Organic & Biomolecular Chemistry

PAPER

Cite this: Org. Biomol. Chem., 2014, **12**, 5954

Pyridine-phosphinimine ligand-accelerated Cu(ı)-catalyzed azide–alkyne cycloaddition for preparation of 1-(pyridin-2-yl)-1,2,3-triazole derivatives[†]

Ranfeng Sun,^{a,b} Huangdong Wang,^a Jianfeng Hu,^a Jiudong Zhao^a and Hao Zhang*^a

A series of phosphinimine ligands were designed and used in the Cu(I)-catalyzed azide-alkyne cyclo-

addition (CuAAC) reaction of tetrazolo[1,5-a]pyridines and alkynes for the first time. By optimizing

the reaction conditions, an efficient catalytic system (CuCl/2-PyCH₂N=P^tBu₃) was developed to give

1-(pyridin-2-yl)-1,2,3-triazole derivatives in moderate to excellent yields (46-98%).

Received 6th June 2014, Accepted 18th June 2014 DOI: 10.1039/c4ob01176g

www.rsc.org/obc

Introduction

Several derivatives of 1-(pyridin-2-yl)-1,2,3-triazole have been used as ligands¹ in coordination chemistry and have exhibited a wide range of biological activities.² These compounds were usually prepared by base-promoted substitution between 1,2,3triazole and 2-halopyridine^{2b,3} or by 1,3-dipolar cycloaddition^{1c,2d,4} and other procedures.⁵ As we know, Cu-catalyzed azide-alkyne cycloaddition (CuAAC) has proven to be the most efficient method to construct the 1,2,3-triazole ring.⁶ The combination of CuSO₄ and sodium ascorbate as a precatalyst system was discovered by Sharpless et al. and widely used in CuAAC reactions.^{6a,b} Afterwards, it was reported that polydentate nitrogen ligands not only stabilize Cu(1) intermediates⁷ but also accelerate the catalytic process,⁸ for example, tris-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) is the most widely used ligand,^{6d} and this allowed the direct use of Cu(I) salts as catalysts in CuAAC reactions. Several other ligand systems have also shown to enhance the reaction rate of the CuAAC, such as simple monodentate phosphine complexes Cu(P(OMe)₃)₃Br,⁹ Cu(PPh₃)₃Br¹⁰ and Cu(PPh₃)₂OAc.¹¹ Monodentate phosphoramidite¹² and thioethers¹³ have also been reported. Several Cu(I) complexes with N-heterocyclic carbene ligands have been described as CuAAC catalysts.¹⁴ However, preparation of 1-(pyridin-2-yl)-1,2,3-triazole is not easy using CuAAC reactions. Up to now, only two reports dealing with the

^aSchool of Chemical & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. E-mail: haozhang@imu.edu.cn, zh_hjf@hotmail.com; Fax: (+86)-471-4993227; Tel: (+86)-471-4993227 CuAAC methodology of tetrazolo[1,5-*a*]pyridines have been published (Scheme 1);^{4e,g} however, the methods described in the literature^{4e,g} provided low to moderate yields (especially unsubstituted tetrazoles) and the CuAAC methodology for tetrazoles bearing 8-substituted withdrawing groups was not mentioned. The reason why tetrazolo[1,5-*a*]pyridine derivatives are not active in traditional CuAAC reactions is that these azides exist in equilibrium between a closed form (tetrazole A), which is the main form at room temperature, and an open

Scheme 1 Synthesis of N-heterocycle-substituted 1,2,3-triazole.

View Article Online

^bState Key Laboratory of Elemento-organic Chemistry, Nankai University, P. R. China †Electronic supplementary information (ESI) available. CCDC 975322. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ob01176g

Paper

form (azide B), which is a favorable form at high temperatures (Fig. 1).^{4e} Investigation showed that the tetrazole–azide isomerization is mostly dependent upon the substituent and its position on the pyridine ring. The electron-withdrawing groups at the C-6 position of the tetrazole favors the open form B; in contrast, tetrazoles with withdrawing groups (NO₂, COOH, and Cl) at the C-8 position and the unsubstituted tetrazole mainly exist in the closed form A.¹⁵

To develop a general method to efficiently construct 1-(pyridin-2-yl)-1,2,3-triazole rings, a series of phosphinimine ligands which have exhibited good thermal stability in olefin polymerization¹⁶ (Fig. 1) were investigated to accelerate Cu(1)-catalyzed 2-azidopyridine (open form, Scheme 2)–alkyne cyclo-addition reaction at high temperatures according to the well-established nitrogen-based ligands⁷ and phosphine-based ligands. ^{9–12} Furthermore, the catalytic activities of these ligands were screened with tetrazolo[1,5-*a*]pyridine and ferrocenyl acetylene as the substrates and TBTA was chosen as a reference for our study, and then the methodology was extended to synthesis of various 1-(pyridin-2-yl)-1,2,3-triazoles.

Results and discussion

The substrates **2a–2d** were synthesized from 3-substituted-2halopyridines as shown in Scheme 1. Compound **2a** was prepared by substitution between 2-bromopyridine and sodium azide in DMF at 125 °C, and compounds **2a–2d** were obtained by a similar method. The ligands **L**₁–**L**₁₀ were prepared from azides and trisubstituted phosphines as shown in Scheme 2. The chlorination of pyridin-2-ylmethanol gave 2-(chloromethyl)pyridine, followed by oxidation of trisubstituted phosphines to give ligands **L**₁, **L**₇ and **L**₉.^{17*a*} The ligands **L**₂–**L**₆ and **L**₈ were obtained by a similar method. The ligand **L**₁₀ was synthesized by employing the published method.^{17*b*}

For the preliminary study, we intended to synthesize 1-(pyridin-2-yl)-4-ferrocenyl-1,2,3-triazole using the most popular catalytic system CuSO₄·5H₂O/NaAsc (Table 1, entry 1),^{6a} but we did not obtain the desired product, and therefore tetrazolo-[1,5-*a*]pyridine and ferrocenyl acetylene were chosen as model substrates for the screening of the optimum CuAAC reaction conditions. As shown in Table 1, no expected 3a was produced under catalysis of CuI at room temperature (entry 2). Then the reaction was carried out at 100 °C using different copper(1) halides as the catalysts^{4e} (Table 1, entries 3-5); CuCl showed the highest catalytic activity to give 3a in 53% yield (Table 1, entry 5). In consideration of the fact that ligands can enhance the CuAAC reaction rate,^{7e} TBTA which is the most widely used ligand in CuAAC reaction was used as a ligand in the reaction, but it afforded the product 3a in only 22% yield (Table 1, entry 6). At the same time, a series of phosphinimine ligands (Fig. 1) were synthesized and investigated.7,12 To our delight, the same reaction gave 3a in 68% yield using the previously reported phosphinimine ligand^{17a,18} (Table 1, entry 7). Subsequently, the electronic and steric effect of other phosphinimine ligands (Table 1, entries 8-15) was evaluated. Gratifyingly, N-(tri-tertbutylphosphoranylidene)-2-pyridinylmethanamine (L₉) was the most effective ligand and the yield of the desired product 3a reached 85% (Table 1, entry 15). However, when employing a N,P-ligand without the phosphinimine functional group, 2-(diphenylphosphinomethyl)pyridine (Table 1, entry 16), the yield of the product 3a was only 32%. Lower yields were also

