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ABSTRACT: Dual inhibition of PI3K-δ and PI3K-γ is an established therapeutic strategy for treatment of hematological malig-

nancies. Reported molecules targeting PI3K-δ/γ selectively are chemically similar and based upon isoquinolin-1(2H)-one or 

quinazolin-4(3H)-one scaffolds. Here we report a chemically distinct series of potent, selective PI3K-δ/γ inhibitors based on a 5,11-

dihydro-6H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6-one scaffold with comparable biochemical potency and cellular effects on 

PI3K signaling. We envisage these molecules will provide useful leads for development of next-generation PI3K-δ/γ targeting ther-

apeutics. 

INTRODUCTION 

PI3K-δ and PI3K-γ are members of the Class I Type IA and 

Class I Type IB family of Phosphatidylinositol-4,5-

bisphosphate 3-kinases (PI3Ks). Unlike the related PI3K-α/-β 

which are ubiquitously expressed, PI3K-δ and PI3K-γ are ex-

pressed primarily in leukocytes and perform a number of roles 

in regulation of the immune system. PI3K-δ has been shown to 

be involved in B-cell activation, proliferation, homing and 

retention in lymphoid tissues, PI3K-γ regulates T-cell prolifer-

ation and cytokine production.
1
 

PI3K-δ and PI3K-γ are the dominantly expressed PI3K 

isoforms in B- and T-cells respectively, where they are key 

nodes in the PI3K/Akt/mTOR pathway. This pathway is mis-

regulated in a number of blood-borne cancers including chron-

ic lymphocytic leukemia (CLL), follicular lymphoma (FL) and 

indolent non-Hodgkin’s lymphoma (iNHL).
1
 

PI3K-δ signaling drives malignant B-cell proliferation. Selec-

tive inhibition of PI3K-δ using small molecule inhibitor 

Idelalisib has proven to be an effective treatment for CLL 

when used in combination with rituximab, a chimeric mono-

clonal antibody that targets the B-lymphocyte antigen CD20.
2
 

PI3K-γ activation is key for inflammatory cell recruitment to 

tumors, associated with angiogenesis and tumor growth, which 

can be attenuated by knockdown or pharmacological inhibi-

tion of PI3K-γ.
3,4 

 As these two kinases play distinct and com-

plementary roles in immune function, dual inhibition of PI3K-

δ and PI3K-γ is also an attractive strategy for broadly targeting 

hematological malignancies. Inhibition of PI3K-δ/γ is well 

tolerated with mild, reversible side effects reported in the clin-

ic.
5
 The dual inhibitor Duvelisib is currently in Phase III clini-

cal trials for CLL, FL and Phase II clinical trials for iNHL, 

either alone, or in combination with monoclonal antibody 

therapy.
6
 Additionally Duvelisib has potent anti-inflammatory 

and joint protective effects in murine models of rheumatoid 

arthritis.
7
 A Phase IIa exploratory clinical trial in mild allergic 

asthma met several secondary endpoints demonstrating proof-

of-concept that next generation PI3K-δ/γ inhibitors may also 

prove effective in this disease area.
8
 

 

Figure 1: Structures of PI3K-δ/γ selective inhibitors reported in 

the literature and described in this work 

Currently reported selective dual inhibitors of PI3K-δ/γ are 

based upon isoquinolin-1(2H)-one or quinazolin-4(3H)-one 

scaffolds (Figure 1).
9,10, 11

 Here we report a chemically distinct 

series of potent, selective PI3K-δ/γ inhibitors based on a 5,11-

dihydro-6H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6-one scaf-

fold with comparable enzymatic potency and cellular effects 

on PI3K-δ signaling. 

RESULTS AND DISCUSSION 

Throughout the course of a screening campaign designed to 

identify anti-leukemic compounds, we observed that com-

pound 1 (FMF-01-085-1) shows antiproliferative activity in T-

cell acute lymphocytic leukemia (T-ALL) cell lines (IC50 

MOLT4 cells = 33 nM, IC50 Jurkat cells = 166 nM). Subse-
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quent kinome profiling revealed the primary targets of this 

compound are PI3K-δ/γ (Table 1, Supporting Table 1, Sup-

porting Figure 1), leading us to explore the SAR of this series. 

