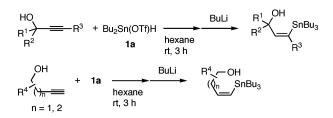
Highly Regio- and Stereoselective Hydrostannylation of Alkynols with A New Lewis Acidic Hydrostannane


Katsukiyo Miura,* Di Wang, Yukihiro Matsumoto, and Akira Hosomi*

Department of Chemistry, 21st Century COE, Graduate School of Pure and Applied Sciences, University of Tsukuba, and CREST, Japan Science and Technology Corporation (JST), Tsukuba, Ibaraki 305-8571, Japan

hosomi@chem.tsukuba.ac.jp

Received December 13, 2004

ABSTRACT

 $Bu_2Sn(OTf)H$ (1a), easily prepared from Bu_2SnH_2 and TfOH, was found to be very valuable for highly regio- and stereoselective hydrostannylation of various propargyl alcohols leading to (*Z*)- γ -stannylated allyl alcohols. The stannylation with 1a is applicable to the synthesis of hydroxysubstituted (*Z*)-vinylstannanes from terminal alkynes bearing a hydroxy group at the homoallylic or bishomoallylic position. The coordination of the hydroxy group to the Lewis acidic tin center plays an important role for the observed regio- and stereochemistry.

Vinylstannanes are important reagents working as vinyl anion equivalents for stereo-controlled alkene synthesis.¹ Among various synthetic routes to vinylstannanes, hydrostannylation of alkynes with hydrostannanes is a most straightforward and convenient route. Much attention has been paid to the development of regio- and stereoselective hydrostannylation based on the elaboration of the promoter.^{2–5} Radical-initiated

(1) (a) Davies, A. G. *Organotin Chemistry*; Wiley-VCH: Weinheim, 2004. (b) Pereyre, M.; Quintard, J.-P.; Rahm, A. *Tin in Organic Synthesis*; Butterworths: London, 1987.

10.1021/ol0474397 CCC: \$30.25 © 2005 American Chemical Society Published on Web 01/13/2005

reactions are valuable for the synthesis of functionalized vinylstannanes; however, the stereoselectivity is generally low.² We have recently described that the Et₃B-initiated hydrostannylation of γ -unsubstituted propargyl alcohols with Bu₂SnClH (**1b**) shows high levels of regio- and stereocontrol at low temperatures.^{6,7} Unfortunately, this method is ineffective in selective hydrostannylation of other alkynols. We herein report that Bu₂Sn(OTf)H (dibutyl(trifluoromethane-sulfoxy)stannane, **1a**), a more Lewis acidic hydrostannylation of various alkynols at room temperature.

ORGANIC LETTERS

2005 Vol. 7, No. 3

503-505

Hydrostannane **1a** can easily be prepared by the dehydrogenative reaction of Bu_2SnH_2 with 1 equiv of TfOH without solvent at 0 °C.⁸ The hydrostannane thus obtained

^{(2) (}a) Leusink, A. J.; Budding, H. A. J. Organomet. Chem. 1968, 11, 533–539. (b) Nozaki, K.; Oshima, K.; Utimoto, K. J. Am. Chem. Soc. 1987, 109, 2547–2549. (c) Mitchell, T. N.; Amamria, A. J. Organomet. Chem. 1983, 252, 47–56. (d) Nakamura, E.; Imanishi, Y.; Machii, D. J. Org. Chem. 1994, 59, 8178–8186.

^{(3) (}a) Ichinose, Y.; Oda, H.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. **1987**, 60, 3468–3470. (b) Zhang, H. X.; Guibé, F.; Balavoine, G. J. Org. Chem. **1990**, 55, 1857–1867. (c) Betzer, J.-F.; Delaloge, F.; Muller, B.; Pancrazi, A.; Prunet, J. J. Org. Chem. **1997**, 62, 7768–7780. (d) Mitchell, T. N.; Moschref, S.-N. Synlett **1999**, 1259–1260. (e) Kazmaier, U.; Pohlman, M.; Schauss, D. Eur. J. Org. Chem. **2000**, 2761–2766. (f) Smith, N. D.; Mancuso, J.; Lautens, M. Chem. Rev. **2000**, 100, 3257–3282 and references therein.

⁽⁴⁾ Asao, N.; Liu, J.-X.; Sudoh, T.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1995, 2405–2406.

