; Austin, D. J.; Price, A. T.; Semones, M. A.; Doyle, M. P.; Protopopova, M. N.; Winchester, W. R.; Tran, A. J. Am. Chem. Soc. **1993**, 115, 8669. 12.
- No dramatic solvent effect on enantioselection was observed (CH₂Cl₂, 47% ee; Et₂O, 45% ee; PhCH₃, 37% 13. ee). Thus, the commonly used CH₂Cl₂ was used for further exploration.
- 14.
- Owsley, D. C.; Bloomfield, J. J. Synthesis 1977, 118. Fukase, K.; Yasukochi, T.; Nakai, Y.; Kusumoto, S. Tetrahedron Lett. 1996, 37, 3343. Zelle, R. E. Synthesis 1991, 1023. 15.
- 16.
- Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. J. Am. Chem. Soc. 1996, 118, 6897. 17.
- Decomposition of 4a under the influence of $Rh_2(5S-MEPY)_4$ occurred in 1,2-dichloroethane under reflux 18. to give a complex mixture of products.
- Langlois, N.; Dahuron, N. Tetrahedron Lett. 1996, 37, 3993. 19.
- Kerr, D. I. B.; Ong, J. Med. Res. Rev. 1992, 12, 593. 20.
- (a) Chênevert, R.; Desjardins, M. Tetrahedron Lett. 1991, 32, 4249. (b) Chênevert, R.; Desjardins, M. Can. J. Chem. 1994, 72, 2312. (c) Mazzini, C.; Lebreton, J.; Alphand, V.; Furstoss, R. Tetrahedron Lett. 1997, 38, 21. 1195
- (a) Herdeis, C.; Hubmann, H. P. Tetrahedron: Asymmetry 1992, 3, 1213. (b) Schoenfelder, A.; Mann, A.; Le 22. Coz, S. Synlett 1993, 63. (c) Yoshifuji, S.; Kaname, M. Chem. Pharm. Bull. 1995, 43, 1302. (d) Langlois, N.; Dahuron, N.; Wang, H.-S. Tetrahedron 1996, 52, 15117.
- 23.
- Lantz, R. L.; Obellianne, P. Bull. Soc. Chim. Fr. 1956, 311. Olpe, H.-R.; Demiéville, H.; Baltzer, V.; Bencze, W. L.; Koella, W. P.; Wolf, P.; Haas, H. L. Eur. J. Pharmacol. 24. 1978, 52, 133.
- This research was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas from the 25. Ministry of Education, Science, Sports and Culture, Japan and also by the Special Coordination Funds of the Science and Technology Agency of the Japanese Government. The authors thank the Japan Society for the Promotion of Science for Research Fellowships for Young Scientists (to M. A.).