Compounds were synthesized according to Scheme 1. Analogs 

from our initial screen lacking an aryl-sulfonamide showed no 

inhibitory effects on PI3K-δ/γ (e.g. compound 19, FMF-01-

086-2, Supporting Table 2), therefore we focused our synthetic 

efforts on compounds containing this moiety. 
12

  

We have previously reported that the 5,11-dihydro-6H-

benzo[e]pyrimido[5,4-b][1,4]diazepin-6-one scaffold is capa-

ble of binding to the ATP binding pocket of LRRK2
13

, 

ERK5
14

, AuroraA/B kinases
15

 and to the acetyl-lysine binding 

pocket of the BRD4 bromodomains.
16

 However, methylation 

of the phenyl ring in the tricyclic core is not tolerated by these 

targets. Kinome profiling at 1 µM compound concentration 

revealed that 1 has excellent selectivity across the human ki-

nome, with a selectivity score, S10 of 0.013. Importantly other 

targets in the PI3K pathway such as Akt, DNA-PK, BTK and 

mTOR are not inhibited (Supporting Table 1, Supporting Fig-

ure 1) and BRD4 activity is low (BRD4_1 IC50 = 6.0 µM, 

Supporting Table 3). The compound has some inhibitory ef-

fects on PIP5K2C (PIP4K-γ), a lipid kinase with low levels of 

activity in vitro. In our experience this level of inhibition cor-

responds to micromolar biochemical IC50.  

As some activity is present for PI3K-α (and H1047L/Y mu-

tants) we measured PI3K-α and PI3K-β IC50s to determine the 

isoform selectivity. Compound 1 is 26 fold selective for PI3K-

δ over PI3K-α and 270 fold selective over PI3K-β. The only 

off-target activity of concern is against Aurora kinases A and 

B. Enzymatic testing revealed that Compound 1 has 30 fold 

selectivity over Aurora A and 60 fold over Aurora B. 

Scheme 1: Synthetic route for synthesis of 5,11-dihydro-

6H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6-ones 

 

Reaction conditions. i) DIEA, 1,4-dioxane, 50 oC; ii) Fe, AcOH, 

50 oC; iii) NaH, MeI, DMF, 0 oC; iv) XPhos, Pd2(dba)3, 

Cs2CO3,1,4-dioxane, 95 oC 

Table 1: SAR, isoform selectivity and Aurora kinase selectivity of PI3K-δ/γ inhibitors  
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a IC50s measured using ADAPTA assay format (ThermoFisher Scientific). b IC50s measured using Z’LYTE assay format (ThermoFisher 

Scientific). IC50s plotted from the average of duplicate experiments. Errors are reported as ± 95% confidence interval. 

This prompted us to further investigate the factors conferring 

selectivity to the series (Table 1). Meta substitution of the 

aniline ring with an N-substituted sulfonamide biases the po-

tency of the compounds towards PI3K-δ/γ (compounds 1, 3, 5, 

7, 9, 10, 12). Conversely, the same substituents in the para 

position improve the Aurora A/B potency and reduce the 

PI3K-δ/γ potency (compounds 2, 4, 6, 8, 11, 13). 

Compounds containing an unsubstituted sulfonamide nitrogen 

are equipotent against PI3K-δ/γ and AuroraA/B. (Compounds 

14, 16, 17). It has been shown that ortho-substitution adjacent 

to the hinge-binding motif can remove AuroraA/B activity 

from this scaffold.
15

 Ortho-methylation of the aniline ring of 

potent compound 16 to give compound 18 shows the expected 

low AuroraA/B activity but also has dramatically reduced 

PI3K-δ/γ activity.  

Covalent inhibitors have been reported for PI3K-α that target a 

non-conserved cysteine unique to this isoform.
17

 Examination 

of X-ray crystal structures showed there are no accessible cys-

teine residues proximal to the ATP binding pocket in PI3K-δ 

and PI3K-γ (PDB IDs: 4XE0, 4EZJ). As Compound 1 con-

tains an acrylamide, we used LCMS/MS experiments with 

purified PI3K-δ protein to confirm that 1 does not covalently-

label the protein. Therefore we sought to remove this reactive 

functionality whilst maintaining on-target potency and kinome 

selectivity. Gratifyingly compound 9 (FMF-02-109-1) and 

compound 12 (FMF-02-063-1) both maintained potent inhibi-

tion of PI3K-δ/γ and showed comparable selectivity for PI3K-

δ against PI3K-α (40 fold, 25 fold) and improved selectivity 

against PI3K-β (360 fold, 2300 fold), Aurora A (65-fold, 70-

fold) and Aurora B (71-fold, 71-fold). Kinome profiling re-

vealed that compounds 9 and 12 also maintain an excellent 

selectivity profile with S10 of 0.010 and 0.008 respectively 

(Figure 2A, Supporting Table 1). Additionally low BRD4 ac-

tivity was observed for all compounds (BRD4_1 IC50 = 18.8 

µM, 10.8 µM respectively, Supporting Table 3). 