⁽⁵⁾ Shibata, I.; Suwa, T.; Ryu, K.; Baba, A. J. Am. Chem. Soc. 2001, 123, 4101-4102.

⁽⁶⁾ Miura, K.; Wang, D.; Matsumoto, Y.; Fujisawa, N.; Hosomi, A. J. Org. Chem. 2003, 68, 8730–8732.

⁽⁷⁾ Quite recently, Mitchell et al. have reported similar results. Thiele, C. M.; Mitchell, T. N. *Eur. J. Org. Chem.* **2004**, 337–353.

⁽⁸⁾ For the preparation of Bu₃SnOTf from Bu₃SnH, see: Corey, E. J.; Eckrich, T. M. *Tetrahedron Lett.* **1984**, *25*, 2419–2422.

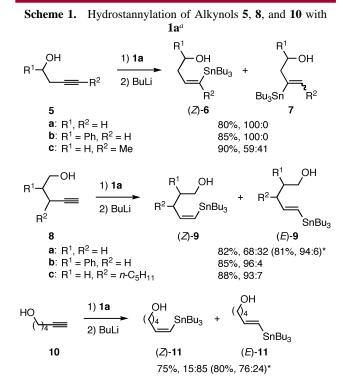
was used without purification. Propargyl alcohol 2a reacted spontaneously with 1a at room temperature. Treatment of the resulting mixture with BuLi gave (*Z*)-vinylstannane 3a in a high isolated yield (entry 1 in Table 1). The regio- and

Table 1. Hydros	stannylation	of Propargyl Alco	bhols 2 with $1a^a$
$ \begin{array}{c} HO & \beta & \gamma \\ R^1 & \longrightarrow & R^3 \\ R^2 & & R^3 \end{array} $	1) 1a 2) BuLi	$R^1 \xrightarrow{OH} SnBu_3$ $R^2 \xrightarrow{SnBu_3}$ R^3	+ $R^1 \rightarrow H$ Bu ₃ Sn R^3
2		(Z)- 3	4

	propargyl alcohol					
entry	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3		yield $(\%)^b$	(Z)- 3:4
1	n-C ₈ H ₁₇	Н	Н	(2a)	89	>99:1°
2^d	n-C ₈ H ₁₇	Н	Н	(2a)	83	93:7
3	c-C ₆ H ₁₁	Н	Н	(2b)	93	$>99:1^{c}$
4^e	Н	Н	Н	(2c)	85	>99:1
5	Me	Me	Н	(2d)	90	96:4
6	Н	Н	Me	(2e)	88 (50) ^f	71:26 (>99:1)f
7^d	Н	Н	Me	(2e)	77	7:93 ^g
8	Н	Н	n-C ₁₀ H ₂₁	(2f)	91 (77) ^f	91:9 (>99:1) ^f
9	Н	Н	$SiMe_3$	(2g)	$64 \ (85)^h$	$>98:2 (>99:1)^h$
10	Me	Н	n-C ₆ H ₁₃	(2h)	$72 \ (89)^h$	97:3 $(97:3)^h$

^{*a*} Unless otherwise noted, the initial step was carried out with **2** (1.00 mmol) and **1a** (1.10 mmol) in hexane (2 mL) at room temperature for 3 h. The resultant mixture was diluted with Et₂O (2 mL) and treated with BuLi (1.6 M in hexane, 2.2–2.5 mmol) at 0 °C for 20 min. ^{*b*} Isolated yield of a mixture of (*Z*)-**3** and **4**. ^{*c*} A trace amount of (*E*)-**3** (<1%) was formed. ^{*d*} **1b** was used instead of **1a**. ^{*e*} BuMgBr (in Et₂O) was used instead of BuLi. ^{*f*} After the reaction of **2** with **1a**, the reaction mixture was concentrated under reduced pressure and heated at 80 °C for 3 h. The resultant mixture was diluted with Et₂O and treated with BuLi. The results are shown in parentheses. ^{*s*} (*Z*)-**3e**:(*Z*)-**4e**:(*E*)-**4e** = 7:64:29. ^{*h*} Et₃B (0.10 mmol) and dry air were used as initiator. The results are shown in parentheses. (*Z*)-**3h** could be isolated in 86% yield.

stereoisomers, **4a** and (*E*)-**3a**, were hardly formed. Since the hydrostannylation of **2a** was effectively inhibited by adding 5 mol % of galvinoxyl, a radical scavenger, it would involve a radical chain mechanism. Hydrostannane **1b** is known to have a similar reactivity causing spontaneous, homolytic hydrostannylation.⁹ The use of **1b** instead of **1a** resulted in lower regioselectivity under the same conditions (entry 2).¹⁰ The present method using **1a** is valuable also for highly selective, efficient hydrostannylation of other γ -unsubstituted propargyl alcohols **2b–d** (entries 3–5).