Entry	Catalyst (10 mol%)	Ligand (10 mol%)	Solvent (0.25 M)	<i>t</i> [°C]	Time [h]	Yield ^b [%]	
1	CuSO ₄ ·5H ₂ O/NaVc	_	THF-H ₂ O	25	2	0	
2	Cul	_	Toluene	25	16	0	
3	Cul	_	Toluene	100	16	19	
4	Cul	_	Toluene	100	16	42	
5	CuBr	_	Toluene	100	16	53	
6	CuCl	$TBTA^{c}$	Toluene	100	16	22	
7	CuCl	N N PPh3	Toluene	100	16	68	
8	CuCl	CI N Ph Ph Ph'Ph	Toluene	100	16	Trace	
9	CuCl	Si−N=PPh ₃	Toluene	100	16	54	
10	CuCl	Si-N=PCy3	Toluene	100	16	53	
11	CuCl	PPh ₃	Toluene	100	16	61	
12	CuCl	N PPh3	Toluene	100	16	55	
13	CuCl		Toluene	100	16	70	
14	CuCl	N N P(t-Bu) ₃	Toluene	100	16	75	
15	CuCl	N N≈ _{P(t-Bu)3}	Toluene	100	16	85	
16	CuCl	N P-Ph	Toluene	100	16	32	
17	CuCl	Ph PPh ₃	Toluene	100	16	61	
18	CuCl	PCv ₂	Toluene	100	16	64	
19	CuCl	$P(t-Bu)_3$	Toluene	100	16	70	
20	CuCl	N	Toluene	100	16	46	

^{*a*} Reaction conditions: tetrazolo[1,5-*a*]pyridine (0.4 mmol), ferrocenyl acetylene (0.48 mmol), solvent (0.8 mL). ^{*b*} Isolated yield. ^{*c*} TBTA = tris[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl]amine.

obtained using the monodentate PPh₃, PCy₃, P(*t*-Bu)₃ and pyridine as the ligand respectively (Table 1, entries 17–20). The ligand (L_9) containing the methylene group displayed better catalytic activity than the ligand (L_8) (Table 1, entries 14–15). From the above results, it can be seen that the phosphinimine moiety and the methylene moiety play an important role in the cycloaddition reaction of tetrazolo[1,5-*a*]pyridine and ferroce-

nylacetylene, and the ligand $\left(L_9\right)$ was chosen as the best ligand.

In order to find the optimal conditions for our reaction, a small screening of reaction time, temperature, solvents, CuCl/ ligand ratios and catalyst loadings was performed for the cyclo-addition reaction of tetrazolo[1,5-a]pyridine and ferrocenylace-tylene (Tables 2 and 3). Firstly, the reaction time was changed

Table 2 Optimization of the reaction conditions^a

Entry	Solvent (0.25 M)	<i>t</i> [°C]	Time [h]	Yield ^b [%]		
1	Toluono	100	10	75		
1	Toluelle	100	10	75		
2	Toluene	100	12	85		
3	Toluene	100	16	85		
4	Toluene	100	20	75		
5	Toluene	60	12	Trace		
6	Toluene	80	12	28		
7	Toluene	120	12	90		
8	Toluene	140	12	70		
9	Dioxane	120	12	13		
10	DMSO	120	12	21		
11	DMF	120	12	14		

^a Reaction conditions: 2-azidopyridine (0.4 mmol), ferrocenyl acetylene (0.48 mmol), CuCl/L (0.04 mmol), solvent (0.8 mL). ^b Isolated yield.

Table 3 Effects of the CuCl/ligand ratios and catalyst loadings^a

	-	-	-
Fe Ta	+ $L_9 = $ $L_9 = $ $N = N$ $CuCI/L$	$P_{C, 12h} \xrightarrow{Fe} Fe$	N N N N N 3a
Entry	Catalyst loading (mol%)	CuCl/ligand	Yield ^b [%]
1	10	1:1	90
2	10	1:2	95
3	10	1:3	86
4	10	1:4	36
5	5	1:2	95
6	2.5	1:2	91

^{*a*} Reaction conditions: 2-azidopyridine (0.4 mmol), ferrocenyl acetylene (0.48 mmol), solvent (0.8 mL). ^{*b*} Isolated yield.

from 10 h to 20 h (Table 2, entries 1–4) and the reaction standing for 12 h afforded the compound **3a** in the best yield (Table 2, entry 2). Then when the reaction temperature was varied between 60 °C and 140 °C (Table 2, entries 5–8), it was found that the yield of compound **3a** was greatly affected by the temperature. For example, compound **3a** was readily prepared in good yield (85%) when the reaction was carried out at 100 °C for 12 h (Table 2, entry 2), whereas at 80 °C low yield (28%) of compound **3a** was obtained (Table 2, entry 6). The reaction gave compound **3a** in the best yield (90%) at 120 °C for 12 h (Table 2, entry 7), but the yield significantly reduced when the solvent was replaced by dioxane, DMSO or DMF (Table 2, entries 9–11). Subsequently, the CuCl/ligand ratios and catalyst loadings were screened (Table 3) and the optimal reaction conditions were obtained (Table 3, entry 5).

With the optimized results in hand, we tested the generality of cycloaddition reaction of substituted tetrazolo[1,5-a]pyridines and alkynes (Table 4). As shown in Table 4, the highly active catalyst (CuCl/L₉, 1:2) gave satisfying results with lowloading (5 mol%) for substituted tetrazolo[1,5-a]pyridine and aromatic alkyne cycloaddition reaction (Table 4, entries 1-9). Reaction of electron-rich aromatic alkynes and tetrazolo[1,5-a]pyridines was efficient and gave products 3a-3d in excellent yields (>95%, Table 4, entries 1-4). When the aromatic alkynes had a relatively low electron density in the aromatic rings, the reactions gave products 3e-3i in moderate to good yields (52-81%, Table 4, entries 5-9). Then we tested the reaction activities of tetrazolo [1,5-a] pyridines and alkyl alkynes and the reactions gave products 3j-3n in moderate yields (49-60%, Table 4, entries 10-14). Finally, we tried to challenge the CuAAC reactions of tetrazoles bearing 8-substituted withdrawing groups (NO₂, COOH, and Cl), which were difficult to carry out.^{4e,g} To our delight, 8-chlorotetrazolo[1,5-a]pyridine could react with ferrocenyl acetylene or ethynylbenzene smoothly to give the product 30 or 3p in 46% and 48% yield, respectively (Table 4, entries 15-16). Unfortunately, we did not obtain the desired 1,2,3-triazole products by CuAAC reactions using tetrazolo[1,5-a]pyridine-8-carboxylic acid or 8-nitrotetrazolo[1,5-a]pyridine as the substrate under the same reaction conditions. The possible reason was that these tetrazolo [1,5-a] pyridine derivatives may decompose at the reaction temperature (120 °C).19

In order to further confirm the structure of the synthesized 1,4-substituted-1,2,3-triazole derivatives, compound **3a** was cultivated in a mixture of dichloromethane and hexane to give an orange crystal suitable for X-ray single-crystal diffraction. The crystal structure is shown in Fig. 2.²⁰

Experimental section

General experimental methods

All NMR experiments were carried out on a 500 spectrometer using CDCl₃, DMSO- d_6 or C₆D₆ as the solvent with tetramethylsilane as the internal standard (³¹P NMR with 85% H₃PO₄ as the internal standard). Chemical shift values (δ) are given in parts per million. Elemental analyses were determined on an elemental analyzer. HRMS data were obtained on an FTICR-MS instrument. The melting points were determined on an X-4 binocular microscope melting point apparatus and are uncorrected. CH₃CN, CHCl₃, dioxane, toluene, DMF and DMSO were dried according to the literature techniques.