In order to have a more direct comparison of potency to the 

currently available clinical compounds we measured the IC50s 

of Duvelisib and Idelalisib in the ADAPTA assay format (Fig-

ure 2B). In the PI3K-δ assay, compounds 1, 9 and 12 are equi-

potent to Idelalisib, whereas Duvelisib is more effective. In the 

PI3K-γ assay, compounds 1, 9 and 12 are comparable to 

Duvelisib. Idelalisib, a PI3K-δ specific inhibitor, is much less 

potent against PI3K-γ, as expected (Table 1, Figure 2B).  

Encouraged by the potency of our inhibitors in comparison to 

the current best-in-class molecules, we next explored the effect 

of our compounds on PI3K signaling in isogenic HMEC cell 

lines where PI3K signaling is driven exclusively by either CA-

p110-α, CA-p110-β or CA-p110-δ under serum starved condi-

tions, and compared them to Duvelisib and Idelalisib. Com-

mensurate with their biochemical activities, Idelalisib, 9 and 

12 show comparable inhibition of, and selectivity for, PI3K-δ 

signaling at 10 nM concentration, (Figure 2C). Duvelisib is the 

most potent PI3K-δ inhibitor, however it is less selective 

against PI3K-β in a cellular context.  

To rationalize the isozyme selectivity we docked 9 and 12 into 

PI3K-δ (PDB: 4XE0). It is known that exploitation of a selec-

tivity pocket formed by rearrangement of a methionine residue 

in the ATP binding pockets of PI3K-δ and PI3K-γ can im-

prove isozyme selectivity. This has been achieved to date by 

the design of molecules that adopt a propellor-like confor-

mation, such as Idelalisib and Duvelisib.
18

 In the docking 

models of 9 and 12 in complex with PI3K-δ the butterfly-like 

conformation of the benzodiazipinone scaffold causes the tolyl 
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Figure 2: A Kinome-wide selectivity profile of compounds 9 and 12. B Comparison of biochemical IC50 values of compounds 9, 12, 

Duvelisib and Idelalisib in PI3K-δ and PI3K-γ ADAPTA assays. C Effects of inhibitors 9 and 12 on AKT and S6RP phosphorylation in 

isogenic HMEC lines expressing CA-p110α, CA-p110β or CA-p110δ treated with the indicated compounds at 0.01 µM, 0.1 µM, or 1 µM 

for 1h. Du, Duvelisib; Id, Idelalisib. 

group to occupy the selectivity pocket formed by Met 752, 

while still allowing the pyrimidine-hinge contact to occur. The 

H-bond of the sulfonamide to Thr 833 may explain the prefer-

ence for this functional group and the requirement for 3-

substitution vs 4-substitution of the aniline ring (Figure 3, 

Supporting Figure 3, Table 1). 

 

Figure 3: Docking model of 12 bound to PI3K-δ.  

Finally we treated leukaemia cell lines and patient derived 

primary CLL cells to examine the effects of PI3K-δ/γ inhibi-

tion on cell viability. Compounds 9 and 12 were comparably 

potent to Duvelisib and more potent than Idelalisib in the test-

ed cell lines. In the CLL cells Idelalisib showed little effect, 

consistent with previously published reports
19

, as did 

Duvelisib and compound 12, wheras compound 9 demonstrat-

ed a dose-dependent reduction in viability (Table 2, Support-

ing Figure 2).  

Table 2: Activity of PI3K-δ/γ inhibitors in cell viability 

assays 

 
a patient derived primary cells. IC50s plotted from average of three 

replicates. 

The series of compounds described in this work represent a novel 

class of PI3K-δ/γ inhibitors. We were able to develop potent, 

selective molecules with cellular activity and drug-like properties 

in the absence of structural information. We envisage these mole-

cules will provide useful leads for development of next-generation 

PI3K-δ/γ targeting therapeutics. Investigation into the binding 

mode of these molecules by X-ray crystallography may yield 

rationale for development of molecules with superior PI3K-δ/γ 

selectivity using structure-based design. 
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Cmpd 9 Cmpd 12 

PI3K-δ/γ PI3K-δ/γ 

Compound IC50  (nM)
a

IC50  ( nM)
a

ID PI3K-δ PI3K-γ

9 1.7 ±  1 .5 11 ±  4 .1

12 2.1 ±  0 .68 6.5 ±  1 .5

Idelalisib 2.0  ±  0 .54 64 ±  30

Duvelisib < 0 .5 2.9  ±  0 .17

Ile 825 

Trp 760 

Lys 779 

Tyr 813 

Val 828 

Met 900 

Thr 833 

Met 752 
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