It has been reported that the radical-initiated reaction of γ -substituted propargyl alcohols (e.g., **2e**) with Bu₃SnH (**1c**) yields (*Z*)- β -stannylated products (e.g., (*Z*)-**4e**) exclusively.¹¹ In contrast, **1a** added spontaneously to **2e** to form (*Z*)- γ -stannylated product **3e** as the major product (entry 6). Although the regiochemistry was not well controlled, the

.

504

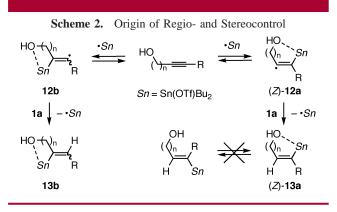
 γ -stannylation showed complete Z-selectivity. Under the same conditions, the stannylation with 1b took place mainly at the β -position as the stannylation with **1c** does, but with low Z-stereoselectivity (entry 7). Internal alkyne 2f was stannylated with better γ -regioselectivity than 2e (entry 8). In the reactions of **2e**,**f** with **1a**, heating the reaction mixture before butylation led to exclusive formation of (Z)-3e,f, although the total yields of stannylated products decreased. The seeming improvement in regioselectivity is probably due to thermal decomposition of the precursors leading to 4e,f by deoxystannylation.^{11b} Actually, the formation of 1,2tridecadiene was observed in the reaction of 2f by the improved method. Propargyl alcohols **2g,h** underwent highly regio- and stereoselective hydrostannylation to give (Z)-3g,h in moderate yields (entries 9 and 10). The use of Et₃B as initiator effected higher yields of (Z)-3g,h.^{2b}

We next examined the hydrostannylation of other alkynols with **1a** (Scheme 1). Terminal alkynes **5a,b**, bearing a

^{*a*} A small excess of an alkynol was used (alkynol:1a = 1.1:1) in the reactions marked with an asterisk (*).

hydroxy group at the homopropargylic position, were stannylated with complete regio- and stereoselectivity.¹² The reaction of internal alkyne **5c** formed both regioisomers with low regioselectivity, although the stannylation at the spcarbon more remote from the hydroxy group gave only the *Z*-isomer of **6c**. Similar to the case of **5a,b**, the stannylation of terminal alkynes **8b,c** proceeded with high *Z*-selectivity.

^{(9) (}a) Neumann, W. P.; Pedain, J. *Tetrahedron Lett.* **1964**, 2461–2465.
(b) Davies, A. G.; Kinart, W. J.; Osei-Kissi, D. K. *J. Organomet. Chem.* **1994**, 474, C11–C13. (c) Mitchell, T. N.; Moschref, S.-N. *Chem. Commun.* **1998**, 1201–1202.


⁽¹⁰⁾ The hydrostannylattion of **2a** with Bu₃SnH was much slower even in the presence of Et₃B (rt, 6 h, 49% conversion with 10 mol % Et₃B) and showed low Z-selectivity ((Z)-**3a**:(E)-**3a**:**4a** = 66:26:8).

^{(11) (}a) Ensley, H. E.; Buescher, R. R.; Lee, K. J. Org. Chem. **1982**, 47, 404–408. (b) Konoike, T.; Araki, Y. Tetrahedron Lett. **1992**, 33, 5093–5096.

⁽¹²⁾ In general, homolytic hydrostannylation of terminal alkynes proceeds with high regioselectivity. See ref 2. As an exception, the reaction of γ -unsubstituted propargyl alcohols shows slightly lower regioselectivity.