Synthesis of ferrocenyl acetylene (1a). Ferrocenyl acetylene was synthesized according to the literature.²¹ ¹H NMR (500 MHz, CDCl₃) δ 4.60–4.30 (m, 2H), 4.33–4.09 (m, 7H), 2.73 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 82.6, 73.5, 71.7, 70.0, 68.7, 63.8.

Synthesis of tris[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl]amine (TBTA). Tris[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl]amine (TBTA) was synthesized according to the literature.²² ¹H NMR (500 MHz, CDCl₃) δ 7.65 (s, 3H), 7.39–7.29 (m, 9H), 7.25 (dd,

			R ¹	$= + \bigvee_{N \in \mathcal{N}}^{\mathbb{R}^2} \int_{N \in \mathcal{N}}^{N} dx$	CuCl/L _s	₉ (1:2, 5 mol%) , 120 °C, 12h		$ \begin{array}{c} $	L ₉ =		⁴ ∼P(t-Bu) ₃		
Entry	$R^1 \equiv$	R ²		Product		Yield ^b [%]	Entry	$R^1 \equiv$	R ²		Product		Yield ^t [%]
1	Fe Ta	Н	2a	Fe N N	3a	95	9	S 1i	Н	2a	N=N N S	3i	77
2	H	Н	2a		3b	95	10	HO 1j	Н	2a	HO	3j	55
3	Me 1c	н	2a	N=N N	3c	97	11	CI 1k	Н	2a		3k	49
4	MeO 1d	Н	2a	Meo	3d	98	12	11	н	2a		31	54
5	Br 1e	н	2a	Br N=N N	3e	68	13	1m	Н	2a		3m	55
6	Fff	Н	2a	F N N N	3f	52	14	∆ 1n	н	2a	N=N N	3n	60
7	CI 1g	Н	2a		3g	79	15 ^c	Fe 1a	Н	2b		30	46
8	N th	Н	2a		3h	81	16 ^c	H1b	Н	2b		3р	48

Table 4 Synthesis of 1-(pyridin-2-yl)-1,2,3-triazole derivatives^a

 a General reaction conditions: azide (0.4 mmol), alkyne (0.48 mmol), CuCl (0.02 mmol), ligand (0.04 mmol), toluene (0.8 mL), 120 °C, 12 h. b Isolated yield. c Reaction performed at 100 °C for 24 h.

Fig. 2 ORTEP diagram of compound 3a.

J = 7.8, 2.3 Hz, 6H), 5.50 (s, 6H), 3.70 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 144.3, 134.8, 129.1, 128.7, 128.0, 123.8, 100.0, 54.1, 47.1.

Synthesis of tetrazolo[1,5-a]pyridine derivatives (2a-2d)

Tetrazolo[1,5-*a*]*pyridine* **2a**. 2-Bromopyridine (6.0 g, 38.2 mmol), NaN₃ (3.34 g, 51.4 mmol) and 18-crown-6 (1.0 g, 3.8 mmol) were added to DMF (60 mL), and then the mixture

was heated for 48 h at 125 °C in the dark. The crude reaction mixture was concentrated *in vacuo* and recrystallized from ethanol to give compound **2a** as a colorless acicular crystal (3.5 g, 65% yield): mp 155–156 °C (lit.¹⁹ 156–158 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.86 (d, *J* = 6.9 Hz, 1H), 8.07 (d, *J* = 9.0 Hz, 1H), 7.94–7.46 (m, 1H), 7.27 (t, *J* = 6.6 Hz, 1H).

8-Chlorotetrazolo[1,5-a]pyridine **2b.** 2,3-Dichloropyridine (0.5 g, 3.2 mmol) and NaN₃ (0.5 g, 7.7 mmol) were added to a mixture of ethanol (5 mL) and water (45 mL), followed by addition of 10% HCl (5 mL). The mixture was heated to reflux for 48 h. The solvent was concentrated *in vacuo* and the residue was washed with water (20 mL). The crude product was purified by recrystallization from ethanol to give the product **2b** as a white solid (3.0 g, 60% yield): mp 106–107 °C (lit.^{23a} 105–106 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.80 (d, 1H), 7.73 (d, 1H), 7.23 (t, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 147.8, 130.9,

124.0, 123.0, 116.6. Anal. Calcd for $C_5H_3N_4Cl$: C, 38.86; H, 1.96; N, 36.25; Found: C, 38.72; H, 1.91; N, 35.91.

Tetrazolo[1,5-*a*]*pyridine-8-carboxylic acid* **2c**. Compound **2c** was prepared using the same method as compound **2b**. This compound was obtained as a white solid (4.2 g, 80% yield).^{23b} ¹H NMR (500 MHz, DMSO-*d*₆) δ 13.89 (s, 1H), 9.53 (d, *J* = 6.7 Hz, 1H), 8.40 (d, *J* = 7.0 Hz, 1H), 7.54 (t, *J* = 7.0 Hz, 1H).

8-Nitrotetrazolo[1,5-a]pyridine 2d. Compound 2d was prepared using the same method as compound 2b. This compound was obtained as a white solid (0.34 g, 65% yield): mp 179–181 °C.^{15e} ¹H NMR (500 MHz, DMSO- d_6) δ 9.77 (d, 1H), 8.89 (d, 1H), 7.68 (t, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 143.8, 136.3, 133.5, 132.5, 116.7. Anal. Calcd for C₅H₃N₅O₂: C, 36.37; H, 1.83; N, 42.42; Found: C, 36.30; H, 1.75; N, 42.70.

Synthesis of ligands (L₁-L₁₀)

(2-Pyridyl)-CH₂-N==PPh₃ L_1 . A mixture of SOCl₂ (7.4 mL) and CHCl₃ (20 mL) was slowly added to a stirred solution of 2-pyridylmethanol (6 mL, 62.2 mmol) in CHCl₃ (30 mL) which was cooled in an ice–salt bath. Then the reaction stood for 3 h at the same temperature. The solution was neutralized with saturated NaHCO₃ solution, and the organic layer was washed with H₂O and dried over anhydrous MgSO₄. After filtration the solvent was removed under vacuum to give a yellow oil (7.2 g, 91% yield) which was used in the next step without purification.

To a stirred solution of a freshly prepared 2-(chloromethyl)pyridine (18.3 mmol, 3.0 g) in acetonitrile (100 mL) were added NaN₃ (4.3 g, 66 mmol) and NaI (1.0 g, 6.7 mmol). The stirred mixture was refluxed for 24 h and then cooled, and the solution was washed with H₂O. The product was extracted into CHCl₃, and the organic layer was dried over anhydrous MgSO₄. After filtration the solvent was removed under vacuum to give a yellow oil (5.9 g, 94% yield). The oil was not purified because of the risk of explosion.