Interestingly, the selectivity with **8a** was rather low under the standard conditions; however, a small excess of **8a** over **1a** achieved high Z-selectivity.¹³ Furthermore, 5-hexyn-1-ol (**10**) was used as a substrate. As shown in the reaction of **8a**, the molar ratio of **10** to **1a** strongly affected the stereoselectivity: a small excess of **1a** led to *E*-selectivity, whereas Z-selectivity was observed with a small excess of **10**.

The stereochemistry of homolytic hydrostannylation of alkynes is determined by H-abstraction of β -stannylated vinyl radical intermediates and the subsequent stannyl radicalinduced isomerization of the vinylstannanes formed.⁶ The high Z-selectivity with **1a** can be rationalized by conformational fixation of the intermediate **12a** to the Z-form and suppression of the isomerization of the product (*Z*)-**13a**, both of which are directed by a strong interaction between Sn and O atoms (Scheme 2).^{14,15} The origin of the high

 γ -selectivity with **2** would be that the reversible addition of •Sn(OTf)Bu₂ forms the radical intermediate with a fivemembered chelate ring, (Z)-**12a** (n = 1), in preference to

(15) The reaction mechanism possibly involves pre-coordination of **1a** with a substrate and intramolecular radical addition leading to **12**. See Supporting Information for further discussion on the reaction mechanism.

that with a four-membered chelate ring, 12b (n = 1), by thermodynamic control.

Vinylstannanes prepared by the present method can be directly used for the Pd-catalyzed cross-coupling reaction with aryl halides (Scheme 3).¹⁶ The hydrostannylation of **2**

Scheme 3. Pd-Catalyzed Cross-Coupling of Vinylstannanes					
$\begin{array}{c} \text{Arl (1.1 eq.), TBAF (3.0 eq.)} \\ \textbf{1a} \overset{\text{OH}}{\longrightarrow} \overset{\text{OH}}{\longrightarrow} \overset{\text{OH}}{\longrightarrow} \overset{\text{OH}}{\longrightarrow} \overset{\text{OH}}{\longrightarrow} \overset{\overset{\text{OH}}}{\longrightarrow}$					
PPh ₃ (0.1 eq.), DMF, 70 °C, 5 h					
(<i>Z</i>)-14					
a: $R^1 = n \cdot C_8 H_{17}$, $R^2 = H$, $Ar = Ph$ b: $R^1 = n \cdot C_8 H_{17}$, $R^2 = H$, $Ar = 4$ -MeOPh c: $R^1 = Me$, $R^2 = n \cdot C_6 H_{13}$, $Ar = Ph$ 80%					
b : $R^1 = n \cdot C_8 H_{17}$, $R^2 = H$, $Ar = 4 \cdot MeOPh$ 69%					
c : R ¹ = Me, R ² = <i>n</i> -C ₆ H ₁₃ , Ar = Ph 80%					

with **1a** followed by treatment with TBAF, iodoarenes, and catalytic amounts of $Pd_2(dba)_3$ and PPh_3 (one-pot procedure) gave allyl alcohols (*Z*)-**14** (*Z*:*E* = >99:1) in good yields.

In conclusion, we have developed a novel hydrostannylating agent with a strong Lewis acidity, which is very valuable for highly selective synthesis of functionalized vinylstannanes from various alkynols. It is noteworthy that the use of **1a** enables γ -selective stannylation of γ -substituted propargyl alcohols in sharp contrast to β -selective stannylation with **1b** and **1c**. The present study has demonstrated that the high Lewis acidity of **1a** is quite effective in both regio- and stereocontrol of homolytic hydrostannylation of alkynols.

Acknowledgment. This work was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan.

Supporting Information Available: Experimental details, characterization data (¹H NMR, ¹³C NMR, IR, elemental analysis), and discussions on the Lewis acidity of **1a** and the reaction mechanism. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0474397

⁽¹³⁾ Under the standard conditions, the excess 1a may interfere with the O-Sn coordination in (Z)-12a or (Z)-13a when the chelate ring is not tight.

⁽¹⁴⁾ The NMR analysis of the (trifluoromethanesulfoxy)vinylstannane prepared from **1a** and **2a** revealed the presence of a highly coordinated tin center. See Supporting Information.

⁽¹⁶⁾ For the cross-coupling reaction using organohalostannanes, see: Fugami, K.; Ohnuma, S.; Kameyama, M.; Saotome, T.; Kosugi, M. *Synlett* **1999**, 63–64 and references therein.