A mixture of 2-(azidomethyl)pyridine (3.0 g, 22.8 mmol) and toluene (20 mL) was slowly added to a stirred solution of PPh₃ (3.0 g, 11.4 mmol) in toluene (30 mL). Then the mixture was heated to reflux for 8 h and then cooled. The solvent was removed under vacuum to give a pale yellow solid. The crude product was washed with CH₃CN at -40 °C to obtain the product L₁ as a white solid (0.6 g, 40% yield).^{17*a*} ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, 1H), 7.95 (d, 1H), 7.74–7.60 (m, 7H), 7.53–7.46 (m, 3H), 7.46–7.35 (m, 6H), 7.11–6.89 (m, 1H), 4.51 (d, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 165.6, 148.1, 136.3, 132.5, 132.5, 131.8, 131.3, 131.3, 131.0, 128.5, 128.4, 121.3, 120.7, 51.2, 51.1. ³¹P NMR (202 MHz, CDCl₃) δ 13.25.

3-Chloro-N-(triphenylphosphoranylidene)propan-1-amine L_2 . 1-Azido-2-chloroethane was prepared as a colorless oil (1.3 g, 53% yield) according to the literature.²⁴ Under argon 1-azido-2chloroethane (1.2 g, 11.4 mmol) was slowly added to a solution of PPh₃ (3.0 g, 11.5 mmol) in toluene (5 mL), at the same time a large amount of gas emitted from the solution. After the addition was complete the reaction mixture was kept at 25 °C for 8 h. The solvent was removed under vacuum to give a pale yellow viscous oil which was washed with petroleum ether to give compound L_2 as a white solid (1.5 g, 40% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.65 (dd, J = 11.2, 7.5 Hz, 6H), 7.52 (t, J = 7.1 Hz, 3H), 7.45 (dd, J = 7.2, 5.6 Hz, 6H), 3.70 (t, J = 6.6 Hz, 2H), 3.23 (dt, J = 16.3, 6.3 Hz, 2H), 2.10–1.91 (m, 2H); ³¹P NMR (202 MHz, CDCl₃) δ 11.85.

1,1,1-Trimethyl-N-(triphenylphosphoranylidene)silanamine L₃. Compound L₃ was prepared as a white solid (4.4 g, 45% yield) according to the literature.²⁵ ¹H NMR (500 MHz, CDCl₃) δ 7.69–7.62 (m, 6H), 7.50–7.43 (m, 3H), 7.44–7.37 (m, 6H), –0.06 (s, 9H). ³¹P NMR (202 MHz, CDCl₃) δ –1.41.

1,1,1-Trimethyl-N-(tricyclohexylphosphoranylidene)silanamine L_4 . Compound L_4 was prepared as a white solid (3.8 g, 37% yield) according to the literature.²⁶ ¹H NMR (500 MHz, C₆D₆) δ 1.53–1.71 (m, 15H), 1.30–1.44 (m, 8H), 1.03–1.15 (m, 10H), 0.45 (s, 9H); ³¹P NMR (202 MHz, C₆D₆) δ 17.63.

N-(*Triphenylphosphoranylidene*)*aniline* L₅. Compound L₅ was prepared as a white solid (1.7 g, 75% yield) according to the literature.²⁷ ¹H NMR (500 MHz, CDCl₃) δ 7.76 (q, 6H), 7.52 (t, 3H), 7.45 (m, 6H), 7.02 (t, 2H), 6.82 (d, 1H), 6.41 (t, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 151.2, 132.7, 131.8, 131.6, 130.8, 128.7, 123.5, 117.4.

N-(*Triphenylphosphoranylidene*)*pyridin*-2-*amine* L_{6} . A mixture of 2-aziopyridine **2a** (0.6 g, 5 mmol) and PPh₃ (1.3 g, 5 mmol) were dissolved in DMF (20 mL). Then the mixture was stirred for 8 h at 110 °C and then cooled. The solvent was removed under vacuum to give a pale yellow solid. The crude product was washed with petroleum ether to give compound L_6 as a white solid (1.24 g, 70% yield).²⁶ ¹H NMR (500 MHz, CDCl₃) δ 7.80 (m, 6H, Ph), 7.70 (d, 1H, Py, J = 10 Hz), 7.51–7.58 (m, 9H), 7.35 (t, 1H, Py, J = 10 Hz), 6.78 (t, 1H, Py, J = 10 Hz), 6.42 (d, 1H, Py, J = 5 Hz); ³¹P NMR (202 MHz, CDCl₃) δ 12.26 (s, PPh₃).

(2-Pyridyl)-CH₂-N=PCy₃ L_7 . Compound L_7 was prepared using the same method as compound L_1 . This compound was obtained as a white solid (0.73 g, 53% yield). ¹H NMR (500 MHz, C₆D₆) δ 8.38 (d, 1H, Py), 7.86 (d, 1H, Py), 7.61 (t, 1H, Py), 6.99 (t, 1H, Py), 4.48 (d, 2H, CH₂), 2.03–1.96 (m, 3H, PCy₃), 1.90–1.68 (m, 15H, PCy₃), 1.43–1.41 (m, 6H, PCy₃), 1.19–1.16 (m, 9H, PCy₃),; ³¹P NMR (202 MHz, C₆D₆) δ 29.17 (s, PCy₃). Anal. Calcd for C₂₄H₃₉N₂P: C, 74.57; H, 10.17; N, 7.25; Found: C, 74.85; H, 10.32; N, 7.05.

N-(*tri-tert-Butylphosphoranylidene*)*pyridin-2-amine* L_{s} . Compound L_{8} was prepared using the same method as compound L_{6} . This compound was obtained as a white solid (0.14 g, 30% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.87 (d, 1H, Py, J = 15 Hz), 8.08 (d, 1H, Py, J = 10 Hz), 7.72 (t, 1H, Py, J = 10 Hz), 7.28 (d, 1H, Py, J = 15 Hz), 1.64 (s, 27H, P^tBu₃); ³¹P NMR (202 MHz, CDCl₃) δ 70.72 (s, P^tBu₃). Anal. Calcd for C₁₇H₃₁N₂P: C, 69.35; H, 10.61; N, 9.51; Found: C, 69.61; H, 10.80; N, 9.77.

(2-Pyridyl)-CH₂-N=P^tBu₃ L₉. Compound L₉ was prepared using the same method as compound L₁. This compound was obtained as a white solid (0.68 g, 56% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.49 (d, 1H), 7.59–7.55 (m, 1H), 7.39 (d, 1H), 7.10–7.07 (m, 1H), 4.97 (s, 2H), 1.49–1.46 (s, 27 H); ¹³C NMR (126 MHz, C₆D₆) δ 161.9, 149.4, 135.7, 128.4, 128.3, 128.2, 128.0, 128.0, 127.9, 123.1, 121.3, 68.1, 40.2, 39.9, 29.9; ³¹P NMR (202 MHz, CDCl₃) δ 54.12. Anal. Calcd for C₁₈H₃₃N₂P: 2-((Diphenylphosphino)methyl)pyridine L_{10} . Compound L_{10} was prepared as a white solid (4.2 g, 56% yield) according to the literature.²⁸ ¹H NMR (500 MHz, CDCl₃, δ) 8.50 (d, J = 5.5 Hz, 1H), 7.48 (d, J = 1.8 Hz, 1H), 7.44–7.32 (m, 10H), 7.06 (t, J = 7.0 Hz, 1H), 6.97 (d, J = 8.7 Hz, 1H), 3.64 (s, 2H); ³¹P NMR (202 MHz, CDCl₃) δ –10.34.

Representative procedure for the preparation of 1-(pyridin-2-yl)-1,2,3-triazole derivatives 3a-3p (Table 4, entry 1, as an example). Under a nitrogen atmosphere, a 25 mL Schlenk tube was charged with anhydrous toluene (0.80 mL), CuCl (2 mg, 0.02 mmol) and the ligand L₉ (12.32 mg, 0.04 mmol). The mixture was stirred for 30 min at room temperature. Then tetrazolo[1,5-a]pyridine 2a (48 mg, 0.4 mmol), ferrocenylacetylene (101 mg, 0.48 mmol) and anhydrous toluene (0.80 mL) were added into the Schlenk tube successively. Then the mixture was stirred for 12 h at 120 °C and cooled. Removal of the solvent yielded a residue, which was purified by flash column chromatography (silica gel, CH₂Cl₂-EtOAc-hexane = 1:1:5) to give compound 3a as an orange solid (125.0 mg, 95% yield): mp 235–238 °C. ¹H NMR (500 MHz, $CDCl_3$) δ 8.51 (d, J = 20.3 Hz, 2H), 8.24 (d, J = 8.2 Hz, 1H), 8.02–7.79 (m, 1H), 7.36 (dd, J = 6.8, 5.2 Hz, 1H), 4.85 (s, 2H), 4.37 (s, 2H), 4.13 (s, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 149.2, 148.5, 147.5, 139.1, 123.4, 115.8, 113.8, 77.3, 77.0, 76.8, 69.7, 68.9, 66.9. Anal. Calcd for C₁₇H₁₄FeN₄: C, 61.84; H, 4.27; N, 16.97; Found: C, 61.75; H, 4.34; N, 16.89. ESI-MS calcd for C₁₇H₁₄FeN₄: 330.06, Found: [M]⁺ 330.8.

Compound **3b**.^{4e} White solid (84.4 mg, 95% yield): mp 129–131 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.82 (s, 1H), 8.53 (d, J = 4.3 Hz, 1H), 8.26 (d, J = 8.2 Hz, 1H), 8.01–7.91 (m, 3H), 7.47 (t, J = 7.7 Hz, 2H), 7.37 (dd, J = 13.6, 6.2 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 149.2, 148.6, 139.2, 130.2, 128.9, 128.5, 125.9, 123.6, 116.8, 113.9, 77.3, 77.0, 76.8, 32.3. Anal. Calcd for C₁₃H₁₀N₄: C, 70.26; H, 4.54; N, 25.21; Found: C, 69.96; H, 4.35; N, 25.01. ESI-MS calcd for C₁₃H₁₀N₄: 222.09; Found: [M + H]⁺ 223.03.

Compound 3*c.* White solid (91.6 mg, 97% yield): mp 119–121 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.79 (d, *J* = 14.9 Hz, 1H), 8.54 (s, 1H), 8.26 (d, *J* = 7.8 Hz, 1H), 7.94 (t, *J* = 7.8 Hz, 1H), 7.83 (t, *J* = 10.5 Hz, 2H), 7.37 (d, *J* = 5.5 Hz, 1H), 7.32–7.22 (m, 2H), 2.41 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.2, 148.5, 139.1, 138.4, 129.6, 127.4, 125.8, 123.5, 123.0, 116.4, 113.9, 21.4. Anal. Calcd for C₁₄H₁₂N₄: C, 71.17; H, 5.12; N, 23.71; Found: C, 70.97; H, 5.51; N, 23.52. ESI-MS calcd for C₁₄H₁₂N₄: 236.11; Found: [M]⁺ 236.94.

Compound 3*d*. White solid (98.8 mg, 98% yield): mp 106–109 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.74 (s, 1H), 8.55 (s, 1H), 8.26 (d, *J* = 6.9 Hz, 1H), 7.94 (t, *J* = 7.7 Hz, 1H), 7.88 (d, *J* = 8.6 Hz, 2H), 7.37 (s, 1H), 7.01 (d, *J* = 8.6 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.0, 148.7, 139.3, 127.4, 123.4, 123.0, 116.0, 114.5, 114.0, 55.5. Anal. Calcd for C₁₄H₁₂N₄O: C, 66.65; H, 4.79; N, 22.21; Found: C, 66.83; H, 4.59; N, 22.05. ESI-MS calcd for C₁₄H₁₂N₄O: 252.10; Found: [M]⁺ 252.89.

Compound 3*e*. White solid (81.6 mg, 68% yield): mp 174–176 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.81 (s, 1H), 8.52 (d, J = 4.7 Hz, 1H), 8.24 (d, J = 8.2 Hz, 1H), 7.94 (td, J = 8.0, 1.7 Hz, 1H), 7.82 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 7.37 (dd, J = 7.3, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.0, 148.6, 147.0, 139.2, 133.8, 132.0, 131.8, 129.2, 127.4, 123.7, 122.4, 116.9, 113.8. ESI-MS calcd for C₁₃H₉BrN₄: 300.00; Found: [M + H]⁺ 301.53. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₃H₉BrN₄ 301.0089; Found: 301.0087.

Compound **3***f*. White solid (49.9 mg, 52% yield): mp 108–111 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.79 (s, 1H), 8.56 (s, 1H), 8.27 (d, *J* = 6.8 Hz, 1H), 8.01–7.86 (m, 3H), 7.39 (s, 1H), 7.17 (t, *J* = 8.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 148.1, 147.5, 138.2, 126.6, 125.4, 122.6, 115.5, 115.0, 114.8, 112.8, 76.3, 76.0, 75.7, 31.3. Anal. Calcd for C₁₃H₉FN₄: C, 64.99; H, 3.78; N, 23.32; Found: C, 65.21; H, 3.52; N, 22.99. ESI-MS calcd for C₁₃H₉FN₄: 240.08. Found: [M]⁺ 240.95.

Compound **3***g*. White solid (80.9 mg, 79% yield): mp 137–14 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.82 (s, 1H), 8.52 (d, J = 4.3 Hz, 1H), 8.23 (d, J = 8.2 Hz, 1H), 7.98–7.90 (m, 2H), 7.81 (d, J = 7.6 Hz, 1H), 7.42–7.35 (m, 2H), 7.33 (d, J = 8.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.0, 148.6, 146.7, 139.2, 134.9, 132.0, 130.2, 128.4, 125.9, 123.9, 123.7, 117.2, 113.8. Anal. Calcd for C₁₃H₉ClN₄: C, 60.83; H, 3.53; N, 21.83; Found: C, 60.73; H, 3.23; N, 21.43. ESI-MS calcd for C₁₃H₉ClN₄: 256.05. Found: [M + H]⁺ 257.11.

Compound **3***h*. White solid (72.3 mg, 81% yield): mp 132–134 °C. ¹H NMR (500 MHz, CDCl₃) δ 9.18 (s, 1H), 8.66 (s, 1H), 8.55 (d, *J* = 3.8 Hz, 1H), 8.25 (d, *J* = 7.7 Hz, 2H), 7.94 (t, *J* = 7.6 Hz, 1H), 7.82 (t, *J* = 7.2 Hz, 1H), 7.41–7.32 (m, 1H), 7.27 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 150.0, 149.7, 149.1, 148.8, 148.6, 139.1, 136.9, 123.7, 123.1, 120.5, 119.4, 113.9. ESI-MS calcd for C₁₂H₉N₅: 223.09. Found: [M + H] 224.07. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₁₂H₉N₅ 224.0936; Found: 224.0928.

Compound 3*i.* White solid (70.2 mg, 77% yield): mp 129–134 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.71 (s, 1H), 8.51 (d, *J* = 4.2 Hz, 1H), 8.22 (d, *J* = 8.2 Hz, 1H), 7.92 (dd, *J* = 11.2, 4.4 Hz, 1H), 7.50 (d, *J* = 3.2 Hz, 1H), 7.42–7.31 (m, 2H), 7.17–7.05 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.0, 148.6, 143.3, 139.2, 132.5, 127.8, 125.5, 124.7, 123.7, 116.2, 113.9. ESI-MS calcd for C₁₁H₈N₄S: 228.05. Found: [M + H]⁺ 229.11. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₁H₈N₄S 229.0548; Found: 229.0546.

Compound 3*j.* White solid (41.8 mg, 55% yield): mp 69–71 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.47 (dd, J = 28.0, 10.2 Hz, 2H), 8.27–8.08 (m, 1H), 7.92 (s, 1H), 7.35 (s, 1H), 4.04 (s, 2H), 3.07 (s, 2H), 2.60 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.3, 148.5, 139.1, 127.4, 123.5, 122.9, 119.4, 113.7, 61.5, 31.0. ESI-MS calcd for C₉H₁₀N₄O: 190.09. Found: [M + H]⁺ 191.21. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₉H₁₀N₄ONa 213.0752; Found: 213.0748.

Compound **3k.** Colorless liquid (43.5 mg, 49% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.46 (d, J = 3.4 Hz, 1H), 8.35 (s, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.88 (t, J = 7.4 Hz, 1H), 7.37–7.27 (m, 1H), 3.60 (t, J = 6.2 Hz, 2H), 2.97 (t, J = 7.1 Hz, 2H), 2.31–2.11 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 149.2, 148.5, 146.9, 139.1, 123.4, 118.6, 113.7, 44.0, 31.8, 22.7. ESI-MS calcd for C₁₀H₁₁ClN₄: 222.07. Found: [M + H]⁺ 223.52. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₁₀H₁₁ClN₄Na 245.0570; Found: 245.0586.

Compound 3l. Colorless liquid (43.6 mg, 54% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.48 (d, J = 4.0 Hz, 1H), 8.30 (s, 1H), 8.18 (d, J = 8.2 Hz, 1H), 7.89 (td, J = 8.2, 1.7 Hz, 1H), 7.31 (dd, J = 7.2, 5.0 Hz, 1H), 2.81 (t, J = 7.7 Hz, 2H), 1.76–1.68 (m, 2H), 1.44 (dd, J = 13.8, 6.3 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.4, 148.9, 148.4, 139.0, 123.2, 118.0, 113.7, 31.4, 25.3, 22.3, 13.8. ESI-MS calcd for C₁₁H₁₄N₄: 202.12. Found: [M + H]⁺ 203.47. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₁H₁₄N₄Na 225.1116; Found: 225.1114.

Compound 3m. Colorless liquid (47.5 mg, 55% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.47 (s, 1H), 8.30 (s, 1H), 8.16 (d, J = 8.1 Hz, 1H), 7.88 (t, J = 7.7 Hz, 1H), 7.41–7.26 (m, 1H), 2.79 (t, J = 7.6 Hz, 2H), 1.83–1.64 (m, 2H), 1.40–1.33 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.4, 149.0, 148.4, 139.0, 123.3, 118.0, 113.7, 32.3, 32.2, 31.4, 29.0, 25.6, 22.4, 14.0. ESI-MS calcd for C₁₂H₁₆N₄: 216.14. Found: [M + H]⁺ 217.44. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₂H₁₆N₄Na 239.1237; Found: 239.1266.

Compound **3n.** Colorless liquid (44.6 mg, 60% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 8.20 (s, 1H), 8.11 (s, 1H), 7.83 (s, 1H), 7.26 (s, 1H), 2.06 (d, J = 54.7 Hz, 1H), 1.52–1.17 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 150.9, 149.3, 148.4, 139.0, 123.3, 117.0, 113.7, 7.9, 6.8. ESI-MS calcd for C₁₀H₁₀N₄: 186.1. Found: [M + H]⁺ 187.30. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₁₀H₁₀N₄Na 209.0803; Found: 209.0793.

Compound **30.** Orange solid (67.0 mg, 46% yield): mp 245–247 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.52 (s, 1H), 8.03 (d, *J* = 30 Hz, 2H), 7.42 (s, 1H), 4.88 (s, 2H), 4.41 (s, 2H), 4.18 (s, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 147.1, 146.6, 146.1, 140.9, 125.7, 125.3, 119.4, 77.4, 77.2, 76.9, 70.2, 69.4, 67.3. Anal. Calcd for C₁₇H₁₃ClFeN₄: C, 56.00; H, 3.59; N, 15.37; Found: C, 55.75; H, 3.91; N, 15.17. ESI-MS calcd for C₁₇H₁₃ClFeN₄: 364.02. Found: [M]⁺ 364.7.

Compound **3***p*. White solid (49.2 mg, 48% yield): mp 140–142 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.54 (d, *J* = 3.9 Hz, 1H), 8.40 (s, 1H), 8.02 (d, *J* = 7.9 Hz, 1H), 7.95 (d, *J* = 7.5 Hz, 2H), 7.45 (dt, *J* = 7.9, 6.1 Hz, 3H), 7.38 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 146.3, 146.0, 145.0, 139.8, 129.0, 127.9, 127.5, 125.0, 124.7, 124.3, 119.2, 76.3, 76.0, 75.8. Anal. Calcd for C₁₃H₉ClN₄: C, 60.83; H, 3.53; N, 21.83; Found: C, 60.58; H, 3.74; N, 21.64. ESI-MS calcd for C₁₃H₉ClN₄: 256.05. Found: [M]⁺ 256.09.

Conclusions

In conclusion, we have presented an efficient and practical catalytic system for the synthesis of 1,4-substituted-1-(pyridin-2-yl)-1,2,3-triazoles. Under the optimal conditions, 5 mol% of CuCl and 10 mol% of 2-PyCH₂N= P^tBu_3 (L₉) in toluene at 120 °C were used. Good to excellent yields were obtained by

using electron-rich aromatic alkynes as the substrates, at the same time using electron-deficient aromatic alkynes and alkyl alkynes as the substrates afforded the desired products in moderate yields. More remarkably, 8-chlorotetrazolo[1,5-a]-pyridine which exists mainly in closed form equilibrium (Scheme 2) can react with ferrocenyl acetylene or ethynylben-zene smoothly to give the products in moderate yield.

Acknowledgements

This work was financially supported by the National Science Foundation of China (Nos. 21004032, 21364005, 21202079), the Key Project of Chinese Ministry of Education in China (no. 210077), Startup Foundation for Outstanding Young Scientists of Inner Mongolia University (Z20080213, no. 115110).

Notes and references

- (a) Y. J. Li, J. C. Huffman and A. H. Flood, *Chem. Commun.*, 2007, 2692–2694; (b) S. J. Gu, H. Xu, N. Zhang and W. Z. Chen, *Chem. – Asian J.*, 2010, 5, 1677–1686; (c) I. Stengel, A. Mishra, N. Pootrakulchote, S.-J. Moon, S. M. Zakeeruddin, M. Graetzel and P. Baeuerle, *J. Mater. Chem.*, 2011, 21, 3726–3734; (d) A. Bolje and J. Kosmrlj, *Org. Lett.*, 2013, 15, 5084–5087.
- 2 (a) I. L. Knox and R. B. Rogers, U. S. Patent 4,775,762, 1988; (b) J. Roppe, N. D. Smith, D. H. Huang, L. Tehrani, B. W. Wang, J. Anderson, J. Brodkin, J. Chung, X. H. Jiang, C. King, B. Munoz, M. A. Varney, P. Prasit and N. D. P. Cosford, J. Med. Chem., 2004, 47, 4645-4648; (c) B. Japelj, S. Recnik, P. Cebasek, B. Stanovnik and J. Svete, J. Heterocycl. Chem., 2005, 42, 1167-1173; (d) S. Ito, A. Satoh, Y. Nagatomi, Y. Hirata, G. Suzuki, T. Kimura, A. Satow, S. Maehara, H. Hikichi, M. Hata, H. Kawamoto and H. Ohta, Bioorg. Med. Chem., 2008, 16, 9817-9829; (e) A. R. Ellanki, A. Islam, V. S. Rama, R. P. Pulipati, D. Rambabu, G. R. Krishna, C. M. Reddy, K. Mukkanti, G. R. Vanaja, A. M. Kalle, K. S. Kumar and M. Pal, Bioorg. Med. Chem. Lett., 2012, 22, 3455-3459; (f) S. V. Chapyshev and A. V. Chernyak, Synthesis, 2012, 3158-3160; (g) T. Merckx, P. Verwilst and W. Dehaen, Tetrahedron Lett., 2013, 54, 4237-4240; (h) Y. Okumura, Y. Maya, Y. Shoyama and T. Onishi, Patent WO2012176587 A1, 2012; (i) C. Hirth-Dietrich, P. Sandner, J.-P. Stasch, M. Hahn and M. Follmann, Eur. Pat. Appl, 2594270, 2013; (j) F. Li, Y. J. Park, J.-M. Hah and J.-S. Ryu, Bioorg. Med. Chem. Lett., 2013, 23, 1083-1086. 3 (a) R. C. Thomas, T.-J. Poel, M. R. Barbachyn, M. F. Gordeev, G. W. Luehr, A. Renslo, U. Singh and V. P. V. N. Josyula, U. S. Patent 2004/0147760 A1, 2004; (b) Y. W. Jo, W. B. Im, J. K. Rhee, M. J. Shim, W. B. Kim and E. C. Choi, Bioorg. Med. Chem., 2004, 12, 5909-5915; (c) T. Wang, J. F. Kadow, Z. X. Zhang, Z. W. Yin, N. A. Meanwell, A. Regueiro-Ren, J. Swidorski, Y. Han, D. J. Carini and L. G. Hamann, U. S. Patent 2008/0139572 A1, 2008; (d) A. Regueiro-Ren,

Q. F. M. Xue, J. J. Swidorski, Y.-F. Gong, M. Mathew, D. D. Parker, Z. Yang, B. Eggers, C. D'Arienzo, Y. N. Sun, J. Malinowski, Q. Gao, D. D. Wu, D. R. Langley, R. J. Colonno, C. Chien, D. M. Grasela, M. Zheng, P.-F. Lin, N. A. Meanwell and J. F. Kadow, *J. Med. Chem.*, 2013, **56**, 1656–1669; (e) R. Kharul, D. Bhuniya, K. A. Mookhtiar, U. Singh, A. Hazare, S. Patil, L. Datrange and M. Thakkar, *Patent* WO2013042139 A1, 2013; (f) S. Q. Chen, J. C. Hermann, N. T. Le, M. C. Lucas and F. Padilla, *U. S. Patent* 2013/0178460 A1, 2013.

- 4 (a) R. A. Abramovitch, S. R. Challand and Y. Yamada, J. Org. Chem., 1975, 40, 1541-1547; (b) P. Zhong and S.-R. Guo, Chin. J. Chem., 2004, 22, 1183-1186; (c) B.-Y. Zhu, S. M. Bauer, Z. Z. J. Jia, G. D. Probst, Y. C. Zhang and R. M. Scarborough, Patent WO2006002099 A2, 2006; (d) F. E. Lovering, S. J. Kirincich, W. H. Wang, J.-B. Telliez, L. Resnick, J. E. Sabalski, A. L. Banker, J. Butera and McFadyen, Patent WO2009012375 2009; I. A2, (e) B. Chattopadhyay, C. I. Rivera Vera, S. Chuprakov and V. Gevorgyan, Org. Lett., 2010, 12, 2166-2169; (f) D. Zornik, R. M. Meudtner, T. El Malah, C. M. Thiele and S. Hecht, Chem. - Eur. J., 2011, 17, 1473-1484; (g) Q. Zhang, X. Y. Wang, C. J. Cheng, R. Zhu, N. Liu and Y. F. Hu, Org. Biomol. Chem., 2012, 10, 2847-2854; (h) F. Li, Y. J. Park, J.-M. Hah and J.-S. Ryu, Bioorg. Med. Chem., 2013, 23, 1083-1086.
- 5 (a) R. B. Rogers, B. C. Gerwick and E. A. Egli, U. S. Patent 4,474,599, 1984; (b) S. Recnik, J. Svete, A. Meden and B. Stanovnik, *Heterocycles*, 2000, 53, 1793-1805; (c) J. M. Keith, J. Org. Chem., 2006, 71, 9540-9543; (d) J. M. Keith, J. Org. Chem., 2010, 75, 2722-2725; (e) Z. K. Wang, X. Q. Xin, X. Liu, J. M. Yang, Y. J. Liang and R. Zhang, Chinese Patent CN 102276540, 2011.
- 6 (a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004-2021; (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596-2599; (c) C. W. Tornoe, C. Christensen and M. Meldal, J. Org. Chem., 2002, 67, 3057-3064; (d) J. E. Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1302-1315; (e) C. Le Droumaguet, C. Wang and Q. Wang, Chem. Soc. Rev., 2010, 39, 1233-1239; (f) Y. Shi, W. Zhu and Y. M. Chen, Macromolecules, 2013, 46, 2391-2398; (g) F. Zhou, C. Tan, J. Tang, Y.-Y. Zhang, W.-M. Gao, H.-H. Wu, Y.-H. Yu and J. Zhou, J. Am. Chem. Soc., 2013, 135, 10994–10997; (h) H. Wang, Z.-J. Zhang, H.-Y. Zhang and Y. Liu, Chin. Chem. Lett., 2013, 24, 563-567; (*i*) J.-H. Wang, Ch.-W. Pan, Y.-T. Li, F.-F. Meng, H.-G. Zhou, C. Yang, Q. Zhang, C.-G. Bai and Y. Chen, Tetrahedron Lett., 2013, 54, 3406-3409; (j) L. J. Li, Y. Y. Li, R. Li, A. L. Zhu and G. S. Zhang, Aust. J. Chem., 2011, 64, 1383-1389; (k) Q. Cai, J. J. Yan and K. Ding, Org. Lett., 2012, 14, 3332–3335; (l) C.-W. Shao, X.-Y. Wang, Q. Zhang, S. Luo, J.-C. Zhao and Y.-F. Hu, J. Org. Chem., 2011, 76, 6832-6836; (m) C. W. Shao, X. Y. Wang, J. M. Xu, J. C. Zhao, Q. Zhang and Y. F. Hu, J. Org. Chem., 2010, 75, 7002-7005.

- 7 (a) T. R. Chan, R. Hilgraf, K. B. Sharpless and V. V. Fokin, Org. Lett., 2004, 6, 2853–2855; (b) W. G. Lewis, F. G. Magallon, V. V. Fokin and M. G. Finn, J. Am. Chem. Soc., 2004, 126, 9152–9153; (c) S. Ozcubukcu, E. Ozkal, C. Jimeno and M. A. Pericas, Org. Lett., 2009, 11, 4680– 4683; (d) D. Soriano del Amo, W. Wang, H. Jiang, C. Besanceney, A. C. Yan, M. Levy, Y. Liu, F. L. Marlow and P. Wu, J. Am. Chem. Soc., 2010, 132, 16893–16899; (e) L. Y. Liang and D. Astruc, Coord. Chem. Rev., 2011, 255, 2933–2945.
- 8 (a) V. O. Rodionov, S. I. Presolski, S. Gardinier, Y.-H. Lim and M. G. Finn, *J. Am. Chem. Soc.*, 2007, **129**, 12696–12704;
 (b) V. O. Rodionov, S. I. Presolski, D. D. Díaz, V. V. Fokin and M. G. Finn, *J. Am. Chem. Soc.*, 2007, **129**, 12705–12712.
- 9 F. Perez-Balderas, M. Ortega-Munoz, J. Morales-Sanfrutos, F. Hernandez-Mateo, F. G. Calvo-Flores, J. A. Calvo-Asin, J. Isac-Garcia and F. Santoyo-Gonzalez, *Org. Lett.*, 2003, 5, 1951–1954.
- 10 (a) M. Malkoch, K. Schleicher, E. Drockenmuller, C. J. Hawker, T. P. Russell, P. Wu and V. V. Fokin, *Macro-molecules*, 2005, 38, 3663–3678; (b) P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless and V. V. Fokin, *Angew. Chem., Int. Ed.*, 2004, 43, 3928–3932; (c) D. Astruc, L. Y. Liang, A. Rapakousiou and J. Ruiz, *Acc. Chem. Res.*, 2012, 45, 630–640.
- 11 Z. Gonda and Z. Novák, Dalton Trans., 2010, 39, 726-729.
- 12 L. S. Campbell-Verduyn, L. Mirfeizi, R. A. Dierckx, P. H. Elsinga and B. L. Feringa, *Chem. Commun.*, 2009, 2139–2141.
- 13 S.-Q. Bai, L. L. Koh and T. S. A. Hor, *Inorg. Chem.*, 2009, **48**, 1207–1213.
- 14 (a) S. Díez-Gonzalez, A. Correa, L. Cavallo and S. P. Nolan, Chem. - Eur. J., 2006, 12, 7558-7564; (b) S. Díez-González and S. P. Nolan, Angew. Chem., Int. Ed., 2008, 46, 9013-9016; (c) M.-L. Teyssot, L. Nauton, J.-L. Canet, F. Cisnetti, A. Chevry and A. Gautier, Eur. J. Org. Chem., 2010, 3507-3515; (d) S. J. Gu, J. J. Huang, X. Liu, H. T. Liu, Y. S. Zhou and W. L. Xu, Inorg. Chem. Commun., 2012, 21, 168-172.
- (a) T. Sasaki, K. Kanematsu and M. Murata, J. Org. Chem., 1971, 36, 446; (b) M. Andras and H. Gyoergy, J. Org. Chem., 1981, 46, 843; (c) P. Cmoch, H. Korczak, L. Stefaniak and G. A. Webb, J. Phys. Org. Chem., 1999, 12, 470; (d) P. Cmoch, J. W. Wiench, L. Stefaniak and G. A. Webb, J. Mol. Struct., 1999, 510, 165–178; (e) M. Kanyalkar and E. C. Coutinho, Tetrahedron, 2000, 56, 8775–8777.
- 16 D. W. Stephan, Organometallics, 2005, 24, 2548-2560.
- 17 (a) L. P. Spencer, R. Altwer, P. R. Wei, L. Gelmini, J. Gauld and D. W. Stephan, *Organometallics*, 2003, 22, 3841–3854;
 (b) Z. Zhou and J. F. Christoph, *J. Am. Chem. Soc.*, 2004, 126, 8862–8863.
- 18 (a) R. Bielsa, R. Navarro, T. Soler and E. P. Urriolabeitia, Dalton Trans., 2008, 1203–1214; (b) D. Aguilar, M. Contel, R. Navarro, T. Soler and E. P. Urriolabeitia, J. Organomet. Chem., 2009, 694, 486–493; (c) D. Aguilar, R. Bielsa,

T. Soler and E. P. Urriolabeitia, *Organometallics*, 2011, 30, 642–648.

- 19 C. K. Lowe-Ma, R. A. Nissan and W. S. Wilson, J. Org. Chem., 1990, 55, 3755-3761.
- 20 CCDC 975322 contain the supplementary crystallographic data for compound **3a** in this paper.
- 21 A. Aguilar-Aguilar, A. D. Allen, E. P. Cabrera, A. Fedorov, N. Y. Fu, H. Henry-Riyad, J. Leuninger, U. Schmid, T. T. Tidwell and R. Verma, *J. Org. Chem.*, 2005, **70**, 9556–9561.
- 22 J. E. Hein, L. B. Krasnova, M. Iwasaki, V. V. Fokin, J. Panteleev and M. Lautens, *Org. Synth.*, 2011, **88**, 238–246.
- 23 (a) J. M. Keith, J. Org. Chem., 2006, 71, 9540–9543;
 (b) A. Kamal, K. L. Reddy, V. Devaiah, N. Shankaraiah,

G. S. K. Reddy and S. Raghavan, J. Comb. Chem., 2007, 9, 29-42.

- 24 R. Wiley and J. Moffat, J. Org. Chem., 1957, 22, 995-996.
- 25 D. W. Stephan, J. C. Stewart, F. Guérin, S. Courtenay, J. Kickham, E. Hollink, C. Beddie, A. Hoskin, T. Graham, P. R. Wei, R. E. v. H. Spence, W. Xu, L. Koch, X. L. Gao and D. G. Harrison, *Organometallics*, 2003, **22**, 1937–1947.
- 26 R. S. Foster, H. Jakobi and J. P. A. Harrity, *Org. Lett.*, 2012, 14, 4858–4861.
- 27 I. Yavari, M. Adib and L. Hojabri, *Tetrahedron*, 2002, 58, 7213-7219.
- 28 A. Kermagoret and P. Braunstein, *Organometallics*, 2008, 27, 88–99.